Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <net_processing.h>
7 : :
8 : : #include <addrman.h>
9 : : #include <banman.h>
10 : : #include <blockencodings.h>
11 : : #include <blockfilter.h>
12 : : #include <chainparams.h>
13 : : #include <consensus/amount.h>
14 : : #include <consensus/validation.h>
15 : : #include <deploymentstatus.h>
16 : : #include <hash.h>
17 : : #include <headerssync.h>
18 : : #include <index/blockfilterindex.h>
19 : : #include <kernel/chain.h>
20 : : #include <kernel/mempool_entry.h>
21 : : #include <logging.h>
22 : : #include <merkleblock.h>
23 : : #include <netbase.h>
24 : : #include <netmessagemaker.h>
25 : : #include <node/blockstorage.h>
26 : : #include <node/txreconciliation.h>
27 : : #include <policy/fees.h>
28 : : #include <policy/policy.h>
29 : : #include <policy/settings.h>
30 : : #include <primitives/block.h>
31 : : #include <primitives/transaction.h>
32 : : #include <random.h>
33 : : #include <reverse_iterator.h>
34 : : #include <scheduler.h>
35 : : #include <streams.h>
36 : : #include <sync.h>
37 : : #include <timedata.h>
38 : : #include <tinyformat.h>
39 : : #include <txmempool.h>
40 : : #include <txorphanage.h>
41 : : #include <txrequest.h>
42 : : #include <util/check.h>
43 : : #include <util/strencodings.h>
44 : : #include <util/trace.h>
45 : : #include <validation.h>
46 : :
47 : : #include <algorithm>
48 : : #include <atomic>
49 : : #include <chrono>
50 : : #include <future>
51 : : #include <memory>
52 : : #include <optional>
53 : : #include <typeinfo>
54 : : #include <utility>
55 : :
56 : : /** Headers download timeout.
57 : : * Timeout = base + per_header * (expected number of headers) */
58 : : static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
59 : : static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
60 : : /** How long to wait for a peer to respond to a getheaders request */
61 : : static constexpr auto HEADERS_RESPONSE_TIME{2min};
62 : : /** Protect at least this many outbound peers from disconnection due to slow/
63 : : * behind headers chain.
64 : : */
65 : : static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
66 : : /** Timeout for (unprotected) outbound peers to sync to our chainwork */
67 : : static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
68 : : /** How frequently to check for stale tips */
69 : : static constexpr auto STALE_CHECK_INTERVAL{10min};
70 : : /** How frequently to check for extra outbound peers and disconnect */
71 : : static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
72 : : /** Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict */
73 : : static constexpr auto MINIMUM_CONNECT_TIME{30s};
74 : : /** SHA256("main address relay")[0:8] */
75 : : static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
76 : : /// Age after which a stale block will no longer be served if requested as
77 : : /// protection against fingerprinting. Set to one month, denominated in seconds.
78 : : static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
79 : : /// Age after which a block is considered historical for purposes of rate
80 : : /// limiting block relay. Set to one week, denominated in seconds.
81 : : static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
82 : : /** Time between pings automatically sent out for latency probing and keepalive */
83 : : static constexpr auto PING_INTERVAL{2min};
84 : : /** The maximum number of entries in a locator */
85 : : static const unsigned int MAX_LOCATOR_SZ = 101;
86 : : /** The maximum number of entries in an 'inv' protocol message */
87 : : static const unsigned int MAX_INV_SZ = 50000;
88 : : /** Maximum number of in-flight transaction requests from a peer. It is not a hard limit, but the threshold at which
89 : : * point the OVERLOADED_PEER_TX_DELAY kicks in. */
90 : : static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100;
91 : : /** Maximum number of transactions to consider for requesting, per peer. It provides a reasonable DoS limit to
92 : : * per-peer memory usage spent on announcements, while covering peers continuously sending INVs at the maximum
93 : : * rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for several minutes, while not receiving
94 : : * the actual transaction (from any peer) in response to requests for them. */
95 : : static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000;
96 : : /** How long to delay requesting transactions via txids, if we have wtxid-relaying peers */
97 : : static constexpr auto TXID_RELAY_DELAY{2s};
98 : : /** How long to delay requesting transactions from non-preferred peers */
99 : : static constexpr auto NONPREF_PEER_TX_DELAY{2s};
100 : : /** How long to delay requesting transactions from overloaded peers (see MAX_PEER_TX_REQUEST_IN_FLIGHT). */
101 : : static constexpr auto OVERLOADED_PEER_TX_DELAY{2s};
102 : : /** How long to wait before downloading a transaction from an additional peer */
103 : : static constexpr auto GETDATA_TX_INTERVAL{60s};
104 : : /** Limit to avoid sending big packets. Not used in processing incoming GETDATA for compatibility */
105 : : static const unsigned int MAX_GETDATA_SZ = 1000;
106 : : /** Number of blocks that can be requested at any given time from a single peer. */
107 : : static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
108 : : /** Default time during which a peer must stall block download progress before being disconnected.
109 : : * the actual timeout is increased temporarily if peers are disconnected for hitting the timeout */
110 : : static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
111 : : /** Maximum timeout for stalling block download. */
112 : : static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
113 : : /** Number of headers sent in one getheaders result. We rely on the assumption that if a peer sends
114 : : * less than this number, we reached its tip. Changing this value is a protocol upgrade. */
115 : : static const unsigned int MAX_HEADERS_RESULTS = 2000;
116 : : /** Maximum depth of blocks we're willing to serve as compact blocks to peers
117 : : * when requested. For older blocks, a regular BLOCK response will be sent. */
118 : : static const int MAX_CMPCTBLOCK_DEPTH = 5;
119 : : /** Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for. */
120 : : static const int MAX_BLOCKTXN_DEPTH = 10;
121 : : /** Size of the "block download window": how far ahead of our current height do we fetch?
122 : : * Larger windows tolerate larger download speed differences between peer, but increase the potential
123 : : * degree of disordering of blocks on disk (which make reindexing and pruning harder). We'll probably
124 : : * want to make this a per-peer adaptive value at some point. */
125 : : static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
126 : : /** Block download timeout base, expressed in multiples of the block interval (i.e. 10 min) */
127 : : static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
128 : : /** Additional block download timeout per parallel downloading peer (i.e. 5 min) */
129 : : static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
130 : : /** Maximum number of headers to announce when relaying blocks with headers message.*/
131 : : static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
132 : : /** Maximum number of unconnecting headers announcements before DoS score */
133 : : static const int MAX_NUM_UNCONNECTING_HEADERS_MSGS = 10;
134 : : /** Minimum blocks required to signal NODE_NETWORK_LIMITED */
135 : : static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
136 : : /** Average delay between local address broadcasts */
137 : : static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
138 : : /** Average delay between peer address broadcasts */
139 : : static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
140 : : /** Delay between rotating the peers we relay a particular address to */
141 : : static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
142 : : /** Average delay between trickled inventory transmissions for inbound peers.
143 : : * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
144 : : static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
145 : : /** Average delay between trickled inventory transmissions for outbound peers.
146 : : * Use a smaller delay as there is less privacy concern for them.
147 : : * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
148 : : static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
149 : : /** Maximum rate of inventory items to send per second.
150 : : * Limits the impact of low-fee transaction floods. */
151 : : static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
152 : : /** Target number of tx inventory items to send per transmission. */
153 : : static constexpr unsigned int INVENTORY_BROADCAST_TARGET = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
154 : : /** Maximum number of inventory items to send per transmission. */
155 : : static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
156 : : static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
157 : : static_assert(INVENTORY_BROADCAST_MAX <= MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
158 : : /** Average delay between feefilter broadcasts in seconds. */
159 : : static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
160 : : /** Maximum feefilter broadcast delay after significant change. */
161 : : static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
162 : : /** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
163 : : static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
164 : : /** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
165 : : static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
166 : : /** the maximum percentage of addresses from our addrman to return in response to a getaddr message. */
167 : : static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
168 : : /** The maximum number of address records permitted in an ADDR message. */
169 : : static constexpr size_t MAX_ADDR_TO_SEND{1000};
170 : : /** The maximum rate of address records we're willing to process on average. Can be bypassed using
171 : : * the NetPermissionFlags::Addr permission. */
172 : : static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
173 : : /** The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND
174 : : * based increments won't go above this, but the MAX_ADDR_TO_SEND increment following GETADDR
175 : : * is exempt from this limit). */
176 : : static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND};
177 : : /** The compactblocks version we support. See BIP 152. */
178 : : static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
179 : :
180 : : // Internal stuff
181 : : namespace {
182 : : /** Blocks that are in flight, and that are in the queue to be downloaded. */
183 : 0 : struct QueuedBlock {
184 : : /** BlockIndex. We must have this since we only request blocks when we've already validated the header. */
185 : : const CBlockIndex* pindex;
186 : : /** Optional, used for CMPCTBLOCK downloads */
187 : : std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
188 : : };
189 : :
190 : : /**
191 : : * Data structure for an individual peer. This struct is not protected by
192 : : * cs_main since it does not contain validation-critical data.
193 : : *
194 : : * Memory is owned by shared pointers and this object is destructed when
195 : : * the refcount drops to zero.
196 : : *
197 : : * Mutexes inside this struct must not be held when locking m_peer_mutex.
198 : : *
199 : : * TODO: move most members from CNodeState to this structure.
200 : : * TODO: move remaining application-layer data members from CNode to this structure.
201 : : */
202 : 0 : struct Peer {
203 : : /** Same id as the CNode object for this peer */
204 : : const NodeId m_id{0};
205 : :
206 : : /** Services we offered to this peer.
207 : : *
208 : : * This is supplied by CConnman during peer initialization. It's const
209 : : * because there is no protocol defined for renegotiating services
210 : : * initially offered to a peer. The set of local services we offer should
211 : : * not change after initialization.
212 : : *
213 : : * An interesting example of this is NODE_NETWORK and initial block
214 : : * download: a node which starts up from scratch doesn't have any blocks
215 : : * to serve, but still advertises NODE_NETWORK because it will eventually
216 : : * fulfill this role after IBD completes. P2P code is written in such a
217 : : * way that it can gracefully handle peers who don't make good on their
218 : : * service advertisements. */
219 : : const ServiceFlags m_our_services;
220 : : /** Services this peer offered to us. */
221 : 0 : std::atomic<ServiceFlags> m_their_services{NODE_NONE};
222 : :
223 : : /** Protects misbehavior data members */
224 : : Mutex m_misbehavior_mutex;
225 : : /** Accumulated misbehavior score for this peer */
226 : 0 : int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
227 : : /** Whether this peer should be disconnected and marked as discouraged (unless it has NetPermissionFlags::NoBan permission). */
228 : 0 : bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
229 : :
230 : : /** Protects block inventory data members */
231 : : Mutex m_block_inv_mutex;
232 : : /** List of blocks that we'll announce via an `inv` message.
233 : : * There is no final sorting before sending, as they are always sent
234 : : * immediately and in the order requested. */
235 : : std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
236 : : /** Unfiltered list of blocks that we'd like to announce via a `headers`
237 : : * message. If we can't announce via a `headers` message, we'll fall back to
238 : : * announcing via `inv`. */
239 : : std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
240 : : /** The final block hash that we sent in an `inv` message to this peer.
241 : : * When the peer requests this block, we send an `inv` message to trigger
242 : : * the peer to request the next sequence of block hashes.
243 : : * Most peers use headers-first syncing, which doesn't use this mechanism */
244 [ # # ]: 0 : uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
245 : :
246 : : /** This peer's reported block height when we connected */
247 : 0 : std::atomic<int> m_starting_height{-1};
248 : :
249 : : /** The pong reply we're expecting, or 0 if no pong expected. */
250 : 0 : std::atomic<uint64_t> m_ping_nonce_sent{0};
251 : : /** When the last ping was sent, or 0 if no ping was ever sent */
252 [ # # ]: 0 : std::atomic<std::chrono::microseconds> m_ping_start{0us};
253 : : /** Whether a ping has been requested by the user */
254 : 0 : std::atomic<bool> m_ping_queued{false};
255 : :
256 : : /** Whether this peer relays txs via wtxid */
257 : 0 : std::atomic<bool> m_wtxid_relay{false};
258 : : /** The feerate in the most recent BIP133 `feefilter` message sent to the peer.
259 : : * It is *not* a p2p protocol violation for the peer to send us
260 : : * transactions with a lower fee rate than this. See BIP133. */
261 : 0 : CAmount m_fee_filter_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
262 : : /** Timestamp after which we will send the next BIP133 `feefilter` message
263 : : * to the peer. */
264 [ # # ]: 0 : std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
265 : :
266 : 0 : struct TxRelay {
267 : : mutable RecursiveMutex m_bloom_filter_mutex;
268 : : /** Whether we relay transactions to this peer. */
269 : 0 : bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
270 : : /** A bloom filter for which transactions to announce to the peer. See BIP37. */
271 : 0 : std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
272 : :
273 : : mutable RecursiveMutex m_tx_inventory_mutex;
274 : : /** A filter of all the (w)txids that the peer has announced to
275 : : * us or we have announced to the peer. We use this to avoid announcing
276 : : * the same (w)txid to a peer that already has the transaction. */
277 [ # # ]: 0 : CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
278 : : /** Set of transaction ids we still have to announce (txid for
279 : : * non-wtxid-relay peers, wtxid for wtxid-relay peers). We use the
280 : : * mempool to sort transactions in dependency order before relay, so
281 : : * this does not have to be sorted. */
282 : : std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
283 : : /** Whether the peer has requested us to send our complete mempool. Only
284 : : * permitted if the peer has NetPermissionFlags::Mempool or we advertise
285 : : * NODE_BLOOM. See BIP35. */
286 : 0 : bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
287 : : /** The next time after which we will send an `inv` message containing
288 : : * transaction announcements to this peer. */
289 [ # # ]: 0 : std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
290 : : /** The mempool sequence num at which we sent the last `inv` message to this peer.
291 : : * Can relay txs with lower sequence numbers than this (see CTxMempool::info_for_relay). */
292 : 0 : uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
293 : :
294 : : /** Minimum fee rate with which to filter transaction announcements to this node. See BIP133. */
295 : 0 : std::atomic<CAmount> m_fee_filter_received{0};
296 : : };
297 : :
298 : : /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
299 : 0 : TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
300 : : {
301 : 0 : LOCK(m_tx_relay_mutex);
302 [ # # ]: 0 : Assume(!m_tx_relay);
303 [ # # ]: 0 : m_tx_relay = std::make_unique<Peer::TxRelay>();
304 : 0 : return m_tx_relay.get();
305 : 0 : };
306 : :
307 : 0 : TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
308 : : {
309 : 0 : return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
310 : : };
311 : :
312 : : /** A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */
313 : : std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
314 : : /** Probabilistic filter to track recent addr messages relayed with this
315 : : * peer. Used to avoid relaying redundant addresses to this peer.
316 : : *
317 : : * We initialize this filter for outbound peers (other than
318 : : * block-relay-only connections) or when an inbound peer sends us an
319 : : * address related message (ADDR, ADDRV2, GETADDR).
320 : : *
321 : : * Presence of this filter must correlate with m_addr_relay_enabled.
322 : : **/
323 : : std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
324 : : /** Whether we are participating in address relay with this connection.
325 : : *
326 : : * We set this bool to true for outbound peers (other than
327 : : * block-relay-only connections), or when an inbound peer sends us an
328 : : * address related message (ADDR, ADDRV2, GETADDR).
329 : : *
330 : : * We use this bool to decide whether a peer is eligible for gossiping
331 : : * addr messages. This avoids relaying to peers that are unlikely to
332 : : * forward them, effectively blackholing self announcements. Reasons
333 : : * peers might support addr relay on the link include that they connected
334 : : * to us as a block-relay-only peer or they are a light client.
335 : : *
336 : : * This field must correlate with whether m_addr_known has been
337 : : * initialized.*/
338 : 0 : std::atomic_bool m_addr_relay_enabled{false};
339 : : /** Whether a getaddr request to this peer is outstanding. */
340 : 0 : bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
341 : : /** Guards address sending timers. */
342 : : mutable Mutex m_addr_send_times_mutex;
343 : : /** Time point to send the next ADDR message to this peer. */
344 [ # # ]: 0 : std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
345 : : /** Time point to possibly re-announce our local address to this peer. */
346 [ # # ]: 0 : std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
347 : : /** Whether the peer has signaled support for receiving ADDRv2 (BIP155)
348 : : * messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */
349 : 0 : std::atomic_bool m_wants_addrv2{false};
350 : : /** Whether this peer has already sent us a getaddr message. */
351 : 0 : bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
352 : : /** Number of addresses that can be processed from this peer. Start at 1 to
353 : : * permit self-announcement. */
354 : 0 : double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
355 : : /** When m_addr_token_bucket was last updated */
356 [ # # ]: 0 : std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
357 : : /** Total number of addresses that were dropped due to rate limiting. */
358 : 0 : std::atomic<uint64_t> m_addr_rate_limited{0};
359 : : /** Total number of addresses that were processed (excludes rate-limited ones). */
360 : 0 : std::atomic<uint64_t> m_addr_processed{0};
361 : :
362 : : /** Whether we've sent this peer a getheaders in response to an inv prior to initial-headers-sync completing */
363 : 0 : bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
364 : :
365 : : /** Protects m_getdata_requests **/
366 : : Mutex m_getdata_requests_mutex;
367 : : /** Work queue of items requested by this peer **/
368 : : std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
369 : :
370 : : /** Time of the last getheaders message to this peer */
371 [ # # ]: 0 : NodeClock::time_point m_last_getheaders_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){};
372 : :
373 : : /** Protects m_headers_sync **/
374 : : Mutex m_headers_sync_mutex;
375 : : /** Headers-sync state for this peer (eg for initial sync, or syncing large
376 : : * reorgs) **/
377 : 0 : std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
378 : :
379 : : /** Whether we've sent our peer a sendheaders message. **/
380 : 0 : std::atomic<bool> m_sent_sendheaders{false};
381 : :
382 : : /** Length of current-streak of unconnecting headers announcements */
383 : 0 : int m_num_unconnecting_headers_msgs GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
384 : :
385 : : /** When to potentially disconnect peer for stalling headers download */
386 [ # # ]: 0 : std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
387 : :
388 : : /** Whether this peer wants invs or headers (when possible) for block announcements */
389 : 0 : bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
390 : :
391 [ # # ]: 0 : explicit Peer(NodeId id, ServiceFlags our_services)
392 : 0 : : m_id{id}
393 : 0 : , m_our_services{our_services}
394 : 0 : {}
395 : :
396 : : private:
397 : : mutable Mutex m_tx_relay_mutex;
398 : :
399 : : /** Transaction relay data. May be a nullptr. */
400 : : std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
401 : : };
402 : :
403 : : using PeerRef = std::shared_ptr<Peer>;
404 : :
405 : : /**
406 : : * Maintain validation-specific state about nodes, protected by cs_main, instead
407 : : * by CNode's own locks. This simplifies asynchronous operation, where
408 : : * processing of incoming data is done after the ProcessMessage call returns,
409 : : * and we're no longer holding the node's locks.
410 : : */
411 : 0 : struct CNodeState {
412 : : //! The best known block we know this peer has announced.
413 : 0 : const CBlockIndex* pindexBestKnownBlock{nullptr};
414 : : //! The hash of the last unknown block this peer has announced.
415 : 0 : uint256 hashLastUnknownBlock{};
416 : : //! The last full block we both have.
417 : 0 : const CBlockIndex* pindexLastCommonBlock{nullptr};
418 : : //! The best header we have sent our peer.
419 : 0 : const CBlockIndex* pindexBestHeaderSent{nullptr};
420 : : //! Whether we've started headers synchronization with this peer.
421 : 0 : bool fSyncStarted{false};
422 : : //! Since when we're stalling block download progress (in microseconds), or 0.
423 : 0 : std::chrono::microseconds m_stalling_since{0us};
424 : : std::list<QueuedBlock> vBlocksInFlight;
425 : : //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
426 [ # # ]: 0 : std::chrono::microseconds m_downloading_since{0us};
427 : : //! Whether we consider this a preferred download peer.
428 : 0 : bool fPreferredDownload{false};
429 : : /** Whether this peer wants invs or cmpctblocks (when possible) for block announcements. */
430 : 0 : bool m_requested_hb_cmpctblocks{false};
431 : : /** Whether this peer will send us cmpctblocks if we request them. */
432 : 0 : bool m_provides_cmpctblocks{false};
433 : :
434 : : /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic.
435 : : *
436 : : * Both are only in effect for outbound, non-manual, non-protected connections.
437 : : * Any peer protected (m_protect = true) is not chosen for eviction. A peer is
438 : : * marked as protected if all of these are true:
439 : : * - its connection type is IsBlockOnlyConn() == false
440 : : * - it gave us a valid connecting header
441 : : * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet
442 : : * - its chain tip has at least as much work as ours
443 : : *
444 : : * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip,
445 : : * set a timeout CHAIN_SYNC_TIMEOUT in the future:
446 : : * - If at timeout their best known block now has more work than our tip
447 : : * when the timeout was set, then either reset the timeout or clear it
448 : : * (after comparing against our current tip's work)
449 : : * - If at timeout their best known block still has less work than our
450 : : * tip did when the timeout was set, then send a getheaders message,
451 : : * and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future.
452 : : * If their best known block is still behind when that new timeout is
453 : : * reached, disconnect.
454 : : *
455 : : * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers,
456 : : * drop the outbound one that least recently announced us a new block.
457 : : */
458 : 0 : struct ChainSyncTimeoutState {
459 : : //! A timeout used for checking whether our peer has sufficiently synced
460 : 0 : std::chrono::seconds m_timeout{0s};
461 : : //! A header with the work we require on our peer's chain
462 : 0 : const CBlockIndex* m_work_header{nullptr};
463 : : //! After timeout is reached, set to true after sending getheaders
464 : 0 : bool m_sent_getheaders{false};
465 : : //! Whether this peer is protected from disconnection due to a bad/slow chain
466 : 0 : bool m_protect{false};
467 : : };
468 : :
469 : : ChainSyncTimeoutState m_chain_sync;
470 : :
471 : : //! Time of last new block announcement
472 : 0 : int64_t m_last_block_announcement{0};
473 : :
474 : : //! Whether this peer is an inbound connection
475 : : const bool m_is_inbound;
476 : :
477 [ # # ]: 0 : CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {}
478 : : };
479 : :
480 : 0 : class PeerManagerImpl final : public PeerManager
481 : : {
482 : : public:
483 : : PeerManagerImpl(CConnman& connman, AddrMan& addrman,
484 : : BanMan* banman, ChainstateManager& chainman,
485 : : CTxMemPool& pool, Options opts);
486 : :
487 : : /** Overridden from CValidationInterface. */
488 : : void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
489 : : EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
490 : : void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
491 : : EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
492 : : void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
493 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
494 : : void BlockChecked(const CBlock& block, const BlockValidationState& state) override
495 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
496 : : void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
497 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
498 : :
499 : : /** Implement NetEventsInterface */
500 : : void InitializeNode(CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
501 : : void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex);
502 : : bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
503 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
504 : : bool SendMessages(CNode* pto) override
505 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, g_msgproc_mutex);
506 : :
507 : : /** Implement PeerManager */
508 : : void StartScheduledTasks(CScheduler& scheduler) override;
509 : : void CheckForStaleTipAndEvictPeers() override;
510 : : std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
511 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
512 : : bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
513 : 0 : bool IgnoresIncomingTxs() override { return m_opts.ignore_incoming_txs; }
514 : : void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
515 : : void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516 : 0 : void SetBestHeight(int height) override { m_best_height = height; };
517 [ # # ][ # # ]: 0 : void UnitTestMisbehaving(NodeId peer_id, int howmuch) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), howmuch, ""); };
[ # # ]
518 : : void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
519 : : const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
520 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
521 : : void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
522 : :
523 : : private:
524 : : /** Consider evicting an outbound peer based on the amount of time they've been behind our tip */
525 : : void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
526 : :
527 : : /** If we have extra outbound peers, try to disconnect the one with the oldest block announcement */
528 : : void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
529 : :
530 : : /** Retrieve unbroadcast transactions from the mempool and reattempt sending to peers */
531 : : void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
532 : :
533 : : /** Get a shared pointer to the Peer object.
534 : : * May return an empty shared_ptr if the Peer object can't be found. */
535 : : PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 : :
537 : : /** Get a shared pointer to the Peer object and remove it from m_peer_map.
538 : : * May return an empty shared_ptr if the Peer object can't be found. */
539 : : PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 : :
541 : : /**
542 : : * Increment peer's misbehavior score. If the new value >= DISCOURAGEMENT_THRESHOLD, mark the node
543 : : * to be discouraged, meaning the peer might be disconnected and added to the discouragement filter.
544 : : */
545 : : void Misbehaving(Peer& peer, int howmuch, const std::string& message);
546 : :
547 : : /**
548 : : * Potentially mark a node discouraged based on the contents of a BlockValidationState object
549 : : *
550 : : * @param[in] via_compact_block this bool is passed in because net_processing should
551 : : * punish peers differently depending on whether the data was provided in a compact
552 : : * block message or not. If the compact block had a valid header, but contained invalid
553 : : * txs, the peer should not be punished. See BIP 152.
554 : : *
555 : : * @return Returns true if the peer was punished (probably disconnected)
556 : : */
557 : : bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
558 : : bool via_compact_block, const std::string& message = "")
559 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
560 : :
561 : : /**
562 : : * Potentially disconnect and discourage a node based on the contents of a TxValidationState object
563 : : *
564 : : * @return Returns true if the peer was punished (probably disconnected)
565 : : */
566 : : bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
567 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
568 : :
569 : : /** Maybe disconnect a peer and discourage future connections from its address.
570 : : *
571 : : * @param[in] pnode The node to check.
572 : : * @param[in] peer The peer object to check.
573 : : * @return True if the peer was marked for disconnection in this function
574 : : */
575 : : bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
576 : :
577 : : /**
578 : : * Reconsider orphan transactions after a parent has been accepted to the mempool.
579 : : *
580 : : * @peer[in] peer The peer whose orphan transactions we will reconsider. Generally only
581 : : * one orphan will be reconsidered on each call of this function. If an
582 : : * accepted orphan has orphaned children, those will need to be
583 : : * reconsidered, creating more work, possibly for other peers.
584 : : * @return True if meaningful work was done (an orphan was accepted/rejected).
585 : : * If no meaningful work was done, then the work set for this peer
586 : : * will be empty.
587 : : */
588 : : bool ProcessOrphanTx(Peer& peer)
589 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
590 : :
591 : : /** Process a single headers message from a peer.
592 : : *
593 : : * @param[in] pfrom CNode of the peer
594 : : * @param[in] peer The peer sending us the headers
595 : : * @param[in] headers The headers received. Note that this may be modified within ProcessHeadersMessage.
596 : : * @param[in] via_compact_block Whether this header came in via compact block handling.
597 : : */
598 : : void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
599 : : std::vector<CBlockHeader>&& headers,
600 : : bool via_compact_block)
601 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
602 : : /** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
603 : : /** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
604 : : bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
605 : : /** Calculate an anti-DoS work threshold for headers chains */
606 : : arith_uint256 GetAntiDoSWorkThreshold();
607 : : /** Deal with state tracking and headers sync for peers that send the
608 : : * occasional non-connecting header (this can happen due to BIP 130 headers
609 : : * announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
610 : : void HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
611 : : /** Return true if the headers connect to each other, false otherwise */
612 : : bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
613 : : /** Try to continue a low-work headers sync that has already begun.
614 : : * Assumes the caller has already verified the headers connect, and has
615 : : * checked that each header satisfies the proof-of-work target included in
616 : : * the header.
617 : : * @param[in] peer The peer we're syncing with.
618 : : * @param[in] pfrom CNode of the peer
619 : : * @param[in,out] headers The headers to be processed.
620 : : * @return True if the passed in headers were successfully processed
621 : : * as the continuation of a low-work headers sync in progress;
622 : : * false otherwise.
623 : : * If false, the passed in headers will be returned back to
624 : : * the caller.
625 : : * If true, the returned headers may be empty, indicating
626 : : * there is no more work for the caller to do; or the headers
627 : : * may be populated with entries that have passed anti-DoS
628 : : * checks (and therefore may be validated for block index
629 : : * acceptance by the caller).
630 : : */
631 : : bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
632 : : std::vector<CBlockHeader>& headers)
633 : : EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
634 : : /** Check work on a headers chain to be processed, and if insufficient,
635 : : * initiate our anti-DoS headers sync mechanism.
636 : : *
637 : : * @param[in] peer The peer whose headers we're processing.
638 : : * @param[in] pfrom CNode of the peer
639 : : * @param[in] chain_start_header Where these headers connect in our index.
640 : : * @param[in,out] headers The headers to be processed.
641 : : *
642 : : * @return True if chain was low work (headers will be empty after
643 : : * calling); false otherwise.
644 : : */
645 : : bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
646 : : const CBlockIndex* chain_start_header,
647 : : std::vector<CBlockHeader>& headers)
648 : : EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
649 : :
650 : : /** Return true if the given header is an ancestor of
651 : : * m_chainman.m_best_header or our current tip */
652 : : bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
653 : :
654 : : /** Request further headers from this peer with a given locator.
655 : : * We don't issue a getheaders message if we have a recent one outstanding.
656 : : * This returns true if a getheaders is actually sent, and false otherwise.
657 : : */
658 : : bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
659 : : /** Potentially fetch blocks from this peer upon receipt of a new headers tip */
660 : : void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
661 : : /** Update peer state based on received headers message */
662 : : void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
663 : : EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
664 : :
665 : : void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
666 : :
667 : : /** Register with TxRequestTracker that an INV has been received from a
668 : : * peer. The announcement parameters are decided in PeerManager and then
669 : : * passed to TxRequestTracker. */
670 : : void AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
671 : : EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
672 : :
673 : : /** Send a message to a peer */
674 : 0 : void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
675 : : template <typename... Args>
676 : 0 : void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
677 : : {
678 [ # # ][ # # ]: 0 : m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
679 : 0 : }
680 : :
681 : : /** Send a version message to a peer */
682 : : void PushNodeVersion(CNode& pnode, const Peer& peer);
683 : :
684 : : /** Send a ping message every PING_INTERVAL or if requested via RPC. May
685 : : * mark the peer to be disconnected if a ping has timed out.
686 : : * We use mockable time for ping timeouts, so setmocktime may cause pings
687 : : * to time out. */
688 : : void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
689 : :
690 : : /** Send `addr` messages on a regular schedule. */
691 : : void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
692 : :
693 : : /** Send a single `sendheaders` message, after we have completed headers sync with a peer. */
694 : : void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
695 : :
696 : : /** Relay (gossip) an address to a few randomly chosen nodes.
697 : : *
698 : : * @param[in] originator The id of the peer that sent us the address. We don't want to relay it back.
699 : : * @param[in] addr Address to relay.
700 : : * @param[in] fReachable Whether the address' network is reachable. We relay unreachable
701 : : * addresses less.
702 : : */
703 : : void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
704 : :
705 : : /** Send `feefilter` message. */
706 : : void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
707 : :
708 : : FastRandomContext m_rng GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
709 : :
710 : : FeeFilterRounder m_fee_filter_rounder GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
711 : :
712 : : const CChainParams& m_chainparams;
713 : : CConnman& m_connman;
714 : : AddrMan& m_addrman;
715 : : /** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
716 : : BanMan* const m_banman;
717 : : ChainstateManager& m_chainman;
718 : : CTxMemPool& m_mempool;
719 : : TxRequestTracker m_txrequest GUARDED_BY(::cs_main);
720 : : std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
721 : :
722 : : /** The height of the best chain */
723 : 0 : std::atomic<int> m_best_height{-1};
724 : :
725 : : /** Next time to check for stale tip */
726 [ # # ]: 0 : std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
727 : :
728 : : const Options m_opts;
729 : :
730 : : bool RejectIncomingTxs(const CNode& peer) const;
731 : :
732 : : /** Whether we've completed initial sync yet, for determining when to turn
733 : : * on extra block-relay-only peers. */
734 : 0 : bool m_initial_sync_finished GUARDED_BY(cs_main){false};
735 : :
736 : : /** Protects m_peer_map. This mutex must not be locked while holding a lock
737 : : * on any of the mutexes inside a Peer object. */
738 : : mutable Mutex m_peer_mutex;
739 : : /**
740 : : * Map of all Peer objects, keyed by peer id. This map is protected
741 : : * by the m_peer_mutex. Once a shared pointer reference is
742 : : * taken, the lock may be released. Individual fields are protected by
743 : : * their own locks.
744 : : */
745 : : std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
746 : :
747 : : /** Map maintaining per-node state. */
748 : : std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
749 : :
750 : : /** Get a pointer to a const CNodeState, used when not mutating the CNodeState object. */
751 : : const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
752 : : /** Get a pointer to a mutable CNodeState. */
753 : : CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
754 : :
755 : : uint32_t GetFetchFlags(const Peer& peer) const;
756 : :
757 [ # # ]: 0 : std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
758 : :
759 : : /** Number of nodes with fSyncStarted. */
760 : 0 : int nSyncStarted GUARDED_BY(cs_main) = 0;
761 : :
762 : : /** Hash of the last block we received via INV */
763 [ # # ]: 0 : uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
764 : :
765 : : /**
766 : : * Sources of received blocks, saved to be able punish them when processing
767 : : * happens afterwards.
768 : : * Set mapBlockSource[hash].second to false if the node should not be
769 : : * punished if the block is invalid.
770 : : */
771 : : std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
772 : :
773 : : /** Number of peers with wtxid relay. */
774 : 0 : std::atomic<int> m_wtxid_relay_peers{0};
775 : :
776 : : /** Number of outbound peers with m_chain_sync.m_protect. */
777 : 0 : int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
778 : :
779 : : /** Number of preferable block download peers. */
780 : 0 : int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
781 : :
782 : : /** Stalling timeout for blocks in IBD */
783 : 0 : std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
784 : :
785 : : bool AlreadyHaveTx(const GenTxid& gtxid)
786 : : EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
787 : :
788 : : /**
789 : : * Filter for transactions that were recently rejected by the mempool.
790 : : * These are not rerequested until the chain tip changes, at which point
791 : : * the entire filter is reset.
792 : : *
793 : : * Without this filter we'd be re-requesting txs from each of our peers,
794 : : * increasing bandwidth consumption considerably. For instance, with 100
795 : : * peers, half of which relay a tx we don't accept, that might be a 50x
796 : : * bandwidth increase. A flooding attacker attempting to roll-over the
797 : : * filter using minimum-sized, 60byte, transactions might manage to send
798 : : * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
799 : : * two minute window to send invs to us.
800 : : *
801 : : * Decreasing the false positive rate is fairly cheap, so we pick one in a
802 : : * million to make it highly unlikely for users to have issues with this
803 : : * filter.
804 : : *
805 : : * We typically only add wtxids to this filter. For non-segwit
806 : : * transactions, the txid == wtxid, so this only prevents us from
807 : : * re-downloading non-segwit transactions when communicating with
808 : : * non-wtxidrelay peers -- which is important for avoiding malleation
809 : : * attacks that could otherwise interfere with transaction relay from
810 : : * non-wtxidrelay peers. For communicating with wtxidrelay peers, having
811 : : * the reject filter store wtxids is exactly what we want to avoid
812 : : * redownload of a rejected transaction.
813 : : *
814 : : * In cases where we can tell that a segwit transaction will fail
815 : : * validation no matter the witness, we may add the txid of such
816 : : * transaction to the filter as well. This can be helpful when
817 : : * communicating with txid-relay peers or if we were to otherwise fetch a
818 : : * transaction via txid (eg in our orphan handling).
819 : : *
820 : : * Memory used: 1.3 MB
821 : : */
822 [ # # ]: 0 : CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001};
823 : : uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
824 : :
825 : : /*
826 : : * Filter for transactions that have been recently confirmed.
827 : : * We use this to avoid requesting transactions that have already been
828 : : * confirnmed.
829 : : *
830 : : * Blocks don't typically have more than 4000 transactions, so this should
831 : : * be at least six blocks (~1 hr) worth of transactions that we can store,
832 : : * inserting both a txid and wtxid for every observed transaction.
833 : : * If the number of transactions appearing in a block goes up, or if we are
834 : : * seeing getdata requests more than an hour after initial announcement, we
835 : : * can increase this number.
836 : : * The false positive rate of 1/1M should come out to less than 1
837 : : * transaction per day that would be inadvertently ignored (which is the
838 : : * same probability that we have in the reject filter).
839 : : */
840 : : Mutex m_recent_confirmed_transactions_mutex;
841 [ # # ]: 0 : CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){48'000, 0.000'001};
842 : :
843 : : /**
844 : : * For sending `inv`s to inbound peers, we use a single (exponentially
845 : : * distributed) timer for all peers. If we used a separate timer for each
846 : : * peer, a spy node could make multiple inbound connections to us to
847 : : * accurately determine when we received the transaction (and potentially
848 : : * determine the transaction's origin). */
849 : : std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
850 : : std::chrono::seconds average_interval);
851 : :
852 : :
853 : : // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
854 : : Mutex m_most_recent_block_mutex;
855 : : std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
856 : : std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
857 : : uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
858 : : std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
859 : :
860 : : // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
861 : : /** Mutex guarding the other m_headers_presync_* variables. */
862 : : Mutex m_headers_presync_mutex;
863 : : /** A type to represent statistics about a peer's low-work headers sync.
864 : : *
865 : : * - The first field is the total verified amount of work in that synchronization.
866 : : * - The second is:
867 : : * - nullopt: the sync is in REDOWNLOAD phase (phase 2).
868 : : * - {height, timestamp}: the sync has the specified tip height and block timestamp (phase 1).
869 : : */
870 : : using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
871 : : /** Statistics for all peers in low-work headers sync. */
872 : 0 : std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
873 : : /** The peer with the most-work entry in m_headers_presync_stats. */
874 : 0 : NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
875 : : /** The m_headers_presync_stats improved, and needs signalling. */
876 : 0 : std::atomic_bool m_headers_presync_should_signal{false};
877 : :
878 : : /** Height of the highest block announced using BIP 152 high-bandwidth mode. */
879 : 0 : int m_highest_fast_announce GUARDED_BY(::cs_main){0};
880 : :
881 : : /** Have we requested this block from a peer */
882 : : bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
883 : :
884 : : /** Have we requested this block from an outbound peer */
885 : : bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
886 : :
887 : : /** Remove this block from our tracked requested blocks. Called if:
888 : : * - the block has been received from a peer
889 : : * - the request for the block has timed out
890 : : * If "from_peer" is specified, then only remove the block if it is in
891 : : * flight from that peer (to avoid one peer's network traffic from
892 : : * affecting another's state).
893 : : */
894 : : void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
895 : :
896 : : /* Mark a block as in flight
897 : : * Returns false, still setting pit, if the block was already in flight from the same peer
898 : : * pit will only be valid as long as the same cs_main lock is being held
899 : : */
900 : : bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
901 : :
902 : : bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
903 : :
904 : : /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
905 : : * at most count entries.
906 : : */
907 : : void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
908 : :
909 : : /** Request blocks for the background chainstate, if one is in use. */
910 : : void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
911 : :
912 : : /**
913 : : * \brief Find next blocks to download from a peer after a starting block.
914 : : *
915 : : * \param vBlocks Vector of blocks to download which will be appended to.
916 : : * \param peer Peer which blocks will be downloaded from.
917 : : * \param state Pointer to the state of the peer.
918 : : * \param pindexWalk Pointer to the starting block to add to vBlocks.
919 : : * \param count Maximum number of blocks to allow in vBlocks. No more
920 : : * blocks will be added if it reaches this size.
921 : : * \param nWindowEnd Maximum height of blocks to allow in vBlocks. No
922 : : * blocks will be added above this height.
923 : : * \param activeChain Optional pointer to a chain to compare against. If
924 : : * provided, any next blocks which are already contained
925 : : * in this chain will not be appended to vBlocks, but
926 : : * instead will be used to update the
927 : : * state->pindexLastCommonBlock pointer.
928 : : * \param nodeStaller Optional pointer to a NodeId variable that will receive
929 : : * the ID of another peer that might be causing this peer
930 : : * to stall. This is set to the ID of the peer which
931 : : * first requested the first in-flight block in the
932 : : * download window. It is only set if vBlocks is empty at
933 : : * the end of this function call and if increasing
934 : : * nWindowEnd by 1 would cause it to be non-empty (which
935 : : * indicates the download might be stalled because every
936 : : * block in the window is in flight and no other peer is
937 : : * trying to download the next block).
938 : : */
939 : : void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
940 : :
941 : : /* Multimap used to preserve insertion order */
942 : : typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
943 : : BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
944 : :
945 : : /** When our tip was last updated. */
946 [ # # ]: 0 : std::atomic<std::chrono::seconds> m_last_tip_update{0s};
947 : :
948 : : /** Determine whether or not a peer can request a transaction, and return it (or nullptr if not found or not allowed). */
949 : : CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
950 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, NetEventsInterface::g_msgproc_mutex);
951 : :
952 : : void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
953 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
954 : : LOCKS_EXCLUDED(::cs_main);
955 : :
956 : : /** Process a new block. Perform any post-processing housekeeping */
957 : : void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
958 : :
959 : : /** Process compact block txns */
960 : : void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
961 : : EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
962 : :
963 : : /**
964 : : * When a peer sends us a valid block, instruct it to announce blocks to us
965 : : * using CMPCTBLOCK if possible by adding its nodeid to the end of
966 : : * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
967 : : * removing the first element if necessary.
968 : : */
969 : : void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
970 : :
971 : : /** Stack of nodes which we have set to announce using compact blocks */
972 : : std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
973 : :
974 : : /** Number of peers from which we're downloading blocks. */
975 : 0 : int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
976 : :
977 : : /** Storage for orphan information */
978 : : TxOrphanage m_orphanage;
979 : :
980 : : void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
981 : :
982 : : /** Orphan/conflicted/etc transactions that are kept for compact block reconstruction.
983 : : * The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of
984 : : * these are kept in a ring buffer */
985 : : std::vector<std::pair<uint256, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
986 : : /** Offset into vExtraTxnForCompact to insert the next tx */
987 : 0 : size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
988 : :
989 : : /** Check whether the last unknown block a peer advertised is not yet known. */
990 : : void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
991 : : /** Update tracking information about which blocks a peer is assumed to have. */
992 : : void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
993 : : bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
994 : :
995 : : /**
996 : : * To prevent fingerprinting attacks, only send blocks/headers outside of
997 : : * the active chain if they are no more than a month older (both in time,
998 : : * and in best equivalent proof of work) than the best header chain we know
999 : : * about and we fully-validated them at some point.
1000 : : */
1001 : : bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1002 : : bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1003 : : void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1004 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
1005 : :
1006 : : /**
1007 : : * Validation logic for compact filters request handling.
1008 : : *
1009 : : * May disconnect from the peer in the case of a bad request.
1010 : : *
1011 : : * @param[in] node The node that we received the request from
1012 : : * @param[in] peer The peer that we received the request from
1013 : : * @param[in] filter_type The filter type the request is for. Must be basic filters.
1014 : : * @param[in] start_height The start height for the request
1015 : : * @param[in] stop_hash The stop_hash for the request
1016 : : * @param[in] max_height_diff The maximum number of items permitted to request, as specified in BIP 157
1017 : : * @param[out] stop_index The CBlockIndex for the stop_hash block, if the request can be serviced.
1018 : : * @param[out] filter_index The filter index, if the request can be serviced.
1019 : : * @return True if the request can be serviced.
1020 : : */
1021 : : bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1022 : : BlockFilterType filter_type, uint32_t start_height,
1023 : : const uint256& stop_hash, uint32_t max_height_diff,
1024 : : const CBlockIndex*& stop_index,
1025 : : BlockFilterIndex*& filter_index);
1026 : :
1027 : : /**
1028 : : * Handle a cfilters request.
1029 : : *
1030 : : * May disconnect from the peer in the case of a bad request.
1031 : : *
1032 : : * @param[in] node The node that we received the request from
1033 : : * @param[in] peer The peer that we received the request from
1034 : : * @param[in] vRecv The raw message received
1035 : : */
1036 : : void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1037 : :
1038 : : /**
1039 : : * Handle a cfheaders request.
1040 : : *
1041 : : * May disconnect from the peer in the case of a bad request.
1042 : : *
1043 : : * @param[in] node The node that we received the request from
1044 : : * @param[in] peer The peer that we received the request from
1045 : : * @param[in] vRecv The raw message received
1046 : : */
1047 : : void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1048 : :
1049 : : /**
1050 : : * Handle a getcfcheckpt request.
1051 : : *
1052 : : * May disconnect from the peer in the case of a bad request.
1053 : : *
1054 : : * @param[in] node The node that we received the request from
1055 : : * @param[in] peer The peer that we received the request from
1056 : : * @param[in] vRecv The raw message received
1057 : : */
1058 : : void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1059 : :
1060 : : /** Checks if address relay is permitted with peer. If needed, initializes
1061 : : * the m_addr_known bloom filter and sets m_addr_relay_enabled to true.
1062 : : *
1063 : : * @return True if address relay is enabled with peer
1064 : : * False if address relay is disallowed
1065 : : */
1066 : : bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1067 : :
1068 : : void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1069 : : void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1070 : : };
1071 : :
1072 : 0 : const CNodeState* PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1073 : : {
1074 : 0 : std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1075 [ # # ]: 0 : if (it == m_node_states.end())
1076 : 0 : return nullptr;
1077 : 0 : return &it->second;
1078 : 0 : }
1079 : :
1080 : 0 : CNodeState* PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1081 : : {
1082 : 0 : return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1083 : : }
1084 : :
1085 : : /**
1086 : : * Whether the peer supports the address. For example, a peer that does not
1087 : : * implement BIP155 cannot receive Tor v3 addresses because it requires
1088 : : * ADDRv2 (BIP155) encoding.
1089 : : */
1090 : 0 : static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1091 : : {
1092 [ # # ]: 0 : return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1093 : : }
1094 : :
1095 : 0 : void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1096 : : {
1097 [ # # ]: 0 : assert(peer.m_addr_known);
1098 [ # # ][ # # ]: 0 : peer.m_addr_known->insert(addr.GetKey());
1099 : 0 : }
1100 : :
1101 : 0 : void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1102 : : {
1103 : : // Known checking here is only to save space from duplicates.
1104 : : // Before sending, we'll filter it again for known addresses that were
1105 : : // added after addresses were pushed.
1106 [ # # ]: 0 : assert(peer.m_addr_known);
1107 [ # # ][ # # ]: 0 : if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1108 [ # # ]: 0 : if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1109 : 0 : peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1110 : 0 : } else {
1111 : 0 : peer.m_addrs_to_send.push_back(addr);
1112 : : }
1113 : 0 : }
1114 : 0 : }
1115 : :
1116 : 0 : static void AddKnownTx(Peer& peer, const uint256& hash)
1117 : : {
1118 : 0 : auto tx_relay = peer.GetTxRelay();
1119 [ # # ]: 0 : if (!tx_relay) return;
1120 : :
1121 : 0 : LOCK(tx_relay->m_tx_inventory_mutex);
1122 [ # # ][ # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(hash);
1123 : 0 : }
1124 : :
1125 : : /** Whether this peer can serve us blocks. */
1126 : 0 : static bool CanServeBlocks(const Peer& peer)
1127 : : {
1128 : 0 : return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1129 : : }
1130 : :
1131 : : /** Whether this peer can only serve limited recent blocks (e.g. because
1132 : : * it prunes old blocks) */
1133 : 0 : static bool IsLimitedPeer(const Peer& peer)
1134 : : {
1135 [ # # ]: 0 : return (!(peer.m_their_services & NODE_NETWORK) &&
1136 : 0 : (peer.m_their_services & NODE_NETWORK_LIMITED));
1137 : : }
1138 : :
1139 : : /** Whether this peer can serve us witness data */
1140 : 0 : static bool CanServeWitnesses(const Peer& peer)
1141 : : {
1142 : 0 : return peer.m_their_services & NODE_WITNESS;
1143 : : }
1144 : :
1145 : 0 : std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1146 : : std::chrono::seconds average_interval)
1147 : : {
1148 [ # # ]: 0 : if (m_next_inv_to_inbounds.load() < now) {
1149 : : // If this function were called from multiple threads simultaneously
1150 : : // it would possible that both update the next send variable, and return a different result to their caller.
1151 : : // This is not possible in practice as only the net processing thread invokes this function.
1152 : 0 : m_next_inv_to_inbounds = GetExponentialRand(now, average_interval);
1153 : 0 : }
1154 : 0 : return m_next_inv_to_inbounds;
1155 : : }
1156 : :
1157 : 0 : bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1158 : : {
1159 : 0 : return mapBlocksInFlight.count(hash);
1160 : : }
1161 : :
1162 : 0 : bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1163 : : {
1164 [ # # ]: 0 : for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1165 : 0 : auto [nodeid, block_it] = range.first->second;
1166 : 0 : CNodeState& nodestate = *Assert(State(nodeid));
1167 [ # # ]: 0 : if (!nodestate.m_is_inbound) return true;
1168 : 0 : }
1169 : :
1170 : 0 : return false;
1171 : 0 : }
1172 : :
1173 : 0 : void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1174 : : {
1175 : 0 : auto range = mapBlocksInFlight.equal_range(hash);
1176 [ # # ]: 0 : if (range.first == range.second) {
1177 : : // Block was not requested from any peer
1178 : 0 : return;
1179 : : }
1180 : :
1181 : : // We should not have requested too many of this block
1182 : 0 : Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1183 : :
1184 [ # # ]: 0 : while (range.first != range.second) {
1185 : 0 : auto [node_id, list_it] = range.first->second;
1186 : :
1187 [ # # ][ # # ]: 0 : if (from_peer && *from_peer != node_id) {
[ # # ]
1188 : 0 : range.first++;
1189 : 0 : continue;
1190 : : }
1191 : :
1192 : 0 : CNodeState& state = *Assert(State(node_id));
1193 : :
1194 [ # # ][ # # ]: 0 : if (state.vBlocksInFlight.begin() == list_it) {
1195 : : // First block on the queue was received, update the start download time for the next one
1196 : 0 : state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1197 : 0 : }
1198 : 0 : state.vBlocksInFlight.erase(list_it);
1199 : :
1200 [ # # ]: 0 : if (state.vBlocksInFlight.empty()) {
1201 : : // Last validated block on the queue for this peer was received.
1202 : 0 : m_peers_downloading_from--;
1203 : 0 : }
1204 : 0 : state.m_stalling_since = 0us;
1205 : :
1206 : 0 : range.first = mapBlocksInFlight.erase(range.first);
1207 : : }
1208 : 0 : }
1209 : :
1210 : 0 : bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1211 : : {
1212 : 0 : const uint256& hash{block.GetBlockHash()};
1213 : :
1214 : 0 : CNodeState *state = State(nodeid);
1215 [ # # ]: 0 : assert(state != nullptr);
1216 : :
1217 : 0 : Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1218 : :
1219 : : // Short-circuit most stuff in case it is from the same node
1220 [ # # ]: 0 : for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1221 [ # # ]: 0 : if (range.first->second.first == nodeid) {
1222 [ # # ]: 0 : if (pit) {
1223 : 0 : *pit = &range.first->second.second;
1224 : 0 : }
1225 : 0 : return false;
1226 : : }
1227 : 0 : }
1228 : :
1229 : : // Make sure it's not being fetched already from same peer.
1230 : 0 : RemoveBlockRequest(hash, nodeid);
1231 : :
1232 [ # # ]: 0 : std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1233 [ # # ][ # # ]: 0 : {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
[ # # ]
1234 [ # # ]: 0 : if (state->vBlocksInFlight.size() == 1) {
1235 : : // We're starting a block download (batch) from this peer.
1236 : 0 : state->m_downloading_since = GetTime<std::chrono::microseconds>();
1237 : 0 : m_peers_downloading_from++;
1238 : 0 : }
1239 : 0 : auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1240 [ # # ]: 0 : if (pit) {
1241 : 0 : *pit = &itInFlight->second.second;
1242 : 0 : }
1243 : 0 : return true;
1244 : 0 : }
1245 : :
1246 : 0 : void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1247 : : {
1248 : 0 : AssertLockHeld(cs_main);
1249 : :
1250 : : // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1251 : : // mempool will not contain the transactions necessary to reconstruct the
1252 : : // compact block.
1253 [ # # ]: 0 : if (m_opts.ignore_incoming_txs) return;
1254 : :
1255 : 0 : CNodeState* nodestate = State(nodeid);
1256 [ # # ][ # # ]: 0 : if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1257 : : // Don't request compact blocks if the peer has not signalled support
1258 : 0 : return;
1259 : : }
1260 : :
1261 : 0 : int num_outbound_hb_peers = 0;
1262 [ # # ]: 0 : for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1263 [ # # ]: 0 : if (*it == nodeid) {
1264 : 0 : lNodesAnnouncingHeaderAndIDs.erase(it);
1265 : 0 : lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1266 : 0 : return;
1267 : : }
1268 : 0 : CNodeState *state = State(*it);
1269 [ # # ][ # # ]: 0 : if (state != nullptr && !state->m_is_inbound) ++num_outbound_hb_peers;
1270 : 0 : }
1271 [ # # ]: 0 : if (nodestate->m_is_inbound) {
1272 : : // If we're adding an inbound HB peer, make sure we're not removing
1273 : : // our last outbound HB peer in the process.
1274 [ # # ][ # # ]: 0 : if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1275 : 0 : CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front());
1276 [ # # ][ # # ]: 0 : if (remove_node != nullptr && !remove_node->m_is_inbound) {
1277 : : // Put the HB outbound peer in the second slot, so that it
1278 : : // doesn't get removed.
1279 : 0 : std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1280 : 0 : }
1281 : 0 : }
1282 : 0 : }
1283 [ # # ]: 0 : m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1284 : 0 : AssertLockHeld(::cs_main);
1285 [ # # ]: 0 : if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1286 : : // As per BIP152, we only get 3 of our peers to announce
1287 : : // blocks using compact encodings.
1288 [ # # ]: 0 : m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1289 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1290 : : // save BIP152 bandwidth state: we select peer to be low-bandwidth
1291 : 0 : pnodeStop->m_bip152_highbandwidth_to = false;
1292 : 0 : return true;
1293 : 0 : });
1294 : 0 : lNodesAnnouncingHeaderAndIDs.pop_front();
1295 : 0 : }
1296 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1297 : : // save BIP152 bandwidth state: we select peer to be high-bandwidth
1298 : 0 : pfrom->m_bip152_highbandwidth_to = true;
1299 : 0 : lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1300 : 0 : return true;
1301 : 0 : });
1302 : 0 : }
1303 : :
1304 : 0 : bool PeerManagerImpl::TipMayBeStale()
1305 : : {
1306 : 0 : AssertLockHeld(cs_main);
1307 : 0 : const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1308 [ # # ]: 0 : if (m_last_tip_update.load() == 0s) {
1309 : 0 : m_last_tip_update = GetTime<std::chrono::seconds>();
1310 : 0 : }
1311 [ # # ]: 0 : return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1312 : : }
1313 : :
1314 : 0 : bool PeerManagerImpl::CanDirectFetch()
1315 : : {
1316 : 0 : return m_chainman.ActiveChain().Tip()->Time() > GetAdjustedTime() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1317 : : }
1318 : :
1319 : 0 : static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1320 : : {
1321 [ # # ][ # # ]: 0 : if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1322 : 0 : return true;
1323 [ # # ][ # # ]: 0 : if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1324 : 0 : return true;
1325 : 0 : return false;
1326 : 0 : }
1327 : :
1328 : 0 : void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1329 : 0 : CNodeState *state = State(nodeid);
1330 [ # # ]: 0 : assert(state != nullptr);
1331 : :
1332 [ # # ]: 0 : if (!state->hashLastUnknownBlock.IsNull()) {
1333 : 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1334 [ # # ][ # # ]: 0 : if (pindex && pindex->nChainWork > 0) {
1335 [ # # ][ # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1336 : 0 : state->pindexBestKnownBlock = pindex;
1337 : 0 : }
1338 : 0 : state->hashLastUnknownBlock.SetNull();
1339 : 0 : }
1340 : 0 : }
1341 : 0 : }
1342 : :
1343 : 0 : void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1344 : 0 : CNodeState *state = State(nodeid);
1345 [ # # ]: 0 : assert(state != nullptr);
1346 : :
1347 : 0 : ProcessBlockAvailability(nodeid);
1348 : :
1349 : 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1350 [ # # ][ # # ]: 0 : if (pindex && pindex->nChainWork > 0) {
1351 : : // An actually better block was announced.
1352 [ # # ][ # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1353 : 0 : state->pindexBestKnownBlock = pindex;
1354 : 0 : }
1355 : 0 : } else {
1356 : : // An unknown block was announced; just assume that the latest one is the best one.
1357 : 0 : state->hashLastUnknownBlock = hash;
1358 : : }
1359 : 0 : }
1360 : :
1361 : : // Logic for calculating which blocks to download from a given peer, given our current tip.
1362 : 0 : void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1363 : : {
1364 [ # # ]: 0 : if (count == 0)
1365 : 0 : return;
1366 : :
1367 : 0 : vBlocks.reserve(vBlocks.size() + count);
1368 : 0 : CNodeState *state = State(peer.m_id);
1369 [ # # ]: 0 : assert(state != nullptr);
1370 : :
1371 : : // Make sure pindexBestKnownBlock is up to date, we'll need it.
1372 : 0 : ProcessBlockAvailability(peer.m_id);
1373 : :
1374 [ # # ][ # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
[ # # ]
1375 : : // This peer has nothing interesting.
1376 : 0 : return;
1377 : : }
1378 : :
1379 [ # # ]: 0 : if (state->pindexLastCommonBlock == nullptr) {
1380 : : // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1381 : : // Guessing wrong in either direction is not a problem.
1382 : 0 : state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1383 : 0 : }
1384 : :
1385 : : // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1386 : : // of its current tip anymore. Go back enough to fix that.
1387 : 0 : state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1388 [ # # ]: 0 : if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1389 : 0 : return;
1390 : :
1391 : 0 : const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1392 : : // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1393 : : // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1394 : : // download that next block if the window were 1 larger.
1395 : 0 : int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1396 : :
1397 : 0 : FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1398 : 0 : }
1399 : :
1400 : 0 : void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1401 : : {
1402 : 0 : Assert(from_tip);
1403 : 0 : Assert(target_block);
1404 : :
1405 [ # # ]: 0 : if (vBlocks.size() >= count) {
1406 : 0 : return;
1407 : : }
1408 : :
1409 : 0 : vBlocks.reserve(count);
1410 : 0 : CNodeState *state = Assert(State(peer.m_id));
1411 : :
1412 [ # # ][ # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1413 : : // This peer can't provide us the complete series of blocks leading up to the
1414 : : // assumeutxo snapshot base.
1415 : : //
1416 : : // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1417 : : // will eventually crash when we try to reorg to it. Let other logic
1418 : : // deal with whether we disconnect this peer.
1419 : : //
1420 : : // TODO at some point in the future, we might choose to request what blocks
1421 : : // this peer does have from the historical chain, despite it not having a
1422 : : // complete history beneath the snapshot base.
1423 : 0 : return;
1424 : : }
1425 : :
1426 : 0 : FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1427 : 0 : }
1428 : :
1429 : 0 : void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1430 : : {
1431 : 0 : std::vector<const CBlockIndex*> vToFetch;
1432 : 0 : int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1433 : 0 : NodeId waitingfor = -1;
1434 [ # # ]: 0 : while (pindexWalk->nHeight < nMaxHeight) {
1435 : : // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1436 : : // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1437 : : // as iterating over ~100 CBlockIndex* entries anyway.
1438 [ # # ]: 0 : int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1439 [ # # ]: 0 : vToFetch.resize(nToFetch);
1440 [ # # ]: 0 : pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1441 : 0 : vToFetch[nToFetch - 1] = pindexWalk;
1442 [ # # ]: 0 : for (unsigned int i = nToFetch - 1; i > 0; i--) {
1443 : 0 : vToFetch[i - 1] = vToFetch[i]->pprev;
1444 : 0 : }
1445 : :
1446 : : // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1447 : : // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1448 : : // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1449 : : // already part of our chain (and therefore don't need it even if pruned).
1450 [ # # ]: 0 : for (const CBlockIndex* pindex : vToFetch) {
1451 [ # # ]: 0 : if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1452 : : // We consider the chain that this peer is on invalid.
1453 : 0 : return;
1454 : : }
1455 [ # # ][ # # ]: 0 : if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
[ # # ]
1456 : : // We wouldn't download this block or its descendants from this peer.
1457 : 0 : return;
1458 : : }
1459 [ # # ][ # # ]: 0 : if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
[ # # ][ # # ]
1460 [ # # ][ # # ]: 0 : if (activeChain && pindex->HaveNumChainTxs())
1461 : 0 : state->pindexLastCommonBlock = pindex;
1462 [ # # ][ # # ]: 0 : } else if (!IsBlockRequested(pindex->GetBlockHash())) {
1463 : : // The block is not already downloaded, and not yet in flight.
1464 [ # # ]: 0 : if (pindex->nHeight > nWindowEnd) {
1465 : : // We reached the end of the window.
1466 [ # # ][ # # ]: 0 : if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1467 : : // We aren't able to fetch anything, but we would be if the download window was one larger.
1468 [ # # ]: 0 : if (nodeStaller) *nodeStaller = waitingfor;
1469 : 0 : }
1470 : 0 : return;
1471 : : }
1472 [ # # ]: 0 : vBlocks.push_back(pindex);
1473 [ # # ]: 0 : if (vBlocks.size() == count) {
1474 : 0 : return;
1475 : : }
1476 [ # # ]: 0 : } else if (waitingfor == -1) {
1477 : : // This is the first already-in-flight block.
1478 [ # # ]: 0 : waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1479 : 0 : }
1480 : : }
1481 : : }
1482 [ # # ]: 0 : }
1483 : :
1484 : : } // namespace
1485 : :
1486 : 0 : void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1487 : : {
1488 : 0 : uint64_t my_services{peer.m_our_services};
1489 : 0 : const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1490 : 0 : uint64_t nonce = pnode.GetLocalNonce();
1491 : 0 : const int nNodeStartingHeight{m_best_height};
1492 : 0 : NodeId nodeid = pnode.GetId();
1493 : 0 : CAddress addr = pnode.addr;
1494 : :
1495 [ # # ][ # # ]: 0 : CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1496 : 0 : uint64_t your_services{addr.nServices};
1497 : :
1498 [ # # ]: 0 : const bool tx_relay{!RejectIncomingTxs(pnode)};
1499 [ # # ][ # # ]: 0 : MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1500 [ # # ]: 0 : your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1501 [ # # ][ # # ]: 0 : my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1502 : : nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1503 : :
1504 [ # # ]: 0 : if (fLogIPs) {
1505 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
[ # # ][ # # ]
[ # # ][ # # ]
1506 : 0 : } else {
1507 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
[ # # ][ # # ]
[ # # ]
1508 : : }
1509 : 0 : }
1510 : :
1511 : 0 : void PeerManagerImpl::AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
1512 : : {
1513 : 0 : AssertLockHeld(::cs_main); // For m_txrequest
1514 : 0 : NodeId nodeid = node.GetId();
1515 [ # # ][ # # ]: 0 : if (!node.HasPermission(NetPermissionFlags::Relay) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) {
1516 : : // Too many queued announcements from this peer
1517 : 0 : return;
1518 : : }
1519 : 0 : const CNodeState* state = State(nodeid);
1520 : :
1521 : : // Decide the TxRequestTracker parameters for this announcement:
1522 : : // - "preferred": if fPreferredDownload is set (= outbound, or NetPermissionFlags::NoBan permission)
1523 : : // - "reqtime": current time plus delays for:
1524 : : // - NONPREF_PEER_TX_DELAY for announcements from non-preferred connections
1525 : : // - TXID_RELAY_DELAY for txid announcements while wtxid peers are available
1526 : : // - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at least
1527 : : // MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't have NetPermissionFlags::Relay).
1528 : 0 : auto delay{0us};
1529 : 0 : const bool preferred = state->fPreferredDownload;
1530 [ # # ]: 0 : if (!preferred) delay += NONPREF_PEER_TX_DELAY;
1531 [ # # ][ # # ]: 0 : if (!gtxid.IsWtxid() && m_wtxid_relay_peers > 0) delay += TXID_RELAY_DELAY;
1532 [ # # ]: 0 : const bool overloaded = !node.HasPermission(NetPermissionFlags::Relay) &&
1533 : 0 : m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT;
1534 [ # # ]: 0 : if (overloaded) delay += OVERLOADED_PEER_TX_DELAY;
1535 : 0 : m_txrequest.ReceivedInv(nodeid, gtxid, preferred, current_time + delay);
1536 : 0 : }
1537 : :
1538 : 0 : void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1539 : : {
1540 : 0 : LOCK(cs_main);
1541 [ # # ]: 0 : CNodeState *state = State(node);
1542 [ # # ]: 0 : if (state) state->m_last_block_announcement = time_in_seconds;
1543 : 0 : }
1544 : :
1545 : 0 : void PeerManagerImpl::InitializeNode(CNode& node, ServiceFlags our_services)
1546 : : {
1547 : 0 : NodeId nodeid = node.GetId();
1548 : : {
1549 : 0 : LOCK(cs_main);
1550 [ # # ]: 0 : m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn()));
1551 [ # # ][ # # ]: 0 : assert(m_txrequest.Count(nodeid) == 0);
1552 : 0 : }
1553 : 0 : PeerRef peer = std::make_shared<Peer>(nodeid, our_services);
1554 : : {
1555 [ # # ]: 0 : LOCK(m_peer_mutex);
1556 [ # # ]: 0 : m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1557 : 0 : }
1558 [ # # ]: 0 : if (!node.IsInboundConn()) {
1559 [ # # ]: 0 : PushNodeVersion(node, *peer);
1560 : 0 : }
1561 : 0 : }
1562 : :
1563 : 0 : void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1564 : : {
1565 : 0 : std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1566 : :
1567 [ # # ]: 0 : for (const auto& txid : unbroadcast_txids) {
1568 [ # # ]: 0 : CTransactionRef tx = m_mempool.get(txid);
1569 : :
1570 [ # # ]: 0 : if (tx != nullptr) {
1571 [ # # ]: 0 : RelayTransaction(txid, tx->GetWitnessHash());
1572 : 0 : } else {
1573 [ # # ]: 0 : m_mempool.RemoveUnbroadcastTx(txid, true);
1574 : : }
1575 : 0 : }
1576 : :
1577 : : // Schedule next run for 10-15 minutes in the future.
1578 : : // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1579 [ # # ][ # # ]: 0 : const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
[ # # ][ # # ]
1580 [ # # ]: 0 : scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1581 : 0 : }
1582 : :
1583 : 0 : void PeerManagerImpl::FinalizeNode(const CNode& node)
1584 : : {
1585 : 0 : NodeId nodeid = node.GetId();
1586 : 0 : int misbehavior{0};
1587 : : {
1588 : 0 : LOCK(cs_main);
1589 : : {
1590 : : // We remove the PeerRef from g_peer_map here, but we don't always
1591 : : // destruct the Peer. Sometimes another thread is still holding a
1592 : : // PeerRef, so the refcount is >= 1. Be careful not to do any
1593 : : // processing here that assumes Peer won't be changed before it's
1594 : : // destructed.
1595 [ # # ]: 0 : PeerRef peer = RemovePeer(nodeid);
1596 [ # # ]: 0 : assert(peer != nullptr);
1597 [ # # ]: 0 : misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
1598 : 0 : m_wtxid_relay_peers -= peer->m_wtxid_relay;
1599 [ # # ]: 0 : assert(m_wtxid_relay_peers >= 0);
1600 : 0 : }
1601 [ # # ]: 0 : CNodeState *state = State(nodeid);
1602 [ # # ]: 0 : assert(state != nullptr);
1603 : :
1604 [ # # ]: 0 : if (state->fSyncStarted)
1605 : 0 : nSyncStarted--;
1606 : :
1607 [ # # ]: 0 : for (const QueuedBlock& entry : state->vBlocksInFlight) {
1608 [ # # ]: 0 : auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1609 [ # # ]: 0 : while (range.first != range.second) {
1610 : 0 : auto [node_id, list_it] = range.first->second;
1611 [ # # ]: 0 : if (node_id != nodeid) {
1612 : 0 : range.first++;
1613 : 0 : } else {
1614 [ # # ]: 0 : range.first = mapBlocksInFlight.erase(range.first);
1615 : : }
1616 : : }
1617 : : }
1618 [ # # ]: 0 : m_orphanage.EraseForPeer(nodeid);
1619 [ # # ]: 0 : m_txrequest.DisconnectedPeer(nodeid);
1620 [ # # ][ # # ]: 0 : if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1621 : 0 : m_num_preferred_download_peers -= state->fPreferredDownload;
1622 : 0 : m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1623 [ # # ]: 0 : assert(m_peers_downloading_from >= 0);
1624 : 0 : m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1625 [ # # ]: 0 : assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1626 : :
1627 [ # # ]: 0 : m_node_states.erase(nodeid);
1628 : :
1629 [ # # ]: 0 : if (m_node_states.empty()) {
1630 : : // Do a consistency check after the last peer is removed.
1631 [ # # ]: 0 : assert(mapBlocksInFlight.empty());
1632 [ # # ]: 0 : assert(m_num_preferred_download_peers == 0);
1633 [ # # ]: 0 : assert(m_peers_downloading_from == 0);
1634 [ # # ]: 0 : assert(m_outbound_peers_with_protect_from_disconnect == 0);
1635 [ # # ]: 0 : assert(m_wtxid_relay_peers == 0);
1636 [ # # ][ # # ]: 0 : assert(m_txrequest.Size() == 0);
1637 [ # # ][ # # ]: 0 : assert(m_orphanage.Size() == 0);
1638 : 0 : }
1639 : 0 : } // cs_main
1640 [ # # ][ # # ]: 0 : if (node.fSuccessfullyConnected && misbehavior == 0 &&
[ # # ]
1641 [ # # ]: 0 : !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1642 : : // Only change visible addrman state for full outbound peers. We don't
1643 : : // call Connected() for feeler connections since they don't have
1644 : : // fSuccessfullyConnected set.
1645 : 0 : m_addrman.Connected(node.addr);
1646 : 0 : }
1647 : : {
1648 : 0 : LOCK(m_headers_presync_mutex);
1649 [ # # ]: 0 : m_headers_presync_stats.erase(nodeid);
1650 : 0 : }
1651 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
[ # # ][ # # ]
1652 : 0 : }
1653 : :
1654 : 0 : PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1655 : : {
1656 : 0 : LOCK(m_peer_mutex);
1657 [ # # ]: 0 : auto it = m_peer_map.find(id);
1658 [ # # ]: 0 : return it != m_peer_map.end() ? it->second : nullptr;
1659 : 0 : }
1660 : :
1661 : 0 : PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1662 : : {
1663 : 0 : PeerRef ret;
1664 [ # # ]: 0 : LOCK(m_peer_mutex);
1665 [ # # ]: 0 : auto it = m_peer_map.find(id);
1666 [ # # ]: 0 : if (it != m_peer_map.end()) {
1667 : 0 : ret = std::move(it->second);
1668 [ # # ]: 0 : m_peer_map.erase(it);
1669 : 0 : }
1670 : 0 : return ret;
1671 [ # # ]: 0 : }
1672 : :
1673 : 0 : bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1674 : : {
1675 : : {
1676 : 0 : LOCK(cs_main);
1677 [ # # ]: 0 : const CNodeState* state = State(nodeid);
1678 [ # # ]: 0 : if (state == nullptr)
1679 : 0 : return false;
1680 [ # # ]: 0 : stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1681 [ # # ]: 0 : stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1682 [ # # ]: 0 : for (const QueuedBlock& queue : state->vBlocksInFlight) {
1683 [ # # ]: 0 : if (queue.pindex)
1684 [ # # ]: 0 : stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1685 : : }
1686 [ # # # ]: 0 : }
1687 : :
1688 : 0 : PeerRef peer = GetPeerRef(nodeid);
1689 [ # # ]: 0 : if (peer == nullptr) return false;
1690 : 0 : stats.their_services = peer->m_their_services;
1691 : 0 : stats.m_starting_height = peer->m_starting_height;
1692 : : // It is common for nodes with good ping times to suddenly become lagged,
1693 : : // due to a new block arriving or other large transfer.
1694 : : // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1695 : : // since pingtime does not update until the ping is complete, which might take a while.
1696 : : // So, if a ping is taking an unusually long time in flight,
1697 : : // the caller can immediately detect that this is happening.
1698 : 0 : auto ping_wait{0us};
1699 [ # # ][ # # ]: 0 : if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1700 [ # # ][ # # ]: 0 : ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1701 : 0 : }
1702 : :
1703 [ # # ][ # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1704 [ # # ]: 0 : stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1705 : 0 : stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1706 : 0 : } else {
1707 : 0 : stats.m_relay_txs = false;
1708 : 0 : stats.m_fee_filter_received = 0;
1709 : : }
1710 : :
1711 : 0 : stats.m_ping_wait = ping_wait;
1712 : 0 : stats.m_addr_processed = peer->m_addr_processed.load();
1713 : 0 : stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1714 : 0 : stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1715 : : {
1716 [ # # ]: 0 : LOCK(peer->m_headers_sync_mutex);
1717 [ # # ]: 0 : if (peer->m_headers_sync) {
1718 [ # # ]: 0 : stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1719 : 0 : }
1720 : 0 : }
1721 : :
1722 : 0 : return true;
1723 : 0 : }
1724 : :
1725 : 0 : void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1726 : : {
1727 [ # # ]: 0 : if (m_opts.max_extra_txs <= 0)
1728 : 0 : return;
1729 [ # # ]: 0 : if (!vExtraTxnForCompact.size())
1730 : 0 : vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1731 [ # # ]: 0 : vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1732 : 0 : vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1733 : 0 : }
1734 : :
1735 : 0 : void PeerManagerImpl::Misbehaving(Peer& peer, int howmuch, const std::string& message)
1736 : : {
1737 [ # # ]: 0 : assert(howmuch > 0);
1738 : :
1739 : 0 : LOCK(peer.m_misbehavior_mutex);
1740 : 0 : const int score_before{peer.m_misbehavior_score};
1741 : 0 : peer.m_misbehavior_score += howmuch;
1742 : 0 : const int score_now{peer.m_misbehavior_score};
1743 : :
1744 [ # # ][ # # ]: 0 : const std::string message_prefixed = message.empty() ? "" : (": " + message);
[ # # ][ # # ]
[ # # ]
1745 : 0 : std::string warning;
1746 : :
1747 [ # # ][ # # ]: 0 : if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) {
1748 [ # # ]: 0 : warning = " DISCOURAGE THRESHOLD EXCEEDED";
1749 : 0 : peer.m_should_discourage = true;
1750 : 0 : }
1751 : :
1752 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n",
[ # # ][ # # ]
[ # # ]
1753 : : peer.m_id, score_before, score_now, warning, message_prefixed);
1754 : 0 : }
1755 : :
1756 : 0 : bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1757 : : bool via_compact_block, const std::string& message)
1758 : : {
1759 : 0 : PeerRef peer{GetPeerRef(nodeid)};
1760 [ # # ][ # # : 0 : switch (state.GetResult()) {
# # # # #
# ]
1761 : : case BlockValidationResult::BLOCK_RESULT_UNSET:
1762 : 0 : break;
1763 : : case BlockValidationResult::BLOCK_HEADER_LOW_WORK:
1764 : : // We didn't try to process the block because the header chain may have
1765 : : // too little work.
1766 : 0 : break;
1767 : : // The node is providing invalid data:
1768 : : case BlockValidationResult::BLOCK_CONSENSUS:
1769 : : case BlockValidationResult::BLOCK_MUTATED:
1770 [ # # ]: 0 : if (!via_compact_block) {
1771 [ # # ][ # # ]: 0 : if (peer) Misbehaving(*peer, 100, message);
1772 : 0 : return true;
1773 : : }
1774 : 0 : break;
1775 : : case BlockValidationResult::BLOCK_CACHED_INVALID:
1776 : : {
1777 [ # # ]: 0 : LOCK(cs_main);
1778 [ # # ]: 0 : CNodeState *node_state = State(nodeid);
1779 [ # # ]: 0 : if (node_state == nullptr) {
1780 : 0 : break;
1781 : : }
1782 : :
1783 : : // Discourage outbound (but not inbound) peers if on an invalid chain.
1784 : : // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1785 [ # # ][ # # ]: 0 : if (!via_compact_block && !node_state->m_is_inbound) {
1786 [ # # ][ # # ]: 0 : if (peer) Misbehaving(*peer, 100, message);
1787 : 0 : return true;
1788 : : }
1789 : 0 : break;
1790 [ # # ]: 0 : }
1791 : : case BlockValidationResult::BLOCK_INVALID_HEADER:
1792 : : case BlockValidationResult::BLOCK_CHECKPOINT:
1793 : : case BlockValidationResult::BLOCK_INVALID_PREV:
1794 [ # # ][ # # ]: 0 : if (peer) Misbehaving(*peer, 100, message);
1795 : 0 : return true;
1796 : : // Conflicting (but not necessarily invalid) data or different policy:
1797 : : case BlockValidationResult::BLOCK_MISSING_PREV:
1798 : : // TODO: Handle this much more gracefully (10 DoS points is super arbitrary)
1799 [ # # ][ # # ]: 0 : if (peer) Misbehaving(*peer, 10, message);
1800 : 0 : return true;
1801 : : case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
1802 : : case BlockValidationResult::BLOCK_TIME_FUTURE:
1803 : 0 : break;
1804 : : }
1805 [ # # ][ # # ]: 0 : if (message != "") {
1806 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
[ # # ][ # # ]
[ # # ]
1807 : 0 : }
1808 : 0 : return false;
1809 : 0 : }
1810 : :
1811 : 0 : bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1812 : : {
1813 : 0 : PeerRef peer{GetPeerRef(nodeid)};
1814 [ # # # # ]: 0 : switch (state.GetResult()) {
1815 : : case TxValidationResult::TX_RESULT_UNSET:
1816 : 0 : break;
1817 : : // The node is providing invalid data:
1818 : : case TxValidationResult::TX_CONSENSUS:
1819 [ # # ][ # # ]: 0 : if (peer) Misbehaving(*peer, 100, "");
[ # # ]
1820 : 0 : return true;
1821 : : // Conflicting (but not necessarily invalid) data or different policy:
1822 : : case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
1823 : : case TxValidationResult::TX_INPUTS_NOT_STANDARD:
1824 : : case TxValidationResult::TX_NOT_STANDARD:
1825 : : case TxValidationResult::TX_MISSING_INPUTS:
1826 : : case TxValidationResult::TX_PREMATURE_SPEND:
1827 : : case TxValidationResult::TX_WITNESS_MUTATED:
1828 : : case TxValidationResult::TX_WITNESS_STRIPPED:
1829 : : case TxValidationResult::TX_CONFLICT:
1830 : : case TxValidationResult::TX_MEMPOOL_POLICY:
1831 : : case TxValidationResult::TX_NO_MEMPOOL:
1832 : : case TxValidationResult::TX_RECONSIDERABLE:
1833 : : case TxValidationResult::TX_UNKNOWN:
1834 : 0 : break;
1835 : : }
1836 : 0 : return false;
1837 : 0 : }
1838 : :
1839 : 0 : bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1840 : : {
1841 : 0 : AssertLockHeld(cs_main);
1842 [ # # ]: 0 : if (m_chainman.ActiveChain().Contains(pindex)) return true;
1843 [ # # ][ # # ]: 0 : return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1844 [ # # ]: 0 : (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1845 : 0 : (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1846 : 0 : }
1847 : :
1848 : 0 : std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1849 : : {
1850 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1851 : :
1852 : : // Ensure this peer exists and hasn't been disconnected
1853 : 0 : PeerRef peer = GetPeerRef(peer_id);
1854 [ # # ][ # # ]: 0 : if (peer == nullptr) return "Peer does not exist";
1855 : :
1856 : : // Ignore pre-segwit peers
1857 [ # # ][ # # ]: 0 : if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
[ # # ]
1858 : :
1859 [ # # ]: 0 : LOCK(cs_main);
1860 : :
1861 : : // Forget about all prior requests
1862 [ # # ]: 0 : RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1863 : :
1864 : : // Mark block as in-flight
1865 [ # # ][ # # ]: 0 : if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
[ # # ]
1866 : :
1867 : : // Construct message to request the block
1868 : 0 : const uint256& hash{block_index.GetBlockHash()};
1869 [ # # ][ # # ]: 0 : std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1870 : :
1871 : : // Send block request message to the peer
1872 [ # # ]: 0 : bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1873 [ # # ][ # # ]: 0 : this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1874 : 0 : return true;
1875 : 0 : });
1876 : :
1877 [ # # ][ # # ]: 0 : if (!success) return "Peer not fully connected";
1878 : :
1879 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
1880 : : hash.ToString(), peer_id);
1881 : 0 : return std::nullopt;
1882 : 0 : }
1883 : :
1884 : 0 : std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1885 : : BanMan* banman, ChainstateManager& chainman,
1886 : : CTxMemPool& pool, Options opts)
1887 : : {
1888 : 0 : return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, opts);
1889 : : }
1890 : :
1891 [ # # ][ # # ]: 0 : PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
[ # # ]
1892 : : BanMan* banman, ChainstateManager& chainman,
1893 : : CTxMemPool& pool, Options opts)
1894 : 0 : : m_rng{opts.deterministic_rng},
1895 [ # # ][ # # ]: 0 : m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1896 [ # # ]: 0 : m_chainparams(chainman.GetParams()),
1897 : 0 : m_connman(connman),
1898 : 0 : m_addrman(addrman),
1899 : 0 : m_banman(banman),
1900 : 0 : m_chainman(chainman),
1901 : 0 : m_mempool(pool),
1902 : 0 : m_opts{opts}
1903 : 0 : {
1904 : : // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1905 : : // This argument can go away after Erlay support is complete.
1906 [ # # ]: 0 : if (opts.reconcile_txs) {
1907 [ # # ]: 0 : m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1908 : 0 : }
1909 : 0 : }
1910 : :
1911 : 0 : void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1912 : : {
1913 : : // Stale tip checking and peer eviction are on two different timers, but we
1914 : : // don't want them to get out of sync due to drift in the scheduler, so we
1915 : : // combine them in one function and schedule at the quicker (peer-eviction)
1916 : : // timer.
1917 : : static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1918 [ # # ][ # # ]: 0 : scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1919 : :
1920 : : // schedule next run for 10-15 minutes in the future
1921 : 0 : const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
1922 [ # # ]: 0 : scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1923 : 0 : }
1924 : :
1925 : : /**
1926 : : * Evict orphan txn pool entries based on a newly connected
1927 : : * block, remember the recently confirmed transactions, and delete tracked
1928 : : * announcements for them. Also save the time of the last tip update and
1929 : : * possibly reduce dynamic block stalling timeout.
1930 : : */
1931 : 0 : void PeerManagerImpl::BlockConnected(
1932 : : ChainstateRole role,
1933 : : const std::shared_ptr<const CBlock>& pblock,
1934 : : const CBlockIndex* pindex)
1935 : : {
1936 : : // Update this for all chainstate roles so that we don't mistakenly see peers
1937 : : // helping us do background IBD as having a stale tip.
1938 : 0 : m_last_tip_update = GetTime<std::chrono::seconds>();
1939 : :
1940 : : // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1941 : 0 : auto stalling_timeout = m_block_stalling_timeout.load();
1942 : 0 : Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1943 [ # # ]: 0 : if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1944 : 0 : const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1945 [ # # ]: 0 : if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1946 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
[ # # ][ # # ]
[ # # ]
1947 : 0 : }
1948 : 0 : }
1949 : :
1950 : : // The following task can be skipped since we don't maintain a mempool for
1951 : : // the ibd/background chainstate.
1952 [ # # ]: 0 : if (role == ChainstateRole::BACKGROUND) {
1953 : 0 : return;
1954 : : }
1955 : 0 : m_orphanage.EraseForBlock(*pblock);
1956 : :
1957 : : {
1958 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
1959 [ # # ]: 0 : for (const auto& ptx : pblock->vtx) {
1960 [ # # ][ # # ]: 0 : m_recent_confirmed_transactions.insert(ptx->GetHash().ToUint256());
[ # # ][ # # ]
1961 [ # # ][ # # ]: 0 : if (ptx->HasWitness()) {
1962 [ # # ][ # # ]: 0 : m_recent_confirmed_transactions.insert(ptx->GetWitnessHash().ToUint256());
[ # # ][ # # ]
1963 : 0 : }
1964 : : }
1965 : 0 : }
1966 : : {
1967 : 0 : LOCK(cs_main);
1968 [ # # ]: 0 : for (const auto& ptx : pblock->vtx) {
1969 [ # # ][ # # ]: 0 : m_txrequest.ForgetTxHash(ptx->GetHash());
[ # # ]
1970 [ # # ][ # # ]: 0 : m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
[ # # ]
1971 : : }
1972 : 0 : }
1973 : 0 : }
1974 : :
1975 : 0 : void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1976 : : {
1977 : : // To avoid relay problems with transactions that were previously
1978 : : // confirmed, clear our filter of recently confirmed transactions whenever
1979 : : // there's a reorg.
1980 : : // This means that in a 1-block reorg (where 1 block is disconnected and
1981 : : // then another block reconnected), our filter will drop to having only one
1982 : : // block's worth of transactions in it, but that should be fine, since
1983 : : // presumably the most common case of relaying a confirmed transaction
1984 : : // should be just after a new block containing it is found.
1985 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
1986 [ # # ]: 0 : m_recent_confirmed_transactions.reset();
1987 : 0 : }
1988 : :
1989 : : /**
1990 : : * Maintain state about the best-seen block and fast-announce a compact block
1991 : : * to compatible peers.
1992 : : */
1993 : 0 : void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1994 : : {
1995 : 0 : auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
1996 : :
1997 [ # # ]: 0 : LOCK(cs_main);
1998 : :
1999 [ # # ]: 0 : if (pindex->nHeight <= m_highest_fast_announce)
2000 : 0 : return;
2001 : 0 : m_highest_fast_announce = pindex->nHeight;
2002 : :
2003 [ # # ][ # # ]: 0 : if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2004 : :
2005 [ # # ]: 0 : uint256 hashBlock(pblock->GetHash());
2006 : 0 : const std::shared_future<CSerializedNetMsg> lazy_ser{
2007 [ # # ][ # # ]: 0 : std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
[ # # ]
2008 : :
2009 : : {
2010 [ # # ]: 0 : auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2011 [ # # ]: 0 : for (const auto& tx : pblock->vtx) {
2012 [ # # ]: 0 : most_recent_block_txs->emplace(tx->GetHash(), tx);
2013 [ # # ]: 0 : most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2014 : : }
2015 : :
2016 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2017 : 0 : m_most_recent_block_hash = hashBlock;
2018 : 0 : m_most_recent_block = pblock;
2019 : 0 : m_most_recent_compact_block = pcmpctblock;
2020 : 0 : m_most_recent_block_txs = std::move(most_recent_block_txs);
2021 : 0 : }
2022 : :
2023 [ # # ][ # # ]: 0 : m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2024 : 0 : AssertLockHeld(::cs_main);
2025 : :
2026 [ # # ][ # # ]: 0 : if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
2027 : 0 : return;
2028 : 0 : ProcessBlockAvailability(pnode->GetId());
2029 : 0 : CNodeState &state = *State(pnode->GetId());
2030 : : // If the peer has, or we announced to them the previous block already,
2031 : : // but we don't think they have this one, go ahead and announce it
2032 [ # # ][ # # ]: 0 : if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
[ # # ]
2033 : :
2034 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
[ # # ][ # # ]
[ # # ]
2035 : : hashBlock.ToString(), pnode->GetId());
2036 : :
2037 : 0 : const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2038 [ # # ]: 0 : PushMessage(*pnode, ser_cmpctblock.Copy());
2039 : 0 : state.pindexBestHeaderSent = pindex;
2040 : 0 : }
2041 : 0 : });
2042 [ # # ]: 0 : }
2043 : :
2044 : : /**
2045 : : * Update our best height and announce any block hashes which weren't previously
2046 : : * in m_chainman.ActiveChain() to our peers.
2047 : : */
2048 : 0 : void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2049 : : {
2050 : 0 : SetBestHeight(pindexNew->nHeight);
2051 : 0 : SetServiceFlagsIBDCache(!fInitialDownload);
2052 : :
2053 : : // Don't relay inventory during initial block download.
2054 [ # # ]: 0 : if (fInitialDownload) return;
2055 : :
2056 : : // Find the hashes of all blocks that weren't previously in the best chain.
2057 : 0 : std::vector<uint256> vHashes;
2058 : 0 : const CBlockIndex *pindexToAnnounce = pindexNew;
2059 [ # # ]: 0 : while (pindexToAnnounce != pindexFork) {
2060 [ # # ][ # # ]: 0 : vHashes.push_back(pindexToAnnounce->GetBlockHash());
2061 : 0 : pindexToAnnounce = pindexToAnnounce->pprev;
2062 [ # # ]: 0 : if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2063 : : // Limit announcements in case of a huge reorganization.
2064 : : // Rely on the peer's synchronization mechanism in that case.
2065 : 0 : break;
2066 : : }
2067 : : }
2068 : :
2069 : : {
2070 [ # # ][ # # ]: 0 : LOCK(m_peer_mutex);
2071 [ # # ]: 0 : for (auto& it : m_peer_map) {
2072 : 0 : Peer& peer = *it.second;
2073 [ # # ][ # # ]: 0 : LOCK(peer.m_block_inv_mutex);
2074 [ # # ][ # # ]: 0 : for (const uint256& hash : reverse_iterate(vHashes)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2075 [ # # ]: 0 : peer.m_blocks_for_headers_relay.push_back(hash);
2076 : : }
2077 : 0 : }
2078 : 0 : }
2079 : :
2080 [ # # ]: 0 : m_connman.WakeMessageHandler();
2081 : 0 : }
2082 : :
2083 : : /**
2084 : : * Handle invalid block rejection and consequent peer discouragement, maintain which
2085 : : * peers announce compact blocks.
2086 : : */
2087 : 0 : void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2088 : : {
2089 : 0 : LOCK(cs_main);
2090 : :
2091 [ # # ]: 0 : const uint256 hash(block.GetHash());
2092 [ # # ]: 0 : std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2093 : :
2094 : : // If the block failed validation, we know where it came from and we're still connected
2095 : : // to that peer, maybe punish.
2096 [ # # ][ # # ]: 0 : if (state.IsInvalid() &&
[ # # ]
2097 [ # # ]: 0 : it != mapBlockSource.end() &&
2098 [ # # ]: 0 : State(it->second.first)) {
2099 [ # # ][ # # ]: 0 : MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2100 : 0 : }
2101 : : // Check that:
2102 : : // 1. The block is valid
2103 : : // 2. We're not in initial block download
2104 : : // 3. This is currently the best block we're aware of. We haven't updated
2105 : : // the tip yet so we have no way to check this directly here. Instead we
2106 : : // just check that there are currently no other blocks in flight.
2107 [ # # ][ # # ]: 0 : else if (state.IsValid() &&
[ # # ]
2108 [ # # ][ # # ]: 0 : !m_chainman.IsInitialBlockDownload() &&
2109 [ # # ]: 0 : mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2110 [ # # ]: 0 : if (it != mapBlockSource.end()) {
2111 [ # # ]: 0 : MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2112 : 0 : }
2113 : 0 : }
2114 [ # # ]: 0 : if (it != mapBlockSource.end())
2115 [ # # ]: 0 : mapBlockSource.erase(it);
2116 : 0 : }
2117 : :
2118 : : //////////////////////////////////////////////////////////////////////////////
2119 : : //
2120 : : // Messages
2121 : : //
2122 : :
2123 : :
2124 : 0 : bool PeerManagerImpl::AlreadyHaveTx(const GenTxid& gtxid)
2125 : : {
2126 [ # # ]: 0 : if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
2127 : : // If the chain tip has changed previously rejected transactions
2128 : : // might be now valid, e.g. due to a nLockTime'd tx becoming valid,
2129 : : // or a double-spend. Reset the rejects filter and give those
2130 : : // txs a second chance.
2131 : 0 : hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash();
2132 : 0 : m_recent_rejects.reset();
2133 : 0 : }
2134 : :
2135 : 0 : const uint256& hash = gtxid.GetHash();
2136 : :
2137 [ # # ]: 0 : if (m_orphanage.HaveTx(gtxid)) return true;
2138 : :
2139 : : {
2140 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
2141 [ # # ][ # # ]: 0 : if (m_recent_confirmed_transactions.contains(hash)) return true;
[ # # ]
2142 [ # # # ]: 0 : }
2143 : :
2144 [ # # ]: 0 : return m_recent_rejects.contains(hash) || m_mempool.exists(gtxid);
2145 : 0 : }
2146 : :
2147 : 0 : bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2148 : : {
2149 : 0 : return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2150 : : }
2151 : :
2152 : 0 : void PeerManagerImpl::SendPings()
2153 : : {
2154 : 0 : LOCK(m_peer_mutex);
2155 [ # # ]: 0 : for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2156 : 0 : }
2157 : :
2158 : 0 : void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2159 : : {
2160 : 0 : LOCK(m_peer_mutex);
2161 [ # # ]: 0 : for(auto& it : m_peer_map) {
2162 : 0 : Peer& peer = *it.second;
2163 [ # # ]: 0 : auto tx_relay = peer.GetTxRelay();
2164 [ # # ]: 0 : if (!tx_relay) continue;
2165 : :
2166 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
2167 : : // Only queue transactions for announcement once the version handshake
2168 : : // is completed. The time of arrival for these transactions is
2169 : : // otherwise at risk of leaking to a spy, if the spy is able to
2170 : : // distinguish transactions received during the handshake from the rest
2171 : : // in the announcement.
2172 [ # # ][ # # ]: 0 : if (tx_relay->m_next_inv_send_time == 0s) continue;
[ # # ]
2173 : :
2174 [ # # ]: 0 : const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2175 [ # # ][ # # ]: 0 : if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
[ # # ]
2176 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.insert(hash);
2177 : 0 : }
2178 [ # # # ]: 0 : };
2179 : 0 : }
2180 : :
2181 : 0 : void PeerManagerImpl::RelayAddress(NodeId originator,
2182 : : const CAddress& addr,
2183 : : bool fReachable)
2184 : : {
2185 : : // We choose the same nodes within a given 24h window (if the list of connected
2186 : : // nodes does not change) and we don't relay to nodes that already know an
2187 : : // address. So within 24h we will likely relay a given address once. This is to
2188 : : // prevent a peer from unjustly giving their address better propagation by sending
2189 : : // it to us repeatedly.
2190 : :
2191 [ # # ][ # # ]: 0 : if (!fReachable && !addr.IsRelayable()) return;
2192 : :
2193 : : // Relay to a limited number of other nodes
2194 : : // Use deterministic randomness to send to the same nodes for 24 hours
2195 : : // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2196 : 0 : const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2197 : 0 : const auto current_time{GetTime<std::chrono::seconds>()};
2198 : : // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2199 : 0 : const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2200 : 0 : const CSipHasher hasher{m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
2201 : 0 : .Write(hash_addr)
2202 : 0 : .Write(time_addr)};
2203 : :
2204 : : // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2205 [ # # ]: 0 : unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2206 : :
2207 : 0 : std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2208 [ # # ]: 0 : assert(nRelayNodes <= best.size());
2209 : :
2210 : 0 : LOCK(m_peer_mutex);
2211 : :
2212 [ # # ]: 0 : for (auto& [id, peer] : m_peer_map) {
2213 [ # # ][ # # ]: 0 : if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
[ # # ][ # # ]
2214 [ # # ][ # # ]: 0 : uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
[ # # ]
2215 [ # # ]: 0 : for (unsigned int i = 0; i < nRelayNodes; i++) {
2216 [ # # ]: 0 : if (hashKey > best[i].first) {
2217 [ # # ]: 0 : std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2218 [ # # ]: 0 : best[i] = std::make_pair(hashKey, peer.get());
2219 : 0 : break;
2220 : : }
2221 : 0 : }
2222 : 0 : }
2223 : : };
2224 : :
2225 [ # # ][ # # ]: 0 : for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2226 [ # # ]: 0 : PushAddress(*best[i].second, addr);
2227 : 0 : }
2228 : 0 : }
2229 : :
2230 : 0 : void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2231 : : {
2232 : 0 : std::shared_ptr<const CBlock> a_recent_block;
2233 : 0 : std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2234 : : {
2235 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2236 : 0 : a_recent_block = m_most_recent_block;
2237 : 0 : a_recent_compact_block = m_most_recent_compact_block;
2238 : 0 : }
2239 : :
2240 : 0 : bool need_activate_chain = false;
2241 : : {
2242 [ # # ]: 0 : LOCK(cs_main);
2243 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2244 [ # # ]: 0 : if (pindex) {
2245 [ # # ][ # # ]: 0 : if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
[ # # ][ # # ]
[ # # ]
2246 [ # # ]: 0 : pindex->IsValid(BLOCK_VALID_TREE)) {
2247 : : // If we have the block and all of its parents, but have not yet validated it,
2248 : : // we might be in the middle of connecting it (ie in the unlock of cs_main
2249 : : // before ActivateBestChain but after AcceptBlock).
2250 : : // In this case, we need to run ActivateBestChain prior to checking the relay
2251 : : // conditions below.
2252 : 0 : need_activate_chain = true;
2253 : 0 : }
2254 : 0 : }
2255 : 0 : } // release cs_main before calling ActivateBestChain
2256 [ # # ]: 0 : if (need_activate_chain) {
2257 : 0 : BlockValidationState state;
2258 [ # # ][ # # ]: 0 : if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
[ # # ]
2259 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
[ # # ][ # # ]
[ # # ][ # # ]
2260 : 0 : }
2261 : 0 : }
2262 : :
2263 [ # # ]: 0 : LOCK(cs_main);
2264 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2265 [ # # ]: 0 : if (!pindex) {
2266 : 0 : return;
2267 : : }
2268 [ # # ][ # # ]: 0 : if (!BlockRequestAllowed(pindex)) {
2269 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
[ # # ][ # # ]
[ # # ]
2270 : 0 : return;
2271 : : }
2272 : : // disconnect node in case we have reached the outbound limit for serving historical blocks
2273 [ # # ][ # # ]: 0 : if (m_connman.OutboundTargetReached(true) &&
[ # # ]
2274 [ # # ][ # # ]: 0 : (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
[ # # ][ # # ]
2275 [ # # ]: 0 : !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2276 : : ) {
2277 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
2278 : 0 : pfrom.fDisconnect = true;
2279 : 0 : return;
2280 : : }
2281 : : // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2282 [ # # ][ # # ]: 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
[ # # ]
2283 [ # # ][ # # ]: 0 : (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
[ # # ]
2284 : : )) {
2285 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
2286 : : //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2287 : 0 : pfrom.fDisconnect = true;
2288 : 0 : return;
2289 : : }
2290 : : // Pruned nodes may have deleted the block, so check whether
2291 : : // it's available before trying to send.
2292 [ # # ]: 0 : if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2293 : 0 : return;
2294 : : }
2295 : 0 : std::shared_ptr<const CBlock> pblock;
2296 [ # # ][ # # ]: 0 : if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
[ # # ][ # # ]
2297 : 0 : pblock = a_recent_block;
2298 [ # # ][ # # ]: 0 : } else if (inv.IsMsgWitnessBlk()) {
2299 : : // Fast-path: in this case it is possible to serve the block directly from disk,
2300 : : // as the network format matches the format on disk
2301 : 0 : std::vector<uint8_t> block_data;
2302 [ # # ][ # # ]: 0 : if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, pindex->GetBlockPos())) {
[ # # ]
2303 : 0 : assert(!"cannot load block from disk");
2304 : : }
2305 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
[ # # ]
2306 : : // Don't set pblock as we've sent the block
2307 : 0 : } else {
2308 : : // Send block from disk
2309 [ # # ]: 0 : std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2310 [ # # ][ # # ]: 0 : if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, *pindex)) {
2311 : 0 : assert(!"cannot load block from disk");
2312 : : }
2313 : 0 : pblock = pblockRead;
2314 : 0 : }
2315 [ # # ]: 0 : if (pblock) {
2316 [ # # ]: 0 : if (inv.IsMsgBlk()) {
2317 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
[ # # ]
2318 [ # # ][ # # ]: 0 : } else if (inv.IsMsgWitnessBlk()) {
2319 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
[ # # ]
2320 [ # # ][ # # ]: 0 : } else if (inv.IsMsgFilteredBlk()) {
2321 : 0 : bool sendMerkleBlock = false;
2322 [ # # ]: 0 : CMerkleBlock merkleBlock;
2323 [ # # ][ # # ]: 0 : if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2324 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
2325 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
2326 : 0 : sendMerkleBlock = true;
2327 [ # # ]: 0 : merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2328 : 0 : }
2329 : 0 : }
2330 [ # # ]: 0 : if (sendMerkleBlock) {
2331 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2332 : : // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2333 : : // This avoids hurting performance by pointlessly requiring a round-trip
2334 : : // Note that there is currently no way for a node to request any single transactions we didn't send here -
2335 : : // they must either disconnect and retry or request the full block.
2336 : : // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2337 : : // however we MUST always provide at least what the remote peer needs
2338 : : typedef std::pair<unsigned int, uint256> PairType;
2339 [ # # ]: 0 : for (PairType& pair : merkleBlock.vMatchedTxn)
2340 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
[ # # ]
2341 : 0 : }
2342 : : // else
2343 : : // no response
2344 [ # # ][ # # ]: 0 : } else if (inv.IsMsgCmpctBlk()) {
2345 : : // If a peer is asking for old blocks, we're almost guaranteed
2346 : : // they won't have a useful mempool to match against a compact block,
2347 : : // and we don't feel like constructing the object for them, so
2348 : : // instead we respond with the full, non-compact block.
2349 [ # # ][ # # ]: 0 : if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) {
[ # # ][ # # ]
[ # # ]
2350 [ # # ][ # # ]: 0 : if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
[ # # ][ # # ]
2351 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2352 : 0 : } else {
2353 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock{*pblock};
2354 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2355 : 0 : }
2356 : 0 : } else {
2357 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
[ # # ]
2358 : : }
2359 : 0 : }
2360 : 0 : }
2361 : :
2362 : : {
2363 [ # # ]: 0 : LOCK(peer.m_block_inv_mutex);
2364 : : // Trigger the peer node to send a getblocks request for the next batch of inventory
2365 [ # # ][ # # ]: 0 : if (inv.hash == peer.m_continuation_block) {
2366 : : // Send immediately. This must send even if redundant,
2367 : : // and we want it right after the last block so they don't
2368 : : // wait for other stuff first.
2369 : 0 : std::vector<CInv> vInv;
2370 [ # # ][ # # ]: 0 : vInv.emplace_back(MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash());
2371 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2372 [ # # ]: 0 : peer.m_continuation_block.SetNull();
2373 : 0 : }
2374 : 0 : }
2375 [ # # ]: 0 : }
2376 : :
2377 : 0 : CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2378 : : {
2379 : : // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2380 : 0 : auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2381 [ # # ]: 0 : if (txinfo.tx) {
2382 : 0 : return std::move(txinfo.tx);
2383 : : }
2384 : :
2385 : : // Or it might be from the most recent block
2386 : : {
2387 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2388 [ # # ]: 0 : if (m_most_recent_block_txs != nullptr) {
2389 [ # # ]: 0 : auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2390 [ # # ]: 0 : if (it != m_most_recent_block_txs->end()) return it->second;
2391 : 0 : }
2392 [ # # ]: 0 : }
2393 : :
2394 : 0 : return {};
2395 : 0 : }
2396 : :
2397 : 0 : void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2398 : : {
2399 : 0 : AssertLockNotHeld(cs_main);
2400 : :
2401 : 0 : auto tx_relay = peer.GetTxRelay();
2402 : :
2403 : 0 : std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2404 : 0 : std::vector<CInv> vNotFound;
2405 : :
2406 : : // Process as many TX items from the front of the getdata queue as
2407 : : // possible, since they're common and it's efficient to batch process
2408 : : // them.
2409 [ # # ][ # # ]: 0 : while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2410 [ # # ]: 0 : if (interruptMsgProc) return;
2411 : : // The send buffer provides backpressure. If there's no space in
2412 : : // the buffer, pause processing until the next call.
2413 [ # # ]: 0 : if (pfrom.fPauseSend) break;
2414 : :
2415 : 0 : const CInv &inv = *it++;
2416 : :
2417 [ # # ]: 0 : if (tx_relay == nullptr) {
2418 : : // Ignore GETDATA requests for transactions from block-relay-only
2419 : : // peers and peers that asked us not to announce transactions.
2420 : 0 : continue;
2421 : : }
2422 : :
2423 [ # # ][ # # ]: 0 : CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2424 [ # # ]: 0 : if (tx) {
2425 : : // WTX and WITNESS_TX imply we serialize with witness
2426 [ # # ]: 0 : const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2427 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
[ # # ]
2428 [ # # ]: 0 : m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2429 : 0 : } else {
2430 [ # # ]: 0 : vNotFound.push_back(inv);
2431 : : }
2432 : 0 : }
2433 : :
2434 : : // Only process one BLOCK item per call, since they're uncommon and can be
2435 : : // expensive to process.
2436 [ # # ][ # # ]: 0 : if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2437 : 0 : const CInv &inv = *it++;
2438 [ # # ][ # # ]: 0 : if (inv.IsGenBlkMsg()) {
2439 [ # # ]: 0 : ProcessGetBlockData(pfrom, peer, inv);
2440 : 0 : }
2441 : : // else: If the first item on the queue is an unknown type, we erase it
2442 : : // and continue processing the queue on the next call.
2443 : 0 : }
2444 : :
2445 [ # # ]: 0 : peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2446 : :
2447 [ # # ]: 0 : if (!vNotFound.empty()) {
2448 : : // Let the peer know that we didn't find what it asked for, so it doesn't
2449 : : // have to wait around forever.
2450 : : // SPV clients care about this message: it's needed when they are
2451 : : // recursively walking the dependencies of relevant unconfirmed
2452 : : // transactions. SPV clients want to do that because they want to know
2453 : : // about (and store and rebroadcast and risk analyze) the dependencies
2454 : : // of transactions relevant to them, without having to download the
2455 : : // entire memory pool.
2456 : : // Also, other nodes can use these messages to automatically request a
2457 : : // transaction from some other peer that announced it, and stop
2458 : : // waiting for us to respond.
2459 : : // In normal operation, we often send NOTFOUND messages for parents of
2460 : : // transactions that we relay; if a peer is missing a parent, they may
2461 : : // assume we have them and request the parents from us.
2462 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2463 : 0 : }
2464 [ # # ]: 0 : }
2465 : :
2466 : 0 : uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2467 : : {
2468 : 0 : uint32_t nFetchFlags = 0;
2469 [ # # ]: 0 : if (CanServeWitnesses(peer)) {
2470 : 0 : nFetchFlags |= MSG_WITNESS_FLAG;
2471 : 0 : }
2472 : 0 : return nFetchFlags;
2473 : : }
2474 : :
2475 : 0 : void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2476 : : {
2477 : 0 : BlockTransactions resp(req);
2478 [ # # ]: 0 : for (size_t i = 0; i < req.indexes.size(); i++) {
2479 [ # # ]: 0 : if (req.indexes[i] >= block.vtx.size()) {
2480 [ # # ][ # # ]: 0 : Misbehaving(peer, 100, "getblocktxn with out-of-bounds tx indices");
2481 : 0 : return;
2482 : : }
2483 : 0 : resp.txn[i] = block.vtx[req.indexes[i]];
2484 : 0 : }
2485 : :
2486 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2487 [ # # ]: 0 : }
2488 : :
2489 : 0 : bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2490 : : {
2491 : : // Do these headers have proof-of-work matching what's claimed?
2492 [ # # ]: 0 : if (!HasValidProofOfWork(headers, consensusParams)) {
2493 [ # # ][ # # ]: 0 : Misbehaving(peer, 100, "header with invalid proof of work");
2494 : 0 : return false;
2495 : : }
2496 : :
2497 : : // Are these headers connected to each other?
2498 [ # # ]: 0 : if (!CheckHeadersAreContinuous(headers)) {
2499 [ # # ][ # # ]: 0 : Misbehaving(peer, 20, "non-continuous headers sequence");
2500 : 0 : return false;
2501 : : }
2502 : 0 : return true;
2503 : 0 : }
2504 : :
2505 : 0 : arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2506 : : {
2507 : 0 : arith_uint256 near_chaintip_work = 0;
2508 : 0 : LOCK(cs_main);
2509 [ # # ][ # # ]: 0 : if (m_chainman.ActiveChain().Tip() != nullptr) {
2510 [ # # ]: 0 : const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2511 : : // Use a 144 block buffer, so that we'll accept headers that fork from
2512 : : // near our tip.
2513 [ # # ][ # # ]: 0 : near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
2514 : 0 : }
2515 [ # # ][ # # ]: 0 : return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
[ # # ]
2516 : 0 : }
2517 : :
2518 : : /**
2519 : : * Special handling for unconnecting headers that might be part of a block
2520 : : * announcement.
2521 : : *
2522 : : * We'll send a getheaders message in response to try to connect the chain.
2523 : : *
2524 : : * The peer can send up to MAX_NUM_UNCONNECTING_HEADERS_MSGS in a row that
2525 : : * don't connect before given DoS points.
2526 : : *
2527 : : * Once a headers message is received that is valid and does connect,
2528 : : * m_num_unconnecting_headers_msgs gets reset back to 0.
2529 : : */
2530 : 0 : void PeerManagerImpl::HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer,
2531 : : const std::vector<CBlockHeader>& headers)
2532 : : {
2533 : 0 : peer.m_num_unconnecting_headers_msgs++;
2534 : : // Try to fill in the missing headers.
2535 : 0 : const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2536 [ # # ][ # # ]: 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2537 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, m_num_unconnecting_headers_msgs=%d)\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2538 : : headers[0].GetHash().ToString(),
2539 : : headers[0].hashPrevBlock.ToString(),
2540 : : best_header->nHeight,
2541 : : pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
2542 : 0 : }
2543 : :
2544 : : // Set hashLastUnknownBlock for this peer, so that if we
2545 : : // eventually get the headers - even from a different peer -
2546 : : // we can use this peer to download.
2547 [ # # ][ # # ]: 0 : WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2548 : :
2549 : : // The peer may just be broken, so periodically assign DoS points if this
2550 : : // condition persists.
2551 [ # # ]: 0 : if (peer.m_num_unconnecting_headers_msgs % MAX_NUM_UNCONNECTING_HEADERS_MSGS == 0) {
2552 [ # # ]: 0 : Misbehaving(peer, 20, strprintf("%d non-connecting headers", peer.m_num_unconnecting_headers_msgs));
2553 : 0 : }
2554 : 0 : }
2555 : :
2556 : 0 : bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2557 : : {
2558 : 0 : uint256 hashLastBlock;
2559 [ # # ]: 0 : for (const CBlockHeader& header : headers) {
2560 [ # # ][ # # ]: 0 : if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2561 : 0 : return false;
2562 : : }
2563 : 0 : hashLastBlock = header.GetHash();
2564 : : }
2565 : 0 : return true;
2566 : 0 : }
2567 : :
2568 : 0 : bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2569 : : {
2570 [ # # ]: 0 : if (peer.m_headers_sync) {
2571 : 0 : auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
2572 [ # # ]: 0 : if (result.request_more) {
2573 [ # # ]: 0 : auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2574 : : // If we were instructed to ask for a locator, it should not be empty.
2575 [ # # ]: 0 : Assume(!locator.vHave.empty());
2576 [ # # ]: 0 : if (!locator.vHave.empty()) {
2577 : : // It should be impossible for the getheaders request to fail,
2578 : : // because we should have cleared the last getheaders timestamp
2579 : : // when processing the headers that triggered this call. But
2580 : : // it may be possible to bypass this via compactblock
2581 : : // processing, so check the result before logging just to be
2582 : : // safe.
2583 [ # # ]: 0 : bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2584 [ # # ]: 0 : if (sent_getheaders) {
2585 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
2586 : : locator.vHave.front().ToString(), pfrom.GetId());
2587 : 0 : } else {
2588 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "error sending next getheaders (from %s) to continue sync with peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
2589 : : locator.vHave.front().ToString(), pfrom.GetId());
2590 : : }
2591 : 0 : }
2592 : 0 : }
2593 : :
2594 [ # # ][ # # ]: 0 : if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2595 : 0 : peer.m_headers_sync.reset(nullptr);
2596 : :
2597 : : // Delete this peer's entry in m_headers_presync_stats.
2598 : : // If this is m_headers_presync_bestpeer, it will be replaced later
2599 : : // by the next peer that triggers the else{} branch below.
2600 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2601 [ # # ]: 0 : m_headers_presync_stats.erase(pfrom.GetId());
2602 : 0 : } else {
2603 : : // Build statistics for this peer's sync.
2604 [ # # ]: 0 : HeadersPresyncStats stats;
2605 [ # # ][ # # ]: 0 : stats.first = peer.m_headers_sync->GetPresyncWork();
2606 [ # # ][ # # ]: 0 : if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2607 : 0 : stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2608 [ # # ]: 0 : peer.m_headers_sync->GetPresyncTime()};
2609 : 0 : }
2610 : :
2611 : : // Update statistics in stats.
2612 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2613 [ # # ][ # # ]: 0 : m_headers_presync_stats[pfrom.GetId()] = stats;
2614 [ # # ]: 0 : auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2615 : 0 : bool best_updated = false;
2616 [ # # ]: 0 : if (best_it == m_headers_presync_stats.end()) {
2617 : : // If the cached best peer is outdated, iterate over all remaining ones (including
2618 : : // newly updated one) to find the best one.
2619 : 0 : NodeId peer_best{-1};
2620 : 0 : const HeadersPresyncStats* stat_best{nullptr};
2621 [ # # ]: 0 : for (const auto& [peer, stat] : m_headers_presync_stats) {
2622 [ # # ][ # # ]: 0 : if (!stat_best || stat > *stat_best) {
[ # # ]
2623 : 0 : peer_best = peer;
2624 : 0 : stat_best = &stat;
2625 : 0 : }
2626 : : }
2627 : 0 : m_headers_presync_bestpeer = peer_best;
2628 : 0 : best_updated = (peer_best == pfrom.GetId());
2629 [ # # ][ # # ]: 0 : } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
[ # # ]
2630 : : // pfrom was and remains the best peer, or pfrom just became best.
2631 : 0 : m_headers_presync_bestpeer = pfrom.GetId();
2632 : 0 : best_updated = true;
2633 : 0 : }
2634 [ # # ][ # # ]: 0 : if (best_updated && stats.second.has_value()) {
2635 : : // If the best peer updated, and it is in its first phase, signal.
2636 : 0 : m_headers_presync_should_signal = true;
2637 : 0 : }
2638 : 0 : }
2639 : :
2640 [ # # ]: 0 : if (result.success) {
2641 : : // We only overwrite the headers passed in if processing was
2642 : : // successful.
2643 : 0 : headers.swap(result.pow_validated_headers);
2644 : 0 : }
2645 : :
2646 : 0 : return result.success;
2647 : 0 : }
2648 : : // Either we didn't have a sync in progress, or something went wrong
2649 : : // processing these headers, or we are returning headers to the caller to
2650 : : // process.
2651 : 0 : return false;
2652 : 0 : }
2653 : :
2654 : 0 : bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2655 : : {
2656 : : // Calculate the total work on this chain.
2657 : 0 : arith_uint256 total_work = chain_start_header->nChainWork + CalculateHeadersWork(headers);
2658 : :
2659 : : // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2660 : : // before we'll store it)
2661 : 0 : arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2662 : :
2663 : : // Avoid DoS via low-difficulty-headers by only processing if the headers
2664 : : // are part of a chain with sufficient work.
2665 [ # # ]: 0 : if (total_work < minimum_chain_work) {
2666 : : // Only try to sync with this peer if their headers message was full;
2667 : : // otherwise they don't have more headers after this so no point in
2668 : : // trying to sync their too-little-work chain.
2669 [ # # ]: 0 : if (headers.size() == MAX_HEADERS_RESULTS) {
2670 : : // Note: we could advance to the last header in this set that is
2671 : : // known to us, rather than starting at the first header (which we
2672 : : // may already have); however this is unlikely to matter much since
2673 : : // ProcessHeadersMessage() already handles the case where all
2674 : : // headers in a received message are already known and are
2675 : : // ancestors of m_best_header or chainActive.Tip(), by skipping
2676 : : // this logic in that case. So even if the first header in this set
2677 : : // of headers is known, some header in this set must be new, so
2678 : : // advancing to the first unknown header would be a small effect.
2679 : 0 : LOCK(peer.m_headers_sync_mutex);
2680 [ # # ][ # # ]: 0 : peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
[ # # ]
2681 : 0 : chain_start_header, minimum_chain_work));
2682 : :
2683 : : // Now a HeadersSyncState object for tracking this synchronization
2684 : : // is created, process the headers using it as normal. Failures are
2685 : : // handled inside of IsContinuationOfLowWorkHeadersSync.
2686 [ # # ]: 0 : (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2687 : 0 : } else {
2688 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
[ # # ][ # # ]
2689 : : }
2690 : :
2691 : : // The peer has not yet given us a chain that meets our work threshold,
2692 : : // so we want to prevent further processing of the headers in any case.
2693 : 0 : headers = {};
2694 : 0 : return true;
2695 : : }
2696 : :
2697 : 0 : return false;
2698 : 0 : }
2699 : :
2700 : 0 : bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2701 : : {
2702 [ # # ]: 0 : if (header == nullptr) {
2703 : 0 : return false;
2704 [ # # ][ # # ]: 0 : } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2705 : 0 : return true;
2706 [ # # ]: 0 : } else if (m_chainman.ActiveChain().Contains(header)) {
2707 : 0 : return true;
2708 : : }
2709 : 0 : return false;
2710 : 0 : }
2711 : :
2712 : 0 : bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2713 : : {
2714 : 0 : const auto current_time = NodeClock::now();
2715 : :
2716 : : // Only allow a new getheaders message to go out if we don't have a recent
2717 : : // one already in-flight
2718 [ # # ]: 0 : if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2719 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
[ # # ]
2720 : 0 : peer.m_last_getheaders_timestamp = current_time;
2721 : 0 : return true;
2722 : : }
2723 : 0 : return false;
2724 : 0 : }
2725 : :
2726 : : /*
2727 : : * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2728 : : * We require that the given tip have at least as much work as our tip, and for
2729 : : * our current tip to be "close to synced" (see CanDirectFetch()).
2730 : : */
2731 : 0 : void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2732 : : {
2733 : 0 : LOCK(cs_main);
2734 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
2735 : :
2736 [ # # ][ # # ]: 0 : if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2737 : 0 : std::vector<const CBlockIndex*> vToFetch;
2738 : 0 : const CBlockIndex* pindexWalk{&last_header};
2739 : : // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2740 [ # # ][ # # ]: 0 : while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
[ # # ][ # # ]
[ # # ]
2741 [ # # ][ # # ]: 0 : if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2742 [ # # ][ # # ]: 0 : !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2743 [ # # ][ # # ]: 0 : (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2744 : : // We don't have this block, and it's not yet in flight.
2745 [ # # ]: 0 : vToFetch.push_back(pindexWalk);
2746 : 0 : }
2747 : 0 : pindexWalk = pindexWalk->pprev;
2748 : : }
2749 : : // If pindexWalk still isn't on our main chain, we're looking at a
2750 : : // very large reorg at a time we think we're close to caught up to
2751 : : // the main chain -- this shouldn't really happen. Bail out on the
2752 : : // direct fetch and rely on parallel download instead.
2753 [ # # ][ # # ]: 0 : if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
[ # # ]
2754 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
[ # # ][ # # ]
[ # # ][ # # ]
2755 : : last_header.GetBlockHash().ToString(),
2756 : : last_header.nHeight);
2757 : 0 : } else {
2758 : 0 : std::vector<CInv> vGetData;
2759 : : // Download as much as possible, from earliest to latest.
2760 [ # # ][ # # ]: 0 : for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2761 [ # # ]: 0 : if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2762 : : // Can't download any more from this peer
2763 : 0 : break;
2764 : : }
2765 : 0 : uint32_t nFetchFlags = GetFetchFlags(peer);
2766 [ # # ]: 0 : vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2767 [ # # ]: 0 : BlockRequested(pfrom.GetId(), *pindex);
2768 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
2769 : : pindex->GetBlockHash().ToString(), pfrom.GetId());
2770 : : }
2771 [ # # ]: 0 : if (vGetData.size() > 1) {
2772 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
[ # # ][ # # ]
[ # # ][ # # ]
2773 : : last_header.GetBlockHash().ToString(),
2774 : : last_header.nHeight);
2775 : 0 : }
2776 [ # # ]: 0 : if (vGetData.size() > 0) {
2777 [ # # ][ # # ]: 0 : if (!m_opts.ignore_incoming_txs &&
2778 [ # # ]: 0 : nodestate->m_provides_cmpctblocks &&
2779 [ # # ]: 0 : vGetData.size() == 1 &&
2780 [ # # ]: 0 : mapBlocksInFlight.size() == 1 &&
2781 [ # # ]: 0 : last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2782 : : // In any case, we want to download using a compact block, not a regular one
2783 [ # # ]: 0 : vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2784 : 0 : }
2785 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2786 : 0 : }
2787 : 0 : }
2788 : 0 : }
2789 : 0 : }
2790 : :
2791 : : /**
2792 : : * Given receipt of headers from a peer ending in last_header, along with
2793 : : * whether that header was new and whether the headers message was full,
2794 : : * update the state we keep for the peer.
2795 : : */
2796 : 0 : void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2797 : : const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2798 : : {
2799 [ # # ]: 0 : if (peer.m_num_unconnecting_headers_msgs > 0) {
2800 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer=%d: resetting m_num_unconnecting_headers_msgs (%d -> 0)\n", pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
[ # # ][ # # ]
2801 : 0 : }
2802 : 0 : peer.m_num_unconnecting_headers_msgs = 0;
2803 : :
2804 : 0 : LOCK(cs_main);
2805 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
2806 : :
2807 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2808 : :
2809 : : // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2810 : : // because it is set in UpdateBlockAvailability. Some nullptr checks
2811 : : // are still present, however, as belt-and-suspenders.
2812 : :
2813 [ # # ][ # # ]: 0 : if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
[ # # ][ # # ]
2814 [ # # ]: 0 : nodestate->m_last_block_announcement = GetTime();
2815 : 0 : }
2816 : :
2817 : : // If we're in IBD, we want outbound peers that will serve us a useful
2818 : : // chain. Disconnect peers that are on chains with insufficient work.
2819 [ # # ][ # # ]: 0 : if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
[ # # ]
2820 : : // If the peer has no more headers to give us, then we know we have
2821 : : // their tip.
2822 [ # # ][ # # ]: 0 : if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
[ # # ][ # # ]
2823 : : // This peer has too little work on their headers chain to help
2824 : : // us sync -- disconnect if it is an outbound disconnection
2825 : : // candidate.
2826 : : // Note: We compare their tip to the minimum chain work (rather than
2827 : : // m_chainman.ActiveChain().Tip()) because we won't start block download
2828 : : // until we have a headers chain that has at least
2829 : : // the minimum chain work, even if a peer has a chain past our tip,
2830 : : // as an anti-DoS measure.
2831 [ # # ][ # # ]: 0 : if (pfrom.IsOutboundOrBlockRelayConn()) {
2832 [ # # ][ # # ]: 0 : LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
[ # # ]
2833 : 0 : pfrom.fDisconnect = true;
2834 : 0 : }
2835 : 0 : }
2836 : 0 : }
2837 : :
2838 : : // If this is an outbound full-relay peer, check to see if we should protect
2839 : : // it from the bad/lagging chain logic.
2840 : : // Note that outbound block-relay peers are excluded from this protection, and
2841 : : // thus always subject to eviction under the bad/lagging chain logic.
2842 : : // See ChainSyncTimeoutState.
2843 [ # # ][ # # ]: 0 : if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
[ # # ]
2844 [ # # ][ # # ]: 0 : if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
[ # # ][ # # ]
[ # # ]
2845 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
2846 : 0 : nodestate->m_chain_sync.m_protect = true;
2847 : 0 : ++m_outbound_peers_with_protect_from_disconnect;
2848 : 0 : }
2849 : 0 : }
2850 : 0 : }
2851 : :
2852 : 0 : void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2853 : : std::vector<CBlockHeader>&& headers,
2854 : : bool via_compact_block)
2855 : : {
2856 : 0 : size_t nCount = headers.size();
2857 : :
2858 [ # # ]: 0 : if (nCount == 0) {
2859 : : // Nothing interesting. Stop asking this peers for more headers.
2860 : : // If we were in the middle of headers sync, receiving an empty headers
2861 : : // message suggests that the peer suddenly has nothing to give us
2862 : : // (perhaps it reorged to our chain). Clear download state for this peer.
2863 : 0 : LOCK(peer.m_headers_sync_mutex);
2864 [ # # ]: 0 : if (peer.m_headers_sync) {
2865 : 0 : peer.m_headers_sync.reset(nullptr);
2866 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2867 [ # # ]: 0 : m_headers_presync_stats.erase(pfrom.GetId());
2868 : 0 : }
2869 : : return;
2870 : 0 : }
2871 : :
2872 : : // Before we do any processing, make sure these pass basic sanity checks.
2873 : : // We'll rely on headers having valid proof-of-work further down, as an
2874 : : // anti-DoS criteria (note: this check is required before passing any
2875 : : // headers into HeadersSyncState).
2876 [ # # ]: 0 : if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2877 : : // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2878 : : // just return. (Note that even if a header is announced via compact
2879 : : // block, the header itself should be valid, so this type of error can
2880 : : // always be punished.)
2881 : 0 : return;
2882 : : }
2883 : :
2884 : 0 : const CBlockIndex *pindexLast = nullptr;
2885 : :
2886 : : // We'll set already_validated_work to true if these headers are
2887 : : // successfully processed as part of a low-work headers sync in progress
2888 : : // (either in PRESYNC or REDOWNLOAD phase).
2889 : : // If true, this will mean that any headers returned to us (ie during
2890 : : // REDOWNLOAD) can be validated without further anti-DoS checks.
2891 : 0 : bool already_validated_work = false;
2892 : :
2893 : : // If we're in the middle of headers sync, let it do its magic.
2894 : 0 : bool have_headers_sync = false;
2895 : : {
2896 : 0 : LOCK(peer.m_headers_sync_mutex);
2897 : :
2898 [ # # ]: 0 : already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2899 : :
2900 : : // The headers we passed in may have been:
2901 : : // - untouched, perhaps if no headers-sync was in progress, or some
2902 : : // failure occurred
2903 : : // - erased, such as if the headers were successfully processed and no
2904 : : // additional headers processing needs to take place (such as if we
2905 : : // are still in PRESYNC)
2906 : : // - replaced with headers that are now ready for validation, such as
2907 : : // during the REDOWNLOAD phase of a low-work headers sync.
2908 : : // So just check whether we still have headers that we need to process,
2909 : : // or not.
2910 [ # # ]: 0 : if (headers.empty()) {
2911 : 0 : return;
2912 : : }
2913 : :
2914 : 0 : have_headers_sync = !!peer.m_headers_sync;
2915 [ # # # ]: 0 : }
2916 : :
2917 : : // Do these headers connect to something in our block index?
2918 [ # # ]: 0 : const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2919 : 0 : bool headers_connect_blockindex{chain_start_header != nullptr};
2920 : :
2921 [ # # ]: 0 : if (!headers_connect_blockindex) {
2922 [ # # ]: 0 : if (nCount <= MAX_BLOCKS_TO_ANNOUNCE) {
2923 : : // If this looks like it could be a BIP 130 block announcement, use
2924 : : // special logic for handling headers that don't connect, as this
2925 : : // could be benign.
2926 : 0 : HandleFewUnconnectingHeaders(pfrom, peer, headers);
2927 : 0 : } else {
2928 [ # # ][ # # ]: 0 : Misbehaving(peer, 10, "invalid header received");
2929 : : }
2930 : 0 : return;
2931 : : }
2932 : :
2933 : : // If the headers we received are already in memory and an ancestor of
2934 : : // m_best_header or our tip, skip anti-DoS checks. These headers will not
2935 : : // use any more memory (and we are not leaking information that could be
2936 : : // used to fingerprint us).
2937 : 0 : const CBlockIndex *last_received_header{nullptr};
2938 : : {
2939 : 0 : LOCK(cs_main);
2940 [ # # ][ # # ]: 0 : last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2941 [ # # ][ # # ]: 0 : if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2942 : 0 : already_validated_work = true;
2943 : 0 : }
2944 : 0 : }
2945 : :
2946 : : // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2947 : : // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2948 : : // on startup).
2949 [ # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::NoBan)) {
2950 : 0 : already_validated_work = true;
2951 : 0 : }
2952 : :
2953 : : // At this point, the headers connect to something in our block index.
2954 : : // Do anti-DoS checks to determine if we should process or store for later
2955 : : // processing.
2956 [ # # ][ # # ]: 0 : if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
[ # # ]
2957 : 0 : chain_start_header, headers)) {
2958 : : // If we successfully started a low-work headers sync, then there
2959 : : // should be no headers to process any further.
2960 : 0 : Assume(headers.empty());
2961 : 0 : return;
2962 : : }
2963 : :
2964 : : // At this point, we have a set of headers with sufficient work on them
2965 : : // which can be processed.
2966 : :
2967 : : // If we don't have the last header, then this peer will have given us
2968 : : // something new (if these headers are valid).
2969 : 0 : bool received_new_header{last_received_header == nullptr};
2970 : :
2971 : : // Now process all the headers.
2972 : 0 : BlockValidationState state;
2973 [ # # ][ # # ]: 0 : if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2974 [ # # ]: 0 : if (state.IsInvalid()) {
2975 [ # # ][ # # ]: 0 : MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2976 : 0 : return;
2977 : : }
2978 : 0 : }
2979 [ # # ]: 0 : assert(pindexLast);
2980 : :
2981 : : // Consider fetching more headers if we are not using our headers-sync mechanism.
2982 [ # # ][ # # ]: 0 : if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
2983 : : // Headers message had its maximum size; the peer may have more headers.
2984 [ # # ][ # # ]: 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
[ # # ]
2985 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
[ # # ][ # # ]
[ # # ]
2986 : : pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2987 : 0 : }
2988 : 0 : }
2989 : :
2990 [ # # ]: 0 : UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == MAX_HEADERS_RESULTS);
2991 : :
2992 : : // Consider immediately downloading blocks.
2993 [ # # ]: 0 : HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2994 : :
2995 : 0 : return;
2996 : 0 : }
2997 : :
2998 : 0 : bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
2999 : : {
3000 : 0 : AssertLockHeld(g_msgproc_mutex);
3001 : 0 : LOCK(cs_main);
3002 : :
3003 : 0 : CTransactionRef porphanTx = nullptr;
3004 : :
3005 [ # # ][ # # ]: 0 : while (CTransactionRef porphanTx = m_orphanage.GetTxToReconsider(peer.m_id)) {
3006 [ # # ]: 0 : const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3007 : 0 : const TxValidationState& state = result.m_state;
3008 : 0 : const Txid& orphanHash = porphanTx->GetHash();
3009 : 0 : const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3010 : :
3011 [ # # ]: 0 : if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
3012 [ # # ][ # # ]: 0 : LogPrint(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3013 [ # # ][ # # ]: 0 : LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3014 : : peer.m_id,
3015 : : orphanHash.ToString(),
3016 : : orphan_wtxid.ToString(),
3017 : : m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3018 [ # # ]: 0 : RelayTransaction(orphanHash, porphanTx->GetWitnessHash());
3019 [ # # ]: 0 : m_orphanage.AddChildrenToWorkSet(*porphanTx);
3020 [ # # ]: 0 : m_orphanage.EraseTx(orphanHash);
3021 [ # # ][ # # ]: 0 : for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
3022 [ # # ]: 0 : AddToCompactExtraTransactions(removedTx);
3023 : : }
3024 : 0 : return true;
3025 [ # # ]: 0 : } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3026 [ # # ]: 0 : if (state.IsInvalid()) {
3027 [ # # ][ # # ]: 0 : LogPrint(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
3028 : : orphanHash.ToString(),
3029 : : orphan_wtxid.ToString(),
3030 : : peer.m_id,
3031 : : state.ToString());
3032 [ # # ][ # # ]: 0 : LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
3033 : : orphanHash.ToString(),
3034 : : orphan_wtxid.ToString(),
3035 : : peer.m_id,
3036 : : state.ToString());
3037 : : // Maybe punish peer that gave us an invalid orphan tx
3038 [ # # ]: 0 : MaybePunishNodeForTx(peer.m_id, state);
3039 : 0 : }
3040 : : // Has inputs but not accepted to mempool
3041 : : // Probably non-standard or insufficient fee
3042 [ # # ][ # # ]: 0 : LogPrint(BCLog::TXPACKAGES, " removed orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3043 [ # # ]: 0 : if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
3044 : : // We can add the wtxid of this transaction to our reject filter.
3045 : : // Do not add txids of witness transactions or witness-stripped
3046 : : // transactions to the filter, as they can have been malleated;
3047 : : // adding such txids to the reject filter would potentially
3048 : : // interfere with relay of valid transactions from peers that
3049 : : // do not support wtxid-based relay. See
3050 : : // https://github.com/bitcoin/bitcoin/issues/8279 for details.
3051 : : // We can remove this restriction (and always add wtxids to
3052 : : // the filter even for witness stripped transactions) once
3053 : : // wtxid-based relay is broadly deployed.
3054 : : // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
3055 : : // for concerns around weakening security of unupgraded nodes
3056 : : // if we start doing this too early.
3057 [ # # ][ # # ]: 0 : m_recent_rejects.insert(porphanTx->GetWitnessHash().ToUint256());
3058 : : // If the transaction failed for TX_INPUTS_NOT_STANDARD,
3059 : : // then we know that the witness was irrelevant to the policy
3060 : : // failure, since this check depends only on the txid
3061 : : // (the scriptPubKey being spent is covered by the txid).
3062 : : // Add the txid to the reject filter to prevent repeated
3063 : : // processing of this transaction in the event that child
3064 : : // transactions are later received (resulting in
3065 : : // parent-fetching by txid via the orphan-handling logic).
3066 [ # # ][ # # ]: 0 : if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && porphanTx->HasWitness()) {
3067 : : // We only add the txid if it differs from the wtxid, to
3068 : : // avoid wasting entries in the rolling bloom filter.
3069 [ # # ][ # # ]: 0 : m_recent_rejects.insert(porphanTx->GetHash().ToUint256());
3070 : 0 : }
3071 : 0 : }
3072 [ # # ]: 0 : m_orphanage.EraseTx(orphanHash);
3073 : 0 : return true;
3074 : : }
3075 [ # # ]: 0 : }
[ # # # ]
3076 : :
3077 : 0 : return false;
3078 : 0 : }
3079 : :
3080 : 0 : bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3081 : : BlockFilterType filter_type, uint32_t start_height,
3082 : : const uint256& stop_hash, uint32_t max_height_diff,
3083 : : const CBlockIndex*& stop_index,
3084 : : BlockFilterIndex*& filter_index)
3085 : : {
3086 : 0 : const bool supported_filter_type =
3087 [ # # ]: 0 : (filter_type == BlockFilterType::BASIC &&
3088 : 0 : (peer.m_our_services & NODE_COMPACT_FILTERS));
3089 [ # # ]: 0 : if (!supported_filter_type) {
3090 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
[ # # ][ # # ]
3091 : : node.GetId(), static_cast<uint8_t>(filter_type));
3092 : 0 : node.fDisconnect = true;
3093 : 0 : return false;
3094 : : }
3095 : :
3096 : : {
3097 : 0 : LOCK(cs_main);
3098 [ # # ]: 0 : stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3099 : :
3100 : : // Check that the stop block exists and the peer would be allowed to fetch it.
3101 [ # # ][ # # ]: 0 : if (!stop_index || !BlockRequestAllowed(stop_index)) {
[ # # ]
3102 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
[ # # ][ # # ]
[ # # ][ # # ]
3103 : : node.GetId(), stop_hash.ToString());
3104 : 0 : node.fDisconnect = true;
3105 : 0 : return false;
3106 : : }
3107 [ # # # ]: 0 : }
3108 : :
3109 : 0 : uint32_t stop_height = stop_index->nHeight;
3110 [ # # ]: 0 : if (start_height > stop_height) {
3111 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
[ # # ][ # # ]
3112 : : "start height %d and stop height %d\n",
3113 : : node.GetId(), start_height, stop_height);
3114 : 0 : node.fDisconnect = true;
3115 : 0 : return false;
3116 : : }
3117 [ # # ]: 0 : if (stop_height - start_height >= max_height_diff) {
3118 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
[ # # ][ # # ]
3119 : : node.GetId(), stop_height - start_height + 1, max_height_diff);
3120 : 0 : node.fDisconnect = true;
3121 : 0 : return false;
3122 : : }
3123 : :
3124 : 0 : filter_index = GetBlockFilterIndex(filter_type);
3125 [ # # ]: 0 : if (!filter_index) {
3126 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
[ # # ][ # # ]
[ # # ]
3127 : 0 : return false;
3128 : : }
3129 : :
3130 : 0 : return true;
3131 : 0 : }
3132 : :
3133 : 0 : void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3134 : : {
3135 : : uint8_t filter_type_ser;
3136 : : uint32_t start_height;
3137 : 0 : uint256 stop_hash;
3138 : :
3139 : 0 : vRecv >> filter_type_ser >> start_height >> stop_hash;
3140 : :
3141 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3142 : :
3143 : : const CBlockIndex* stop_index;
3144 : : BlockFilterIndex* filter_index;
3145 [ # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3146 : : MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3147 : 0 : return;
3148 : : }
3149 : :
3150 : 0 : std::vector<BlockFilter> filters;
3151 [ # # ][ # # ]: 0 : if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3152 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3153 : : BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3154 : 0 : return;
3155 : : }
3156 : :
3157 [ # # ]: 0 : for (const auto& filter : filters) {
3158 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3159 : : }
3160 [ # # ]: 0 : }
3161 : :
3162 : 0 : void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3163 : : {
3164 : : uint8_t filter_type_ser;
3165 : : uint32_t start_height;
3166 : 0 : uint256 stop_hash;
3167 : :
3168 : 0 : vRecv >> filter_type_ser >> start_height >> stop_hash;
3169 : :
3170 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3171 : :
3172 : : const CBlockIndex* stop_index;
3173 : : BlockFilterIndex* filter_index;
3174 [ # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3175 : : MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3176 : 0 : return;
3177 : : }
3178 : :
3179 : 0 : uint256 prev_header;
3180 [ # # ]: 0 : if (start_height > 0) {
3181 : 0 : const CBlockIndex* const prev_block =
3182 : 0 : stop_index->GetAncestor(static_cast<int>(start_height - 1));
3183 [ # # ]: 0 : if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3184 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
3185 : : BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3186 : 0 : return;
3187 : : }
3188 : 0 : }
3189 : :
3190 : 0 : std::vector<uint256> filter_hashes;
3191 [ # # ][ # # ]: 0 : if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3192 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3193 : : BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3194 : 0 : return;
3195 : : }
3196 : :
3197 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3198 : : filter_type_ser,
3199 : 0 : stop_index->GetBlockHash(),
3200 : : prev_header,
3201 : : filter_hashes);
3202 [ # # ]: 0 : }
3203 : :
3204 : 0 : void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3205 : : {
3206 : : uint8_t filter_type_ser;
3207 : 0 : uint256 stop_hash;
3208 : :
3209 : 0 : vRecv >> filter_type_ser >> stop_hash;
3210 : :
3211 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3212 : :
3213 : : const CBlockIndex* stop_index;
3214 : : BlockFilterIndex* filter_index;
3215 [ # # ][ # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3216 : 0 : /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3217 : : stop_index, filter_index)) {
3218 : 0 : return;
3219 : : }
3220 : :
3221 [ # # ]: 0 : std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3222 : :
3223 : : // Populate headers.
3224 : 0 : const CBlockIndex* block_index = stop_index;
3225 [ # # ]: 0 : for (int i = headers.size() - 1; i >= 0; i--) {
3226 : 0 : int height = (i + 1) * CFCHECKPT_INTERVAL;
3227 [ # # ]: 0 : block_index = block_index->GetAncestor(height);
3228 : :
3229 [ # # ][ # # ]: 0 : if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3230 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3231 : : BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3232 : 0 : return;
3233 : : }
3234 : 0 : }
3235 : :
3236 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3237 : : filter_type_ser,
3238 : 0 : stop_index->GetBlockHash(),
3239 : : headers);
3240 [ # # ]: 0 : }
3241 : :
3242 : 0 : void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3243 : : {
3244 : 0 : bool new_block{false};
3245 : 0 : m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3246 [ # # ]: 0 : if (new_block) {
3247 : 0 : node.m_last_block_time = GetTime<std::chrono::seconds>();
3248 : : // In case this block came from a different peer than we requested
3249 : : // from, we can erase the block request now anyway (as we just stored
3250 : : // this block to disk).
3251 : 0 : LOCK(cs_main);
3252 [ # # ][ # # ]: 0 : RemoveBlockRequest(block->GetHash(), std::nullopt);
3253 : 0 : } else {
3254 : 0 : LOCK(cs_main);
3255 [ # # ][ # # ]: 0 : mapBlockSource.erase(block->GetHash());
3256 : 0 : }
3257 : 0 : }
3258 : :
3259 : 0 : void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3260 : : {
3261 : 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3262 : 0 : bool fBlockRead{false};
3263 : : {
3264 [ # # ]: 0 : LOCK(cs_main);
3265 : :
3266 [ # # ]: 0 : auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3267 [ # # ]: 0 : size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3268 : 0 : bool requested_block_from_this_peer{false};
3269 : :
3270 : : // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3271 [ # # ]: 0 : bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3272 : :
3273 [ # # ]: 0 : while (range_flight.first != range_flight.second) {
3274 : 0 : auto [node_id, block_it] = range_flight.first->second;
3275 [ # # ][ # # ]: 0 : if (node_id == pfrom.GetId() && block_it->partialBlock) {
3276 : 0 : requested_block_from_this_peer = true;
3277 : 0 : break;
3278 : : }
3279 : 0 : range_flight.first++;
3280 : : }
3281 : :
3282 [ # # ]: 0 : if (!requested_block_from_this_peer) {
3283 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3284 : 0 : return;
3285 : : }
3286 : :
3287 : 0 : PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3288 [ # # ]: 0 : ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3289 [ # # ]: 0 : if (status == READ_STATUS_INVALID) {
3290 [ # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3291 [ # # ][ # # ]: 0 : Misbehaving(peer, 100, "invalid compact block/non-matching block transactions");
3292 : 0 : return;
3293 [ # # ]: 0 : } else if (status == READ_STATUS_FAILED) {
3294 [ # # ]: 0 : if (first_in_flight) {
3295 : : // Might have collided, fall back to getdata now :(
3296 : 0 : std::vector<CInv> invs;
3297 [ # # ]: 0 : invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3298 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3299 : 0 : } else {
3300 [ # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3301 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3302 : 0 : return;
3303 : : }
3304 : 0 : } else {
3305 : : // Block is either okay, or possibly we received
3306 : : // READ_STATUS_CHECKBLOCK_FAILED.
3307 : : // Note that CheckBlock can only fail for one of a few reasons:
3308 : : // 1. bad-proof-of-work (impossible here, because we've already
3309 : : // accepted the header)
3310 : : // 2. merkleroot doesn't match the transactions given (already
3311 : : // caught in FillBlock with READ_STATUS_FAILED, so
3312 : : // impossible here)
3313 : : // 3. the block is otherwise invalid (eg invalid coinbase,
3314 : : // block is too big, too many legacy sigops, etc).
3315 : : // So if CheckBlock failed, #3 is the only possibility.
3316 : : // Under BIP 152, we don't discourage the peer unless proof of work is
3317 : : // invalid (we don't require all the stateless checks to have
3318 : : // been run). This is handled below, so just treat this as
3319 : : // though the block was successfully read, and rely on the
3320 : : // handling in ProcessNewBlock to ensure the block index is
3321 : : // updated, etc.
3322 [ # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3323 : 0 : fBlockRead = true;
3324 : : // mapBlockSource is used for potentially punishing peers and
3325 : : // updating which peers send us compact blocks, so the race
3326 : : // between here and cs_main in ProcessNewBlock is fine.
3327 : : // BIP 152 permits peers to relay compact blocks after validating
3328 : : // the header only; we should not punish peers if the block turns
3329 : : // out to be invalid.
3330 [ # # ][ # # ]: 0 : mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3331 : : }
3332 [ # # ]: 0 : } // Don't hold cs_main when we call into ProcessNewBlock
3333 [ # # ]: 0 : if (fBlockRead) {
3334 : : // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3335 : : // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3336 : : // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3337 : : // disk-space attacks), but this should be safe due to the
3338 : : // protections in the compact block handler -- see related comment
3339 : : // in compact block optimistic reconstruction handling.
3340 [ # # ]: 0 : ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3341 : 0 : }
3342 : 0 : return;
3343 : 0 : }
3344 : :
3345 : 0 : void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3346 : : const std::chrono::microseconds time_received,
3347 : : const std::atomic<bool>& interruptMsgProc)
3348 : : {
3349 : 0 : AssertLockHeld(g_msgproc_mutex);
3350 : :
3351 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3352 : :
3353 : 0 : PeerRef peer = GetPeerRef(pfrom.GetId());
3354 [ # # ]: 0 : if (peer == nullptr) return;
3355 : :
3356 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::VERSION) {
3357 [ # # ]: 0 : if (pfrom.nVersion != 0) {
3358 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3359 : 0 : return;
3360 : : }
3361 : :
3362 : : int64_t nTime;
3363 [ # # ]: 0 : CService addrMe;
3364 : 0 : uint64_t nNonce = 1;
3365 : : ServiceFlags nServices;
3366 : : int nVersion;
3367 : 0 : std::string cleanSubVer;
3368 : 0 : int starting_height = -1;
3369 : 0 : bool fRelay = true;
3370 : :
3371 [ # # ][ # # ]: 0 : vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
[ # # ][ # # ]
3372 [ # # ]: 0 : if (nTime < 0) {
3373 : 0 : nTime = 0;
3374 : 0 : }
3375 [ # # ]: 0 : vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3376 [ # # ][ # # ]: 0 : vRecv >> CNetAddr::V1(addrMe);
3377 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn())
3378 : : {
3379 [ # # ]: 0 : m_addrman.SetServices(pfrom.addr, nServices);
3380 : 0 : }
3381 [ # # ][ # # ]: 0 : if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
[ # # ][ # # ]
3382 : : {
3383 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
[ # # ][ # # ]
[ # # ][ # # ]
3384 : 0 : pfrom.fDisconnect = true;
3385 : 0 : return;
3386 : : }
3387 : :
3388 [ # # ]: 0 : if (nVersion < MIN_PEER_PROTO_VERSION) {
3389 : : // disconnect from peers older than this proto version
3390 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
[ # # ][ # # ]
[ # # ]
3391 : 0 : pfrom.fDisconnect = true;
3392 : 0 : return;
3393 : : }
3394 : :
3395 [ # # ][ # # ]: 0 : if (!vRecv.empty()) {
3396 : : // The version message includes information about the sending node which we don't use:
3397 : : // - 8 bytes (service bits)
3398 : : // - 16 bytes (ipv6 address)
3399 : : // - 2 bytes (port)
3400 [ # # ]: 0 : vRecv.ignore(26);
3401 [ # # ]: 0 : vRecv >> nNonce;
3402 : 0 : }
3403 [ # # ][ # # ]: 0 : if (!vRecv.empty()) {
3404 : 0 : std::string strSubVer;
3405 [ # # ][ # # ]: 0 : vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3406 [ # # ]: 0 : cleanSubVer = SanitizeString(strSubVer);
3407 : 0 : }
3408 [ # # ][ # # ]: 0 : if (!vRecv.empty()) {
3409 [ # # ]: 0 : vRecv >> starting_height;
3410 : 0 : }
3411 [ # # ][ # # ]: 0 : if (!vRecv.empty())
3412 [ # # ]: 0 : vRecv >> fRelay;
3413 : : // Disconnect if we connected to ourself
3414 [ # # ][ # # ]: 0 : if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
[ # # ][ # # ]
3415 : : {
3416 [ # # ][ # # ]: 0 : LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
[ # # ][ # # ]
3417 : 0 : pfrom.fDisconnect = true;
3418 : 0 : return;
3419 : : }
3420 : :
3421 [ # # ][ # # ]: 0 : if (pfrom.IsInboundConn() && addrMe.IsRoutable())
[ # # ][ # # ]
3422 : : {
3423 [ # # ]: 0 : SeenLocal(addrMe);
3424 : 0 : }
3425 : :
3426 : : // Inbound peers send us their version message when they connect.
3427 : : // We send our version message in response.
3428 [ # # ][ # # ]: 0 : if (pfrom.IsInboundConn()) {
3429 [ # # ]: 0 : PushNodeVersion(pfrom, *peer);
3430 : 0 : }
3431 : :
3432 : : // Change version
3433 : 0 : const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3434 [ # # ]: 0 : pfrom.SetCommonVersion(greatest_common_version);
3435 : 0 : pfrom.nVersion = nVersion;
3436 : :
3437 [ # # ]: 0 : if (greatest_common_version >= WTXID_RELAY_VERSION) {
3438 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3439 : 0 : }
3440 : :
3441 : : // Signal ADDRv2 support (BIP155).
3442 [ # # ]: 0 : if (greatest_common_version >= 70016) {
3443 : : // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3444 : : // implementations reject messages they don't know. As a courtesy, don't send
3445 : : // it to nodes with a version before 70016, as no software is known to support
3446 : : // BIP155 that doesn't announce at least that protocol version number.
3447 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3448 : 0 : }
3449 : :
3450 [ # # ]: 0 : pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3451 : 0 : peer->m_their_services = nServices;
3452 [ # # ]: 0 : pfrom.SetAddrLocal(addrMe);
3453 : : {
3454 [ # # ]: 0 : LOCK(pfrom.m_subver_mutex);
3455 [ # # ]: 0 : pfrom.cleanSubVer = cleanSubVer;
3456 : 0 : }
3457 : 0 : peer->m_starting_height = starting_height;
3458 : :
3459 : : // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3460 : : // - this isn't an outbound block-relay-only connection, and
3461 : : // - this isn't an outbound feeler connection, and
3462 : : // - fRelay=true (the peer wishes to receive transaction announcements)
3463 : : // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3464 : : // the peer may turn on transaction relay later.
3465 [ # # ][ # # ]: 0 : if (!pfrom.IsBlockOnlyConn() &&
3466 [ # # ][ # # ]: 0 : !pfrom.IsFeelerConn() &&
3467 [ # # ]: 0 : (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3468 [ # # ]: 0 : auto* const tx_relay = peer->SetTxRelay();
3469 : : {
3470 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
3471 : 0 : tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3472 : 0 : }
3473 [ # # ]: 0 : if (fRelay) pfrom.m_relays_txs = true;
3474 : 0 : }
3475 : :
3476 [ # # ][ # # ]: 0 : if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3477 : : // Per BIP-330, we announce txreconciliation support if:
3478 : : // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3479 : : // - transaction relay is supported per the peer's VERSION message
3480 : : // - this is not a block-relay-only connection and not a feeler
3481 : : // - this is not an addr fetch connection;
3482 : : // - we are not in -blocksonly mode.
3483 [ # # ]: 0 : const auto* tx_relay = peer->GetTxRelay();
3484 [ # # ][ # # ]: 0 : if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
[ # # ][ # # ]
3485 [ # # ][ # # ]: 0 : !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3486 [ # # ]: 0 : const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3487 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3488 : : TXRECONCILIATION_VERSION, recon_salt);
3489 : 0 : }
3490 : 0 : }
3491 : :
3492 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3493 : :
3494 : : // Potentially mark this peer as a preferred download peer.
3495 : : {
3496 [ # # ]: 0 : LOCK(cs_main);
3497 [ # # ]: 0 : CNodeState* state = State(pfrom.GetId());
3498 [ # # ][ # # ]: 0 : state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3499 : 0 : m_num_preferred_download_peers += state->fPreferredDownload;
3500 : 0 : }
3501 : :
3502 : : // Attempt to initialize address relay for outbound peers and use result
3503 : : // to decide whether to send GETADDR, so that we don't send it to
3504 : : // inbound or outbound block-relay-only peers.
3505 : 0 : bool send_getaddr{false};
3506 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn()) {
3507 [ # # ]: 0 : send_getaddr = SetupAddressRelay(pfrom, *peer);
3508 : 0 : }
3509 [ # # ]: 0 : if (send_getaddr) {
3510 : : // Do a one-time address fetch to help populate/update our addrman.
3511 : : // If we're starting up for the first time, our addrman may be pretty
3512 : : // empty, so this mechanism is important to help us connect to the network.
3513 : : // We skip this for block-relay-only peers. We want to avoid
3514 : : // potentially leaking addr information and we do not want to
3515 : : // indicate to the peer that we will participate in addr relay.
3516 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3517 : 0 : peer->m_getaddr_sent = true;
3518 : : // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3519 : : // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3520 : 0 : peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3521 : 0 : }
3522 : :
3523 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn()) {
3524 : : // For non-inbound connections, we update the addrman to record
3525 : : // connection success so that addrman will have an up-to-date
3526 : : // notion of which peers are online and available.
3527 : : //
3528 : : // While we strive to not leak information about block-relay-only
3529 : : // connections via the addrman, not moving an address to the tried
3530 : : // table is also potentially detrimental because new-table entries
3531 : : // are subject to eviction in the event of addrman collisions. We
3532 : : // mitigate the information-leak by never calling
3533 : : // AddrMan::Connected() on block-relay-only peers; see
3534 : : // FinalizeNode().
3535 : : //
3536 : : // This moves an address from New to Tried table in Addrman,
3537 : : // resolves tried-table collisions, etc.
3538 [ # # ][ # # ]: 0 : m_addrman.Good(pfrom.addr);
3539 : 0 : }
3540 : :
3541 : 0 : std::string remoteAddr;
3542 [ # # ]: 0 : if (fLogIPs)
3543 [ # # ][ # # ]: 0 : remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3544 : :
3545 [ # # ]: 0 : const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3546 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3547 : : cleanSubVer, pfrom.nVersion,
3548 : : peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3549 : : remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3550 : :
3551 [ # # ]: 0 : int64_t nTimeOffset = nTime - GetTime();
3552 : 0 : pfrom.nTimeOffset = nTimeOffset;
3553 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn()) {
3554 : : // Don't use timedata samples from inbound peers to make it
3555 : : // harder for others to tamper with our adjusted time.
3556 [ # # ]: 0 : AddTimeData(pfrom.addr, nTimeOffset);
3557 : 0 : }
3558 : :
3559 : : // If the peer is old enough to have the old alert system, send it the final alert.
3560 [ # # ]: 0 : if (greatest_common_version <= 70012) {
3561 [ # # ]: 0 : const auto finalAlert{ParseHex("60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50")};
3562 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, "alert", Span{finalAlert});
[ # # ]
3563 : 0 : }
3564 : :
3565 : : // Feeler connections exist only to verify if address is online.
3566 [ # # ][ # # ]: 0 : if (pfrom.IsFeelerConn()) {
3567 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3568 : 0 : pfrom.fDisconnect = true;
3569 : 0 : }
3570 : : return;
3571 : 0 : }
3572 : :
3573 [ # # ]: 0 : if (pfrom.nVersion == 0) {
3574 : : // Must have a version message before anything else
3575 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3576 : 0 : return;
3577 : : }
3578 : :
3579 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::VERACK) {
3580 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3581 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3582 : 0 : return;
3583 : : }
3584 : :
3585 : : // Log successful connections unconditionally for outbound, but not for inbound as those
3586 : : // can be triggered by an attacker at high rate.
3587 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn() || LogAcceptCategory(BCLog::NET, BCLog::Level::Debug)) {
[ # # ]
3588 [ # # ]: 0 : const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3589 [ # # ][ # # ]: 0 : LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
3590 : : pfrom.ConnectionTypeAsString(),
3591 : : TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3592 : : pfrom.nVersion.load(), peer->m_starting_height,
3593 : : pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3594 : : (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3595 : 0 : }
3596 : :
3597 [ # # ]: 0 : if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
3598 : : // Tell our peer we are willing to provide version 2 cmpctblocks.
3599 : : // However, we do not request new block announcements using
3600 : : // cmpctblock messages.
3601 : : // We send this to non-NODE NETWORK peers as well, because
3602 : : // they may wish to request compact blocks from us
3603 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3604 : 0 : }
3605 : :
3606 [ # # ]: 0 : if (m_txreconciliation) {
3607 [ # # ][ # # ]: 0 : if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
[ # # ]
3608 : : // We could have optimistically pre-registered/registered the peer. In that case,
3609 : : // we should forget about the reconciliation state here if this wasn't followed
3610 : : // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3611 [ # # ]: 0 : m_txreconciliation->ForgetPeer(pfrom.GetId());
3612 : 0 : }
3613 : 0 : }
3614 : :
3615 [ # # ][ # # ]: 0 : if (auto tx_relay = peer->GetTxRelay()) {
3616 : : // `TxRelay::m_tx_inventory_to_send` must be empty before the
3617 : : // version handshake is completed as
3618 : : // `TxRelay::m_next_inv_send_time` is first initialised in
3619 : : // `SendMessages` after the verack is received. Any transactions
3620 : : // received during the version handshake would otherwise
3621 : : // immediately be advertised without random delay, potentially
3622 : : // leaking the time of arrival to a spy.
3623 [ # # ][ # # ]: 0 : Assume(WITH_LOCK(
[ # # ][ # # ]
[ # # ]
3624 : : tx_relay->m_tx_inventory_mutex,
3625 : : return tx_relay->m_tx_inventory_to_send.empty() &&
3626 : : tx_relay->m_next_inv_send_time == 0s));
3627 : 0 : }
3628 : :
3629 : 0 : pfrom.fSuccessfullyConnected = true;
3630 : 0 : return;
3631 : : }
3632 : :
3633 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::SENDHEADERS) {
3634 : 0 : peer->m_prefers_headers = true;
3635 : 0 : return;
3636 : : }
3637 : :
3638 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::SENDCMPCT) {
3639 : 0 : bool sendcmpct_hb{false};
3640 : 0 : uint64_t sendcmpct_version{0};
3641 [ # # ][ # # ]: 0 : vRecv >> sendcmpct_hb >> sendcmpct_version;
3642 : :
3643 : : // Only support compact block relay with witnesses
3644 [ # # ]: 0 : if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3645 : :
3646 [ # # ]: 0 : LOCK(cs_main);
3647 [ # # ]: 0 : CNodeState* nodestate = State(pfrom.GetId());
3648 : 0 : nodestate->m_provides_cmpctblocks = true;
3649 : 0 : nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3650 : : // save whether peer selects us as BIP152 high-bandwidth peer
3651 : : // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3652 : 0 : pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3653 : : return;
3654 : 0 : }
3655 : :
3656 : : // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3657 : : // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3658 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::WTXIDRELAY) {
3659 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3660 : : // Disconnect peers that send a wtxidrelay message after VERACK.
3661 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3662 : 0 : pfrom.fDisconnect = true;
3663 : 0 : return;
3664 : : }
3665 [ # # ]: 0 : if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3666 [ # # ]: 0 : if (!peer->m_wtxid_relay) {
3667 : 0 : peer->m_wtxid_relay = true;
3668 : 0 : m_wtxid_relay_peers++;
3669 : 0 : } else {
3670 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3671 : : }
3672 : 0 : } else {
3673 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3674 : : }
3675 : 0 : return;
3676 : : }
3677 : :
3678 : : // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3679 : : // between VERSION and VERACK.
3680 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::SENDADDRV2) {
3681 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3682 : : // Disconnect peers that send a SENDADDRV2 message after VERACK.
3683 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3684 : 0 : pfrom.fDisconnect = true;
3685 : 0 : return;
3686 : : }
3687 : 0 : peer->m_wants_addrv2 = true;
3688 : 0 : return;
3689 : : }
3690 : :
3691 : : // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3692 : : // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3693 : : // from switching announcement protocols after the connection is up.
3694 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::SENDTXRCNCL) {
3695 [ # # ]: 0 : if (!m_txreconciliation) {
3696 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3697 : 0 : return;
3698 : : }
3699 : :
3700 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3701 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3702 : 0 : pfrom.fDisconnect = true;
3703 : 0 : return;
3704 : : }
3705 : :
3706 : : // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3707 [ # # ][ # # ]: 0 : if (RejectIncomingTxs(pfrom)) {
3708 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3709 : 0 : pfrom.fDisconnect = true;
3710 : 0 : return;
3711 : : }
3712 : :
3713 : : // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3714 : : // This flag might also be false in other cases, but the RejectIncomingTxs check above
3715 : : // eliminates them, so that this flag fully represents what we are looking for.
3716 [ # # ]: 0 : const auto* tx_relay = peer->GetTxRelay();
3717 [ # # ][ # # ]: 0 : if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
[ # # ]
3718 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3719 : 0 : pfrom.fDisconnect = true;
3720 : 0 : return;
3721 : : }
3722 : :
3723 : : uint32_t peer_txreconcl_version;
3724 : : uint64_t remote_salt;
3725 [ # # ][ # # ]: 0 : vRecv >> peer_txreconcl_version >> remote_salt;
3726 : :
3727 [ # # ][ # # ]: 0 : const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3728 : 0 : peer_txreconcl_version, remote_salt);
3729 [ # # # # : 0 : switch (result) {
# ]
3730 : : case ReconciliationRegisterResult::NOT_FOUND:
3731 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3732 : 0 : break;
3733 : : case ReconciliationRegisterResult::SUCCESS:
3734 : 0 : break;
3735 : : case ReconciliationRegisterResult::ALREADY_REGISTERED:
3736 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3737 : 0 : pfrom.fDisconnect = true;
3738 : 0 : return;
3739 : : case ReconciliationRegisterResult::PROTOCOL_VIOLATION:
3740 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3741 : 0 : pfrom.fDisconnect = true;
3742 : 0 : return;
3743 : : }
3744 : 0 : return;
3745 : : }
3746 : :
3747 [ # # ]: 0 : if (!pfrom.fSuccessfullyConnected) {
3748 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3749 : 0 : return;
3750 : : }
3751 : :
3752 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
[ # # ][ # # ]
3753 : 0 : const auto ser_params{
3754 [ # # ][ # # ]: 0 : msg_type == NetMsgType::ADDRV2 ?
3755 : : // Set V2 param so that the CNetAddr and CAddress
3756 : : // unserialize methods know that an address in v2 format is coming.
3757 : : CAddress::V2_NETWORK :
3758 : : CAddress::V1_NETWORK,
3759 : : };
3760 : :
3761 : 0 : std::vector<CAddress> vAddr;
3762 : :
3763 [ # # ][ # # ]: 0 : vRecv >> ser_params(vAddr);
3764 : :
3765 [ # # ][ # # ]: 0 : if (!SetupAddressRelay(pfrom, *peer)) {
3766 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3767 : 0 : return;
3768 : : }
3769 : :
3770 [ # # ]: 0 : if (vAddr.size() > MAX_ADDR_TO_SEND)
3771 : : {
3772 [ # # ][ # # ]: 0 : Misbehaving(*peer, 20, strprintf("%s message size = %u", msg_type, vAddr.size()));
3773 : 0 : return;
3774 : : }
3775 : :
3776 : : // Store the new addresses
3777 : 0 : std::vector<CAddress> vAddrOk;
3778 [ # # ]: 0 : const auto current_a_time{Now<NodeSeconds>()};
3779 : :
3780 : : // Update/increment addr rate limiting bucket.
3781 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
3782 [ # # ]: 0 : if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3783 : : // Don't increment bucket if it's already full
3784 [ # # ][ # # ]: 0 : const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
[ # # ]
3785 [ # # ]: 0 : const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3786 [ # # ]: 0 : peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3787 : 0 : }
3788 : 0 : peer->m_addr_token_timestamp = current_time;
3789 : :
3790 [ # # ]: 0 : const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3791 : 0 : uint64_t num_proc = 0;
3792 : 0 : uint64_t num_rate_limit = 0;
3793 [ # # ]: 0 : Shuffle(vAddr.begin(), vAddr.end(), m_rng);
3794 [ # # ]: 0 : for (CAddress& addr : vAddr)
3795 : : {
3796 [ # # ]: 0 : if (interruptMsgProc)
3797 : 0 : return;
3798 : :
3799 : : // Apply rate limiting.
3800 [ # # ]: 0 : if (peer->m_addr_token_bucket < 1.0) {
3801 [ # # ]: 0 : if (rate_limited) {
3802 : 0 : ++num_rate_limit;
3803 : 0 : continue;
3804 : : }
3805 : 0 : } else {
3806 : 0 : peer->m_addr_token_bucket -= 1.0;
3807 : : }
3808 : : // We only bother storing full nodes, though this may include
3809 : : // things which we would not make an outbound connection to, in
3810 : : // part because we may make feeler connections to them.
3811 [ # # ][ # # ]: 0 : if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
[ # # ][ # # ]
3812 : 0 : continue;
3813 : :
3814 [ # # ][ # # ]: 0 : if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3815 [ # # ][ # # ]: 0 : addr.nTime = current_a_time - 5 * 24h;
[ # # ]
3816 : 0 : }
3817 [ # # ]: 0 : AddAddressKnown(*peer, addr);
3818 [ # # ][ # # ]: 0 : if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
[ # # ][ # # ]
[ # # ]
3819 : : // Do not process banned/discouraged addresses beyond remembering we received them
3820 : 0 : continue;
3821 : : }
3822 : 0 : ++num_proc;
3823 [ # # ]: 0 : const bool reachable{g_reachable_nets.Contains(addr)};
3824 [ # # ][ # # ]: 0 : if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
3825 : : // Relay to a limited number of other nodes
3826 [ # # ]: 0 : RelayAddress(pfrom.GetId(), addr, reachable);
3827 : 0 : }
3828 : : // Do not store addresses outside our network
3829 [ # # ]: 0 : if (reachable) {
3830 [ # # ]: 0 : vAddrOk.push_back(addr);
3831 : 0 : }
3832 : : }
3833 : 0 : peer->m_addr_processed += num_proc;
3834 : 0 : peer->m_addr_rate_limited += num_rate_limit;
3835 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
[ # # ][ # # ]
[ # # ]
3836 : : vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3837 : :
3838 [ # # ][ # # ]: 0 : m_addrman.Add(vAddrOk, pfrom.addr, 2h);
[ # # ]
3839 [ # # ]: 0 : if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3840 : :
3841 : : // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3842 [ # # ][ # # ]: 0 : if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
[ # # ]
3843 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3844 : 0 : pfrom.fDisconnect = true;
3845 : 0 : }
3846 : 0 : return;
3847 : 0 : }
3848 : :
3849 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::INV) {
3850 : 0 : std::vector<CInv> vInv;
3851 [ # # ]: 0 : vRecv >> vInv;
3852 [ # # ]: 0 : if (vInv.size() > MAX_INV_SZ)
3853 : : {
3854 [ # # ][ # # ]: 0 : Misbehaving(*peer, 20, strprintf("inv message size = %u", vInv.size()));
3855 : 0 : return;
3856 : : }
3857 : :
3858 [ # # ]: 0 : const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3859 : :
3860 [ # # ]: 0 : LOCK(cs_main);
3861 : :
3862 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
3863 : 0 : uint256* best_block{nullptr};
3864 : :
3865 [ # # ]: 0 : for (CInv& inv : vInv) {
3866 [ # # ]: 0 : if (interruptMsgProc) return;
3867 : :
3868 : : // Ignore INVs that don't match wtxidrelay setting.
3869 : : // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3870 : : // This is fine as no INV messages are involved in that process.
3871 [ # # ]: 0 : if (peer->m_wtxid_relay) {
3872 [ # # ][ # # ]: 0 : if (inv.IsMsgTx()) continue;
3873 : 0 : } else {
3874 [ # # ][ # # ]: 0 : if (inv.IsMsgWtx()) continue;
3875 : : }
3876 : :
3877 [ # # ][ # # ]: 0 : if (inv.IsMsgBlk()) {
3878 [ # # ]: 0 : const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3879 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3880 : :
3881 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3882 [ # # ][ # # ]: 0 : if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
[ # # ][ # # ]
3883 : : // Headers-first is the primary method of announcement on
3884 : : // the network. If a node fell back to sending blocks by
3885 : : // inv, it may be for a re-org, or because we haven't
3886 : : // completed initial headers sync. The final block hash
3887 : : // provided should be the highest, so send a getheaders and
3888 : : // then fetch the blocks we need to catch up.
3889 : 0 : best_block = &inv.hash;
3890 : 0 : }
3891 [ # # ][ # # ]: 0 : } else if (inv.IsGenTxMsg()) {
3892 [ # # ]: 0 : if (reject_tx_invs) {
3893 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3894 : 0 : pfrom.fDisconnect = true;
3895 : 0 : return;
3896 : : }
3897 [ # # ]: 0 : const GenTxid gtxid = ToGenTxid(inv);
3898 [ # # ]: 0 : const bool fAlreadyHave = AlreadyHaveTx(gtxid);
3899 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3900 : :
3901 [ # # ]: 0 : AddKnownTx(*peer, inv.hash);
3902 [ # # ][ # # ]: 0 : if (!fAlreadyHave && !m_chainman.IsInitialBlockDownload()) {
[ # # ]
3903 [ # # ]: 0 : AddTxAnnouncement(pfrom, gtxid, current_time);
3904 : 0 : }
3905 : 0 : } else {
3906 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3907 : : }
3908 : : }
3909 : :
3910 [ # # ]: 0 : if (best_block != nullptr) {
3911 : : // If we haven't started initial headers-sync with this peer, then
3912 : : // consider sending a getheaders now. On initial startup, there's a
3913 : : // reliability vs bandwidth tradeoff, where we are only trying to do
3914 : : // initial headers sync with one peer at a time, with a long
3915 : : // timeout (at which point, if the sync hasn't completed, we will
3916 : : // disconnect the peer and then choose another). In the meantime,
3917 : : // as new blocks are found, we are willing to add one new peer per
3918 : : // block to sync with as well, to sync quicker in the case where
3919 : : // our initial peer is unresponsive (but less bandwidth than we'd
3920 : : // use if we turned on sync with all peers).
3921 [ # # ][ # # ]: 0 : CNodeState& state{*Assert(State(pfrom.GetId()))};
3922 [ # # ][ # # ]: 0 : if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
[ # # ][ # # ]
3923 [ # # ][ # # ]: 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
[ # # ]
3924 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
3925 : : m_chainman.m_best_header->nHeight, best_block->ToString(),
3926 : : pfrom.GetId());
3927 : 0 : }
3928 [ # # ]: 0 : if (!state.fSyncStarted) {
3929 : 0 : peer->m_inv_triggered_getheaders_before_sync = true;
3930 : : // Update the last block hash that triggered a new headers
3931 : : // sync, so that we don't turn on headers sync with more
3932 : : // than 1 new peer every new block.
3933 : 0 : m_last_block_inv_triggering_headers_sync = *best_block;
3934 : 0 : }
3935 : 0 : }
3936 : 0 : }
3937 : :
3938 : 0 : return;
3939 : 0 : }
3940 : :
3941 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETDATA) {
3942 : 0 : std::vector<CInv> vInv;
3943 [ # # ]: 0 : vRecv >> vInv;
3944 [ # # ]: 0 : if (vInv.size() > MAX_INV_SZ)
3945 : : {
3946 [ # # ][ # # ]: 0 : Misbehaving(*peer, 20, strprintf("getdata message size = %u", vInv.size()));
3947 : 0 : return;
3948 : : }
3949 : :
3950 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3951 : :
3952 [ # # ]: 0 : if (vInv.size() > 0) {
3953 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3954 : 0 : }
3955 : :
3956 : : {
3957 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
3958 [ # # ]: 0 : peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3959 [ # # ]: 0 : ProcessGetData(pfrom, *peer, interruptMsgProc);
3960 : 0 : }
3961 : :
3962 : 0 : return;
3963 : 0 : }
3964 : :
3965 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETBLOCKS) {
3966 [ # # ]: 0 : CBlockLocator locator;
3967 [ # # ]: 0 : uint256 hashStop;
3968 [ # # ][ # # ]: 0 : vRecv >> locator >> hashStop;
3969 : :
3970 [ # # ]: 0 : if (locator.vHave.size() > MAX_LOCATOR_SZ) {
3971 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
[ # # ][ # # ]
[ # # ]
3972 : 0 : pfrom.fDisconnect = true;
3973 : 0 : return;
3974 : : }
3975 : :
3976 : : // We might have announced the currently-being-connected tip using a
3977 : : // compact block, which resulted in the peer sending a getblocks
3978 : : // request, which we would otherwise respond to without the new block.
3979 : : // To avoid this situation we simply verify that we are on our best
3980 : : // known chain now. This is super overkill, but we handle it better
3981 : : // for getheaders requests, and there are no known nodes which support
3982 : : // compact blocks but still use getblocks to request blocks.
3983 : : {
3984 : 0 : std::shared_ptr<const CBlock> a_recent_block;
3985 : : {
3986 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
3987 : 0 : a_recent_block = m_most_recent_block;
3988 : 0 : }
3989 : 0 : BlockValidationState state;
3990 [ # # ][ # # ]: 0 : if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
[ # # ]
3991 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
[ # # ][ # # ]
[ # # ][ # # ]
3992 : 0 : }
3993 : 0 : }
3994 : :
3995 [ # # ]: 0 : LOCK(cs_main);
3996 : :
3997 : : // Find the last block the caller has in the main chain
3998 [ # # ][ # # ]: 0 : const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
3999 : :
4000 : : // Send the rest of the chain
4001 [ # # ]: 0 : if (pindex)
4002 [ # # ][ # # ]: 0 : pindex = m_chainman.ActiveChain().Next(pindex);
4003 : 0 : int nLimit = 500;
4004 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
4005 [ # # ][ # # ]: 0 : for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
[ # # ]
4006 : : {
4007 [ # # ][ # # ]: 0 : if (pindex->GetBlockHash() == hashStop)
4008 : : {
4009 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
[ # # ][ # # ]
[ # # ][ # # ]
4010 : 0 : break;
4011 : : }
4012 : : // If pruning, don't inv blocks unless we have on disk and are likely to still have
4013 : : // for some reasonable time window (1 hour) that block relay might require.
4014 : 0 : const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4015 [ # # ][ # # ]: 0 : if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
[ # # ][ # # ]
[ # # ]
4016 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
[ # # ][ # # ]
[ # # ][ # # ]
4017 : 0 : break;
4018 : : }
4019 [ # # ][ # # ]: 0 : WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4020 [ # # ]: 0 : if (--nLimit <= 0) {
4021 : : // When this block is requested, we'll send an inv that'll
4022 : : // trigger the peer to getblocks the next batch of inventory.
4023 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
[ # # ][ # # ]
[ # # ][ # # ]
4024 [ # # ]: 0 : WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4025 : 0 : break;
4026 : : }
4027 : 0 : }
4028 : : return;
4029 : 0 : }
4030 : :
4031 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETBLOCKTXN) {
4032 [ # # ]: 0 : BlockTransactionsRequest req;
4033 [ # # ]: 0 : vRecv >> req;
4034 : :
4035 : 0 : std::shared_ptr<const CBlock> recent_block;
4036 : : {
4037 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
4038 [ # # ][ # # ]: 0 : if (m_most_recent_block_hash == req.blockhash)
4039 : 0 : recent_block = m_most_recent_block;
4040 : : // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4041 : 0 : }
4042 [ # # ]: 0 : if (recent_block) {
4043 [ # # ]: 0 : SendBlockTransactions(pfrom, *peer, *recent_block, req);
4044 : 0 : return;
4045 : : }
4046 : :
4047 : : {
4048 [ # # ]: 0 : LOCK(cs_main);
4049 : :
4050 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4051 [ # # ][ # # ]: 0 : if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4052 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4053 : 0 : return;
4054 : : }
4055 : :
4056 [ # # ][ # # ]: 0 : if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
[ # # ]
4057 [ # # ]: 0 : CBlock block;
4058 [ # # ]: 0 : const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pindex)};
4059 [ # # ]: 0 : assert(ret);
4060 : :
4061 [ # # ]: 0 : SendBlockTransactions(pfrom, *peer, block, req);
4062 : : return;
4063 : 0 : }
4064 [ # # ]: 0 : }
4065 : :
4066 : : // If an older block is requested (should never happen in practice,
4067 : : // but can happen in tests) send a block response instead of a
4068 : : // blocktxn response. Sending a full block response instead of a
4069 : : // small blocktxn response is preferable in the case where a peer
4070 : : // might maliciously send lots of getblocktxn requests to trigger
4071 : : // expensive disk reads, because it will require the peer to
4072 : : // actually receive all the data read from disk over the network.
4073 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
[ # # ][ # # ]
[ # # ]
4074 [ # # ]: 0 : CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
4075 [ # # ][ # # ]: 0 : WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4076 : : // The message processing loop will go around again (without pausing) and we'll respond then
4077 : 0 : return;
4078 : 0 : }
4079 : :
4080 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETHEADERS) {
4081 [ # # ]: 0 : CBlockLocator locator;
4082 [ # # ]: 0 : uint256 hashStop;
4083 [ # # ][ # # ]: 0 : vRecv >> locator >> hashStop;
4084 : :
4085 [ # # ]: 0 : if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4086 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4087 : 0 : pfrom.fDisconnect = true;
4088 : 0 : return;
4089 : : }
4090 : :
4091 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4092 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4093 : 0 : return;
4094 : : }
4095 : :
4096 [ # # ]: 0 : LOCK(cs_main);
4097 : :
4098 : : // Note that if we were to be on a chain that forks from the checkpointed
4099 : : // chain, then serving those headers to a peer that has seen the
4100 : : // checkpointed chain would cause that peer to disconnect us. Requiring
4101 : : // that our chainwork exceed the minimum chain work is a protection against
4102 : : // being fed a bogus chain when we started up for the first time and
4103 : : // getting partitioned off the honest network for serving that chain to
4104 : : // others.
4105 [ # # ][ # # ]: 0 : if (m_chainman.ActiveTip() == nullptr ||
[ # # ]
4106 [ # # ][ # # ]: 0 : (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
[ # # ][ # # ]
[ # # ]
4107 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4108 : : // Just respond with an empty headers message, to tell the peer to
4109 : : // go away but not treat us as unresponsive.
4110 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4111 : 0 : return;
4112 : : }
4113 : :
4114 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
4115 : 0 : const CBlockIndex* pindex = nullptr;
4116 [ # # ][ # # ]: 0 : if (locator.IsNull())
4117 : : {
4118 : : // If locator is null, return the hashStop block
4119 [ # # ]: 0 : pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4120 [ # # ]: 0 : if (!pindex) {
4121 : 0 : return;
4122 : : }
4123 : :
4124 [ # # ][ # # ]: 0 : if (!BlockRequestAllowed(pindex)) {
4125 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4126 : 0 : return;
4127 : : }
4128 : 0 : }
4129 : : else
4130 : : {
4131 : : // Find the last block the caller has in the main chain
4132 [ # # ][ # # ]: 0 : pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4133 [ # # ]: 0 : if (pindex)
4134 [ # # ][ # # ]: 0 : pindex = m_chainman.ActiveChain().Next(pindex);
4135 : : }
4136 : :
4137 : : // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4138 : 0 : std::vector<CBlock> vHeaders;
4139 : 0 : int nLimit = MAX_HEADERS_RESULTS;
4140 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
4141 [ # # ][ # # ]: 0 : for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
[ # # ]
4142 : : {
4143 [ # # ][ # # ]: 0 : vHeaders.emplace_back(pindex->GetBlockHeader());
4144 [ # # ][ # # ]: 0 : if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
[ # # ]
4145 : 0 : break;
4146 : 0 : }
4147 : : // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4148 : : // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4149 : : // headers message). In both cases it's safe to update
4150 : : // pindexBestHeaderSent to be our tip.
4151 : : //
4152 : : // It is important that we simply reset the BestHeaderSent value here,
4153 : : // and not max(BestHeaderSent, newHeaderSent). We might have announced
4154 : : // the currently-being-connected tip using a compact block, which
4155 : : // resulted in the peer sending a headers request, which we respond to
4156 : : // without the new block. By resetting the BestHeaderSent, we ensure we
4157 : : // will re-announce the new block via headers (or compact blocks again)
4158 : : // in the SendMessages logic.
4159 [ # # ][ # # ]: 0 : nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4160 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
[ # # ]
4161 : : return;
4162 : 0 : }
4163 : :
4164 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::TX) {
4165 [ # # ][ # # ]: 0 : if (RejectIncomingTxs(pfrom)) {
4166 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4167 : 0 : pfrom.fDisconnect = true;
4168 : 0 : return;
4169 : : }
4170 : :
4171 : : // Stop processing the transaction early if we are still in IBD since we don't
4172 : : // have enough information to validate it yet. Sending unsolicited transactions
4173 : : // is not considered a protocol violation, so don't punish the peer.
4174 [ # # ][ # # ]: 0 : if (m_chainman.IsInitialBlockDownload()) return;
4175 : :
4176 : 0 : CTransactionRef ptx;
4177 [ # # ][ # # ]: 0 : vRecv >> TX_WITH_WITNESS(ptx);
4178 : 0 : const CTransaction& tx = *ptx;
4179 : :
4180 : 0 : const uint256& txid = ptx->GetHash();
4181 : 0 : const uint256& wtxid = ptx->GetWitnessHash();
4182 : :
4183 [ # # ]: 0 : const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4184 [ # # ]: 0 : AddKnownTx(*peer, hash);
4185 : :
4186 [ # # ]: 0 : LOCK(cs_main);
4187 : :
4188 [ # # ]: 0 : m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
4189 [ # # ][ # # ]: 0 : if (tx.HasWitness()) m_txrequest.ReceivedResponse(pfrom.GetId(), wtxid);
4190 : :
4191 : : // We do the AlreadyHaveTx() check using wtxid, rather than txid - in the
4192 : : // absence of witness malleation, this is strictly better, because the
4193 : : // recent rejects filter may contain the wtxid but rarely contains
4194 : : // the txid of a segwit transaction that has been rejected.
4195 : : // In the presence of witness malleation, it's possible that by only
4196 : : // doing the check with wtxid, we could overlook a transaction which
4197 : : // was confirmed with a different witness, or exists in our mempool
4198 : : // with a different witness, but this has limited downside:
4199 : : // mempool validation does its own lookup of whether we have the txid
4200 : : // already; and an adversary can already relay us old transactions
4201 : : // (older than our recency filter) if trying to DoS us, without any need
4202 : : // for witness malleation.
4203 [ # # ][ # # ]: 0 : if (AlreadyHaveTx(GenTxid::Wtxid(wtxid))) {
[ # # ]
4204 [ # # ][ # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
4205 : : // Always relay transactions received from peers with forcerelay
4206 : : // permission, even if they were already in the mempool, allowing
4207 : : // the node to function as a gateway for nodes hidden behind it.
4208 [ # # ][ # # ]: 0 : if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
[ # # ]
4209 [ # # ][ # # ]: 0 : LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
[ # # ][ # # ]
[ # # ]
4210 : : tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4211 : 0 : } else {
4212 [ # # ][ # # ]: 0 : LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
[ # # ][ # # ]
[ # # ]
4213 : : tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4214 [ # # ]: 0 : RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4215 : : }
4216 : 0 : }
4217 : : // If a tx is detected by m_recent_rejects it is ignored. Because we haven't
4218 : : // submitted the tx to our mempool, we won't have computed a DoS
4219 : : // score for it or determined exactly why we consider it invalid.
4220 : : //
4221 : : // This means we won't penalize any peer subsequently relaying a DoSy
4222 : : // tx (even if we penalized the first peer who gave it to us) because
4223 : : // we have to account for m_recent_rejects showing false positives. In
4224 : : // other words, we shouldn't penalize a peer if we aren't *sure* they
4225 : : // submitted a DoSy tx.
4226 : : //
4227 : : // Note that m_recent_rejects doesn't just record DoSy or invalid
4228 : : // transactions, but any tx not accepted by the mempool, which may be
4229 : : // due to node policy (vs. consensus). So we can't blanket penalize a
4230 : : // peer simply for relaying a tx that our m_recent_rejects has caught,
4231 : : // regardless of false positives.
4232 : 0 : return;
4233 : : }
4234 : :
4235 [ # # ]: 0 : const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4236 : 0 : const TxValidationState& state = result.m_state;
4237 : :
4238 [ # # ]: 0 : if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
4239 : : // As this version of the transaction was acceptable, we can forget about any
4240 : : // requests for it.
4241 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4242 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4243 [ # # ]: 0 : RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4244 [ # # ]: 0 : m_orphanage.AddChildrenToWorkSet(tx);
4245 : :
4246 [ # # ]: 0 : pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4247 : :
4248 [ # # ][ # # ]: 0 : LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
4249 : : pfrom.GetId(),
4250 : : tx.GetHash().ToString(),
4251 : : tx.GetWitnessHash().ToString(),
4252 : : m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
4253 : :
4254 [ # # ][ # # ]: 0 : for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
4255 [ # # ]: 0 : AddToCompactExtraTransactions(removedTx);
4256 : : }
4257 : 0 : }
4258 [ # # ][ # # ]: 0 : else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS)
4259 : : {
4260 : 0 : bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
4261 : :
4262 : : // Deduplicate parent txids, so that we don't have to loop over
4263 : : // the same parent txid more than once down below.
4264 : 0 : std::vector<uint256> unique_parents;
4265 [ # # ]: 0 : unique_parents.reserve(tx.vin.size());
4266 [ # # ]: 0 : for (const CTxIn& txin : tx.vin) {
4267 : : // We start with all parents, and then remove duplicates below.
4268 [ # # ]: 0 : unique_parents.push_back(txin.prevout.hash);
4269 : : }
4270 [ # # ]: 0 : std::sort(unique_parents.begin(), unique_parents.end());
4271 [ # # ][ # # ]: 0 : unique_parents.erase(std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end());
4272 [ # # ]: 0 : for (const uint256& parent_txid : unique_parents) {
4273 [ # # ][ # # ]: 0 : if (m_recent_rejects.contains(parent_txid)) {
[ # # ]
4274 : 0 : fRejectedParents = true;
4275 : 0 : break;
4276 : : }
4277 : : }
4278 [ # # ]: 0 : if (!fRejectedParents) {
4279 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
4280 : :
4281 [ # # ]: 0 : for (const uint256& parent_txid : unique_parents) {
4282 : : // Here, we only have the txid (and not wtxid) of the
4283 : : // inputs, so we only request in txid mode, even for
4284 : : // wtxidrelay peers.
4285 : : // Eventually we should replace this with an improved
4286 : : // protocol for getting all unconfirmed parents.
4287 [ # # ]: 0 : const auto gtxid{GenTxid::Txid(parent_txid)};
4288 [ # # ]: 0 : AddKnownTx(*peer, parent_txid);
4289 [ # # ][ # # ]: 0 : if (!AlreadyHaveTx(gtxid)) AddTxAnnouncement(pfrom, gtxid, current_time);
[ # # ]
4290 : : }
4291 : :
4292 [ # # ][ # # ]: 0 : if (m_orphanage.AddTx(ptx, pfrom.GetId())) {
4293 [ # # ]: 0 : AddToCompactExtraTransactions(ptx);
4294 : 0 : }
4295 : :
4296 : : // Once added to the orphan pool, a tx is considered AlreadyHave, and we shouldn't request it anymore.
4297 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4298 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4299 : :
4300 : : // DoS prevention: do not allow m_orphanage to grow unbounded (see CVE-2012-3789)
4301 [ # # ]: 0 : m_orphanage.LimitOrphans(m_opts.max_orphan_txs, m_rng);
4302 : 0 : } else {
4303 [ # # ][ # # ]: 0 : LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s (wtxid=%s)\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
4304 : : tx.GetHash().ToString(),
4305 : : tx.GetWitnessHash().ToString());
4306 : : // We will continue to reject this tx since it has rejected
4307 : : // parents so avoid re-requesting it from other peers.
4308 : : // Here we add both the txid and the wtxid, as we know that
4309 : : // regardless of what witness is provided, we will not accept
4310 : : // this, so we don't need to allow for redownload of this txid
4311 : : // from any of our non-wtxidrelay peers.
4312 [ # # ][ # # ]: 0 : m_recent_rejects.insert(tx.GetHash().ToUint256());
4313 [ # # ][ # # ]: 0 : m_recent_rejects.insert(tx.GetWitnessHash().ToUint256());
4314 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4315 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4316 : : }
4317 : 0 : } else {
4318 [ # # ][ # # ]: 0 : if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
4319 : : // We can add the wtxid of this transaction to our reject filter.
4320 : : // Do not add txids of witness transactions or witness-stripped
4321 : : // transactions to the filter, as they can have been malleated;
4322 : : // adding such txids to the reject filter would potentially
4323 : : // interfere with relay of valid transactions from peers that
4324 : : // do not support wtxid-based relay. See
4325 : : // https://github.com/bitcoin/bitcoin/issues/8279 for details.
4326 : : // We can remove this restriction (and always add wtxids to
4327 : : // the filter even for witness stripped transactions) once
4328 : : // wtxid-based relay is broadly deployed.
4329 : : // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
4330 : : // for concerns around weakening security of unupgraded nodes
4331 : : // if we start doing this too early.
4332 [ # # ][ # # ]: 0 : m_recent_rejects.insert(tx.GetWitnessHash().ToUint256());
4333 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4334 : : // If the transaction failed for TX_INPUTS_NOT_STANDARD,
4335 : : // then we know that the witness was irrelevant to the policy
4336 : : // failure, since this check depends only on the txid
4337 : : // (the scriptPubKey being spent is covered by the txid).
4338 : : // Add the txid to the reject filter to prevent repeated
4339 : : // processing of this transaction in the event that child
4340 : : // transactions are later received (resulting in
4341 : : // parent-fetching by txid via the orphan-handling logic).
4342 [ # # ][ # # ]: 0 : if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && tx.HasWitness()) {
[ # # ]
4343 [ # # ][ # # ]: 0 : m_recent_rejects.insert(tx.GetHash().ToUint256());
4344 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4345 : 0 : }
4346 [ # # ][ # # ]: 0 : if (RecursiveDynamicUsage(*ptx) < 100000) {
4347 [ # # ]: 0 : AddToCompactExtraTransactions(ptx);
4348 : 0 : }
4349 : 0 : }
4350 : : }
4351 : :
4352 [ # # ][ # # ]: 0 : if (state.IsInvalid()) {
4353 [ # # ][ # # ]: 0 : LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
4354 : : tx.GetHash().ToString(),
4355 : : tx.GetWitnessHash().ToString(),
4356 : : pfrom.GetId(),
4357 : : state.ToString());
4358 [ # # ]: 0 : MaybePunishNodeForTx(pfrom.GetId(), state);
4359 : 0 : }
4360 : : return;
4361 : 0 : }
4362 : :
4363 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::CMPCTBLOCK)
4364 : : {
4365 : : // Ignore cmpctblock received while importing
4366 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4367 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4368 : 0 : return;
4369 : : }
4370 : :
4371 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock;
4372 [ # # ]: 0 : vRecv >> cmpctblock;
4373 : :
4374 : 0 : bool received_new_header = false;
4375 [ # # ]: 0 : const auto blockhash = cmpctblock.header.GetHash();
4376 : :
4377 : : {
4378 [ # # ]: 0 : LOCK(cs_main);
4379 : :
4380 [ # # ]: 0 : const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4381 [ # # ]: 0 : if (!prev_block) {
4382 : : // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4383 [ # # ][ # # ]: 0 : if (!m_chainman.IsInitialBlockDownload()) {
4384 [ # # ][ # # ]: 0 : MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4385 : 0 : }
4386 : 0 : return;
4387 [ # # ][ # # ]: 0 : } else if (prev_block->nChainWork + CalculateHeadersWork({cmpctblock.header}) < GetAntiDoSWorkThreshold()) {
[ # # ][ # # ]
[ # # ][ # # ]
4388 : : // If we get a low-work header in a compact block, we can ignore it.
4389 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4390 : 0 : return;
4391 : : }
4392 : :
4393 [ # # ][ # # ]: 0 : if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4394 : 0 : received_new_header = true;
4395 : 0 : }
4396 [ # # ]: 0 : }
4397 : :
4398 : 0 : const CBlockIndex *pindex = nullptr;
4399 : 0 : BlockValidationState state;
4400 [ # # ][ # # ]: 0 : if (!m_chainman.ProcessNewBlockHeaders({cmpctblock.header}, /*min_pow_checked=*/true, state, &pindex)) {
[ # # ]
4401 [ # # ]: 0 : if (state.IsInvalid()) {
4402 [ # # ][ # # ]: 0 : MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4403 : 0 : return;
4404 : : }
4405 : 0 : }
4406 : :
4407 [ # # ]: 0 : if (received_new_header) {
4408 [ # # ][ # # ]: 0 : LogPrintfCategory(BCLog::NET, "Saw new cmpctblock header hash=%s peer=%d\n",
[ # # ][ # # ]
4409 : : blockhash.ToString(), pfrom.GetId());
4410 : 0 : }
4411 : :
4412 : 0 : bool fProcessBLOCKTXN = false;
4413 : :
4414 : : // If we end up treating this as a plain headers message, call that as well
4415 : : // without cs_main.
4416 : 0 : bool fRevertToHeaderProcessing = false;
4417 : :
4418 : : // Keep a CBlock for "optimistic" compactblock reconstructions (see
4419 : : // below)
4420 [ # # ]: 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4421 : 0 : bool fBlockReconstructed = false;
4422 : :
4423 : : {
4424 [ # # ]: 0 : LOCK(cs_main);
4425 : : // If AcceptBlockHeader returned true, it set pindex
4426 [ # # ]: 0 : assert(pindex);
4427 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4428 : :
4429 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
4430 : :
4431 : : // If this was a new header with more work than our tip, update the
4432 : : // peer's last block announcement time
4433 [ # # ][ # # ]: 0 : if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
[ # # ][ # # ]
4434 [ # # ]: 0 : nodestate->m_last_block_announcement = GetTime();
4435 : 0 : }
4436 : :
4437 [ # # ]: 0 : if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4438 : 0 : return;
4439 : :
4440 [ # # ]: 0 : auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4441 [ # # ]: 0 : size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4442 : 0 : bool requested_block_from_this_peer{false};
4443 : :
4444 : : // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4445 [ # # ]: 0 : bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4446 : :
4447 [ # # ]: 0 : while (range_flight.first != range_flight.second) {
4448 [ # # ]: 0 : if (range_flight.first->second.first == pfrom.GetId()) {
4449 : 0 : requested_block_from_this_peer = true;
4450 : 0 : break;
4451 : : }
4452 : 0 : range_flight.first++;
4453 : : }
4454 : :
4455 [ # # ][ # # ]: 0 : if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
[ # # ][ # # ]
4456 : 0 : pindex->nTx != 0) { // We had this block at some point, but pruned it
4457 [ # # ]: 0 : if (requested_block_from_this_peer) {
4458 : : // We requested this block for some reason, but our mempool will probably be useless
4459 : : // so we just grab the block via normal getdata
4460 [ # # ]: 0 : std::vector<CInv> vInv(1);
4461 [ # # ][ # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4462 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4463 : 0 : }
4464 : 0 : return;
4465 : : }
4466 : :
4467 : : // If we're not close to tip yet, give up and let parallel block fetch work its magic
4468 [ # # ][ # # ]: 0 : if (!already_in_flight && !CanDirectFetch()) {
[ # # ]
4469 : 0 : return;
4470 : : }
4471 : :
4472 : : // We want to be a bit conservative just to be extra careful about DoS
4473 : : // possibilities in compact block processing...
4474 [ # # ][ # # ]: 0 : if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
[ # # ]
4475 [ # # ][ # # ]: 0 : if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4476 : 0 : requested_block_from_this_peer) {
4477 : 0 : std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4478 [ # # ][ # # ]: 0 : if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4479 [ # # ]: 0 : if (!(*queuedBlockIt)->partialBlock)
4480 [ # # ][ # # ]: 0 : (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4481 : : else {
4482 : : // The block was already in flight using compact blocks from the same peer
4483 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
[ # # ][ # # ]
[ # # ]
4484 : 0 : return;
4485 : : }
4486 : 0 : }
4487 : :
4488 : 0 : PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4489 [ # # ]: 0 : ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4490 [ # # ]: 0 : if (status == READ_STATUS_INVALID) {
4491 [ # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4492 [ # # ][ # # ]: 0 : Misbehaving(*peer, 100, "invalid compact block");
4493 : 0 : return;
4494 [ # # ]: 0 : } else if (status == READ_STATUS_FAILED) {
4495 [ # # ]: 0 : if (first_in_flight) {
4496 : : // Duplicate txindexes, the block is now in-flight, so just request it
4497 [ # # ]: 0 : std::vector<CInv> vInv(1);
4498 [ # # ][ # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4499 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4500 : 0 : } else {
4501 : : // Give up for this peer and wait for other peer(s)
4502 [ # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4503 : : }
4504 : 0 : return;
4505 : : }
4506 : :
4507 [ # # ]: 0 : BlockTransactionsRequest req;
4508 [ # # ][ # # ]: 0 : for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4509 [ # # ][ # # ]: 0 : if (!partialBlock.IsTxAvailable(i))
4510 [ # # ]: 0 : req.indexes.push_back(i);
4511 : 0 : }
4512 [ # # ]: 0 : if (req.indexes.empty()) {
4513 : 0 : fProcessBLOCKTXN = true;
4514 [ # # ]: 0 : } else if (first_in_flight) {
4515 : : // We will try to round-trip any compact blocks we get on failure,
4516 : : // as long as it's first...
4517 : 0 : req.blockhash = pindex->GetBlockHash();
4518 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4519 [ # # ][ # # ]: 0 : } else if (pfrom.m_bip152_highbandwidth_to &&
4520 [ # # ][ # # ]: 0 : (!pfrom.IsInboundConn() ||
4521 [ # # ][ # # ]: 0 : IsBlockRequestedFromOutbound(blockhash) ||
4522 : 0 : already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4523 : : // ... or it's a hb relay peer and:
4524 : : // - peer is outbound, or
4525 : : // - we already have an outbound attempt in flight(so we'll take what we can get), or
4526 : : // - it's not the final parallel download slot (which we may reserve for first outbound)
4527 : 0 : req.blockhash = pindex->GetBlockHash();
4528 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4529 : 0 : } else {
4530 : : // Give up for this peer and wait for other peer(s)
4531 [ # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4532 : : }
4533 : 0 : } else {
4534 : : // This block is either already in flight from a different
4535 : : // peer, or this peer has too many blocks outstanding to
4536 : : // download from.
4537 : : // Optimistically try to reconstruct anyway since we might be
4538 : : // able to without any round trips.
4539 [ # # ]: 0 : PartiallyDownloadedBlock tempBlock(&m_mempool);
4540 [ # # ]: 0 : ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4541 [ # # ]: 0 : if (status != READ_STATUS_OK) {
4542 : : // TODO: don't ignore failures
4543 : 0 : return;
4544 : : }
4545 : 0 : std::vector<CTransactionRef> dummy;
4546 [ # # ]: 0 : status = tempBlock.FillBlock(*pblock, dummy);
4547 [ # # ]: 0 : if (status == READ_STATUS_OK) {
4548 : 0 : fBlockReconstructed = true;
4549 : 0 : }
4550 [ # # ]: 0 : }
4551 : 0 : } else {
4552 [ # # ]: 0 : if (requested_block_from_this_peer) {
4553 : : // We requested this block, but its far into the future, so our
4554 : : // mempool will probably be useless - request the block normally
4555 [ # # ]: 0 : std::vector<CInv> vInv(1);
4556 [ # # ][ # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4557 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4558 : : return;
4559 : 0 : } else {
4560 : : // If this was an announce-cmpctblock, we want the same treatment as a header message
4561 : 0 : fRevertToHeaderProcessing = true;
4562 : : }
4563 : : }
4564 [ # # ]: 0 : } // cs_main
4565 : :
4566 [ # # ]: 0 : if (fProcessBLOCKTXN) {
4567 [ # # ]: 0 : BlockTransactions txn;
4568 : 0 : txn.blockhash = blockhash;
4569 [ # # ]: 0 : return ProcessCompactBlockTxns(pfrom, *peer, txn);
4570 : 0 : }
4571 : :
4572 [ # # ]: 0 : if (fRevertToHeaderProcessing) {
4573 : : // Headers received from HB compact block peers are permitted to be
4574 : : // relayed before full validation (see BIP 152), so we don't want to disconnect
4575 : : // the peer if the header turns out to be for an invalid block.
4576 : : // Note that if a peer tries to build on an invalid chain, that
4577 : : // will be detected and the peer will be disconnected/discouraged.
4578 [ # # ][ # # ]: 0 : return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4579 : : }
4580 : :
4581 [ # # ]: 0 : if (fBlockReconstructed) {
4582 : : // If we got here, we were able to optimistically reconstruct a
4583 : : // block that is in flight from some other peer.
4584 : : {
4585 [ # # ]: 0 : LOCK(cs_main);
4586 [ # # ][ # # ]: 0 : mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
[ # # ]
4587 : 0 : }
4588 : : // Setting force_processing to true means that we bypass some of
4589 : : // our anti-DoS protections in AcceptBlock, which filters
4590 : : // unrequested blocks that might be trying to waste our resources
4591 : : // (eg disk space). Because we only try to reconstruct blocks when
4592 : : // we're close to caught up (via the CanDirectFetch() requirement
4593 : : // above, combined with the behavior of not requesting blocks until
4594 : : // we have a chain with at least the minimum chain work), and we ignore
4595 : : // compact blocks with less work than our tip, it is safe to treat
4596 : : // reconstructed compact blocks as having been requested.
4597 [ # # ]: 0 : ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4598 [ # # ]: 0 : LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4599 [ # # ][ # # ]: 0 : if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4600 : : // Clear download state for this block, which is in
4601 : : // process from some other peer. We do this after calling
4602 : : // ProcessNewBlock so that a malleated cmpctblock announcement
4603 : : // can't be used to interfere with block relay.
4604 [ # # ][ # # ]: 0 : RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4605 : 0 : }
4606 : 0 : }
4607 : 0 : return;
4608 : 0 : }
4609 : :
4610 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::BLOCKTXN)
4611 : : {
4612 : : // Ignore blocktxn received while importing
4613 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4614 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4615 : 0 : return;
4616 : : }
4617 : :
4618 [ # # ]: 0 : BlockTransactions resp;
4619 [ # # ]: 0 : vRecv >> resp;
4620 : :
4621 [ # # ]: 0 : return ProcessCompactBlockTxns(pfrom, *peer, resp);
4622 : 0 : }
4623 : :
4624 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::HEADERS)
4625 : : {
4626 : : // Ignore headers received while importing
4627 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4628 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4629 : 0 : return;
4630 : : }
4631 : :
4632 : : // Assume that this is in response to any outstanding getheaders
4633 : : // request we may have sent, and clear out the time of our last request
4634 [ # # ]: 0 : peer->m_last_getheaders_timestamp = {};
4635 : :
4636 : 0 : std::vector<CBlockHeader> headers;
4637 : :
4638 : : // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4639 [ # # ]: 0 : unsigned int nCount = ReadCompactSize(vRecv);
4640 [ # # ]: 0 : if (nCount > MAX_HEADERS_RESULTS) {
4641 [ # # ][ # # ]: 0 : Misbehaving(*peer, 20, strprintf("headers message size = %u", nCount));
4642 : 0 : return;
4643 : : }
4644 [ # # ]: 0 : headers.resize(nCount);
4645 [ # # ]: 0 : for (unsigned int n = 0; n < nCount; n++) {
4646 [ # # ]: 0 : vRecv >> headers[n];
4647 [ # # ]: 0 : ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4648 : 0 : }
4649 : :
4650 [ # # ]: 0 : ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4651 : :
4652 : : // Check if the headers presync progress needs to be reported to validation.
4653 : : // This needs to be done without holding the m_headers_presync_mutex lock.
4654 [ # # ]: 0 : if (m_headers_presync_should_signal.exchange(false)) {
4655 [ # # ]: 0 : HeadersPresyncStats stats;
4656 : : {
4657 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
4658 [ # # ]: 0 : auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4659 [ # # ][ # # ]: 0 : if (it != m_headers_presync_stats.end()) stats = it->second;
4660 : 0 : }
4661 [ # # ]: 0 : if (stats.second) {
4662 [ # # ]: 0 : m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4663 : 0 : }
4664 : 0 : }
4665 : :
4666 : 0 : return;
4667 : 0 : }
4668 : :
4669 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::BLOCK)
4670 : : {
4671 : : // Ignore block received while importing
4672 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4673 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4674 : 0 : return;
4675 : : }
4676 : :
4677 [ # # ]: 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4678 [ # # ][ # # ]: 0 : vRecv >> TX_WITH_WITNESS(*pblock);
4679 : :
4680 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
4681 : :
4682 : 0 : bool forceProcessing = false;
4683 [ # # ]: 0 : const uint256 hash(pblock->GetHash());
4684 : 0 : bool min_pow_checked = false;
4685 : : {
4686 [ # # ]: 0 : LOCK(cs_main);
4687 : : // Always process the block if we requested it, since we may
4688 : : // need it even when it's not a candidate for a new best tip.
4689 [ # # ]: 0 : forceProcessing = IsBlockRequested(hash);
4690 [ # # ]: 0 : RemoveBlockRequest(hash, pfrom.GetId());
4691 : : // mapBlockSource is only used for punishing peers and setting
4692 : : // which peers send us compact blocks, so the race between here and
4693 : : // cs_main in ProcessNewBlock is fine.
4694 [ # # ][ # # ]: 0 : mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4695 : :
4696 : : // Check work on this block against our anti-dos thresholds.
4697 [ # # ]: 0 : const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock);
4698 [ # # ][ # # ]: 0 : if (prev_block && prev_block->nChainWork + CalculateHeadersWork({pblock->GetBlockHeader()}) >= GetAntiDoSWorkThreshold()) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
4699 : 0 : min_pow_checked = true;
4700 : 0 : }
4701 : 0 : }
4702 [ # # ]: 0 : ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4703 : : return;
4704 : 0 : }
4705 : :
4706 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETADDR) {
4707 : : // This asymmetric behavior for inbound and outbound connections was introduced
4708 : : // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4709 : : // to users' AddrMan and later request them by sending getaddr messages.
4710 : : // Making nodes which are behind NAT and can only make outgoing connections ignore
4711 : : // the getaddr message mitigates the attack.
4712 [ # # ][ # # ]: 0 : if (!pfrom.IsInboundConn()) {
4713 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
4714 : 0 : return;
4715 : : }
4716 : :
4717 : : // Since this must be an inbound connection, SetupAddressRelay will
4718 : : // never fail.
4719 [ # # ][ # # ]: 0 : Assume(SetupAddressRelay(pfrom, *peer));
4720 : :
4721 : : // Only send one GetAddr response per connection to reduce resource waste
4722 : : // and discourage addr stamping of INV announcements.
4723 [ # # ]: 0 : if (peer->m_getaddr_recvd) {
4724 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4725 : 0 : return;
4726 : : }
4727 : 0 : peer->m_getaddr_recvd = true;
4728 : :
4729 : 0 : peer->m_addrs_to_send.clear();
4730 : 0 : std::vector<CAddress> vAddr;
4731 [ # # ][ # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::Addr)) {
4732 [ # # ]: 0 : vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4733 : 0 : } else {
4734 [ # # ]: 0 : vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4735 : : }
4736 [ # # ]: 0 : for (const CAddress &addr : vAddr) {
4737 [ # # ]: 0 : PushAddress(*peer, addr);
4738 : : }
4739 : : return;
4740 : 0 : }
4741 : :
4742 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::MEMPOOL) {
4743 : : // Only process received mempool messages if we advertise NODE_BLOOM
4744 : : // or if the peer has mempool permissions.
4745 [ # # ][ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
[ # # ]
4746 : : {
4747 [ # # ][ # # ]: 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4748 : : {
4749 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4750 : 0 : pfrom.fDisconnect = true;
4751 : 0 : }
4752 : 0 : return;
4753 : : }
4754 : :
4755 [ # # ][ # # ]: 0 : if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
[ # # ][ # # ]
4756 : : {
4757 [ # # ][ # # ]: 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4758 : : {
4759 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4760 : 0 : pfrom.fDisconnect = true;
4761 : 0 : }
4762 : 0 : return;
4763 : : }
4764 : :
4765 [ # # ][ # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4766 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
4767 : 0 : tx_relay->m_send_mempool = true;
4768 : 0 : }
4769 : 0 : return;
4770 : : }
4771 : :
4772 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::PING) {
4773 [ # # ]: 0 : if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4774 : 0 : uint64_t nonce = 0;
4775 [ # # ]: 0 : vRecv >> nonce;
4776 : : // Echo the message back with the nonce. This allows for two useful features:
4777 : : //
4778 : : // 1) A remote node can quickly check if the connection is operational
4779 : : // 2) Remote nodes can measure the latency of the network thread. If this node
4780 : : // is overloaded it won't respond to pings quickly and the remote node can
4781 : : // avoid sending us more work, like chain download requests.
4782 : : //
4783 : : // The nonce stops the remote getting confused between different pings: without
4784 : : // it, if the remote node sends a ping once per second and this node takes 5
4785 : : // seconds to respond to each, the 5th ping the remote sends would appear to
4786 : : // return very quickly.
4787 [ # # ][ # # ]: 0 : MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4788 : 0 : }
4789 : 0 : return;
4790 : : }
4791 : :
4792 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::PONG) {
4793 : 0 : const auto ping_end = time_received;
4794 : 0 : uint64_t nonce = 0;
4795 [ # # ]: 0 : size_t nAvail = vRecv.in_avail();
4796 : 0 : bool bPingFinished = false;
4797 : 0 : std::string sProblem;
4798 : :
4799 [ # # ]: 0 : if (nAvail >= sizeof(nonce)) {
4800 [ # # ]: 0 : vRecv >> nonce;
4801 : :
4802 : : // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4803 [ # # ]: 0 : if (peer->m_ping_nonce_sent != 0) {
4804 [ # # ]: 0 : if (nonce == peer->m_ping_nonce_sent) {
4805 : : // Matching pong received, this ping is no longer outstanding
4806 : 0 : bPingFinished = true;
4807 [ # # ]: 0 : const auto ping_time = ping_end - peer->m_ping_start.load();
4808 [ # # ]: 0 : if (ping_time.count() >= 0) {
4809 : : // Let connman know about this successful ping-pong
4810 [ # # ]: 0 : pfrom.PongReceived(ping_time);
4811 : 0 : } else {
4812 : : // This should never happen
4813 [ # # ]: 0 : sProblem = "Timing mishap";
4814 : : }
4815 : 0 : } else {
4816 : : // Nonce mismatches are normal when pings are overlapping
4817 [ # # ]: 0 : sProblem = "Nonce mismatch";
4818 [ # # ]: 0 : if (nonce == 0) {
4819 : : // This is most likely a bug in another implementation somewhere; cancel this ping
4820 : 0 : bPingFinished = true;
4821 [ # # ]: 0 : sProblem = "Nonce zero";
4822 : 0 : }
4823 : : }
4824 : 0 : } else {
4825 [ # # ]: 0 : sProblem = "Unsolicited pong without ping";
4826 : : }
4827 : 0 : } else {
4828 : : // This is most likely a bug in another implementation somewhere; cancel this ping
4829 : 0 : bPingFinished = true;
4830 [ # # ]: 0 : sProblem = "Short payload";
4831 : : }
4832 : :
4833 [ # # ]: 0 : if (!(sProblem.empty())) {
4834 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
[ # # ][ # # ]
[ # # ]
4835 : : pfrom.GetId(),
4836 : : sProblem,
4837 : : peer->m_ping_nonce_sent,
4838 : : nonce,
4839 : : nAvail);
4840 : 0 : }
4841 [ # # ]: 0 : if (bPingFinished) {
4842 : 0 : peer->m_ping_nonce_sent = 0;
4843 : 0 : }
4844 : : return;
4845 : 0 : }
4846 : :
4847 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::FILTERLOAD) {
4848 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4849 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4850 : 0 : pfrom.fDisconnect = true;
4851 : 0 : return;
4852 : : }
4853 [ # # ]: 0 : CBloomFilter filter;
4854 [ # # ]: 0 : vRecv >> filter;
4855 : :
4856 [ # # ][ # # ]: 0 : if (!filter.IsWithinSizeConstraints())
4857 : : {
4858 : : // There is no excuse for sending a too-large filter
4859 [ # # ][ # # ]: 0 : Misbehaving(*peer, 100, "too-large bloom filter");
4860 [ # # ][ # # ]: 0 : } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4861 : : {
4862 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4863 [ # # ][ # # ]: 0 : tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4864 : 0 : tx_relay->m_relay_txs = true;
4865 : 0 : }
4866 : 0 : pfrom.m_bloom_filter_loaded = true;
4867 : 0 : pfrom.m_relays_txs = true;
4868 : 0 : }
4869 : : return;
4870 : 0 : }
4871 : :
4872 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::FILTERADD) {
4873 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4874 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4875 : 0 : pfrom.fDisconnect = true;
4876 : 0 : return;
4877 : : }
4878 : 0 : std::vector<unsigned char> vData;
4879 [ # # ]: 0 : vRecv >> vData;
4880 : :
4881 : : // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
4882 : : // and thus, the maximum size any matched object can have) in a filteradd message
4883 : 0 : bool bad = false;
4884 [ # # ]: 0 : if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4885 : 0 : bad = true;
4886 [ # # ][ # # ]: 0 : } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4887 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4888 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
4889 [ # # ][ # # ]: 0 : tx_relay->m_bloom_filter->insert(vData);
4890 : 0 : } else {
4891 : 0 : bad = true;
4892 : : }
4893 : 0 : }
4894 [ # # ]: 0 : if (bad) {
4895 [ # # ][ # # ]: 0 : Misbehaving(*peer, 100, "bad filteradd message");
4896 : 0 : }
4897 : : return;
4898 : 0 : }
4899 : :
4900 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::FILTERCLEAR) {
4901 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4902 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
[ # # ][ # # ]
[ # # ]
4903 : 0 : pfrom.fDisconnect = true;
4904 : 0 : return;
4905 : : }
4906 [ # # ]: 0 : auto tx_relay = peer->GetTxRelay();
4907 [ # # ]: 0 : if (!tx_relay) return;
4908 : :
4909 : : {
4910 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4911 : 0 : tx_relay->m_bloom_filter = nullptr;
4912 : 0 : tx_relay->m_relay_txs = true;
4913 : 0 : }
4914 : 0 : pfrom.m_bloom_filter_loaded = false;
4915 : 0 : pfrom.m_relays_txs = true;
4916 : 0 : return;
4917 : : }
4918 : :
4919 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::FEEFILTER) {
4920 : 0 : CAmount newFeeFilter = 0;
4921 [ # # ]: 0 : vRecv >> newFeeFilter;
4922 [ # # ][ # # ]: 0 : if (MoneyRange(newFeeFilter)) {
4923 [ # # ][ # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4924 : 0 : tx_relay->m_fee_filter_received = newFeeFilter;
4925 : 0 : }
4926 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
4927 : 0 : }
4928 : 0 : return;
4929 : : }
4930 : :
4931 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETCFILTERS) {
4932 [ # # ]: 0 : ProcessGetCFilters(pfrom, *peer, vRecv);
4933 : 0 : return;
4934 : : }
4935 : :
4936 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETCFHEADERS) {
4937 [ # # ]: 0 : ProcessGetCFHeaders(pfrom, *peer, vRecv);
4938 : 0 : return;
4939 : : }
4940 : :
4941 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::GETCFCHECKPT) {
4942 [ # # ]: 0 : ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4943 : 0 : return;
4944 : : }
4945 : :
4946 [ # # ][ # # ]: 0 : if (msg_type == NetMsgType::NOTFOUND) {
4947 : 0 : std::vector<CInv> vInv;
4948 [ # # ]: 0 : vRecv >> vInv;
4949 [ # # ]: 0 : if (vInv.size() <= MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
4950 [ # # ]: 0 : LOCK(::cs_main);
4951 [ # # ]: 0 : for (CInv &inv : vInv) {
4952 [ # # ][ # # ]: 0 : if (inv.IsGenTxMsg()) {
4953 : : // If we receive a NOTFOUND message for a tx we requested, mark the announcement for it as
4954 : : // completed in TxRequestTracker.
4955 [ # # ]: 0 : m_txrequest.ReceivedResponse(pfrom.GetId(), inv.hash);
4956 : 0 : }
4957 : : }
4958 : 0 : }
4959 : : return;
4960 : 0 : }
4961 : :
4962 : : // Ignore unknown commands for extensibility
4963 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
4964 : 0 : return;
4965 : 0 : }
4966 : :
4967 : 0 : bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4968 : : {
4969 : : {
4970 : 0 : LOCK(peer.m_misbehavior_mutex);
4971 : :
4972 : : // There's nothing to do if the m_should_discourage flag isn't set
4973 [ # # ]: 0 : if (!peer.m_should_discourage) return false;
4974 : :
4975 : 0 : peer.m_should_discourage = false;
4976 [ # # # ]: 0 : } // peer.m_misbehavior_mutex
4977 : :
4978 [ # # ]: 0 : if (pnode.HasPermission(NetPermissionFlags::NoBan)) {
4979 : : // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4980 [ # # ][ # # ]: 0 : LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
[ # # ]
4981 : 0 : return false;
4982 : : }
4983 : :
4984 [ # # ]: 0 : if (pnode.IsManualConn()) {
4985 : : // We never disconnect or discourage manual peers for bad behavior
4986 [ # # ][ # # ]: 0 : LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
[ # # ]
4987 : 0 : return false;
4988 : : }
4989 : :
4990 [ # # ]: 0 : if (pnode.addr.IsLocal()) {
4991 : : // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4992 : : // all peers on the same local address)
4993 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
[ # # ][ # # ]
4994 : : pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4995 : 0 : pnode.fDisconnect = true;
4996 : 0 : return true;
4997 : : }
4998 : :
4999 : : // Normal case: Disconnect the peer and discourage all nodes sharing the address
5000 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
[ # # ][ # # ]
5001 [ # # ]: 0 : if (m_banman) m_banman->Discourage(pnode.addr);
5002 : 0 : m_connman.DisconnectNode(pnode.addr);
5003 : 0 : return true;
5004 : 0 : }
5005 : :
5006 : 0 : bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
5007 : : {
5008 : 0 : AssertLockHeld(g_msgproc_mutex);
5009 : :
5010 : 0 : PeerRef peer = GetPeerRef(pfrom->GetId());
5011 [ # # ]: 0 : if (peer == nullptr) return false;
5012 : :
5013 : : {
5014 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5015 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) {
5016 [ # # ]: 0 : ProcessGetData(*pfrom, *peer, interruptMsgProc);
5017 : 0 : }
5018 : 0 : }
5019 : :
5020 [ # # ]: 0 : const bool processed_orphan = ProcessOrphanTx(*peer);
5021 : :
5022 [ # # ]: 0 : if (pfrom->fDisconnect)
5023 : 0 : return false;
5024 : :
5025 [ # # ]: 0 : if (processed_orphan) return true;
5026 : :
5027 : : // this maintains the order of responses
5028 : : // and prevents m_getdata_requests to grow unbounded
5029 : : {
5030 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5031 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) return true;
5032 [ # # ]: 0 : }
5033 : :
5034 : : // Don't bother if send buffer is too full to respond anyway
5035 [ # # ]: 0 : if (pfrom->fPauseSend) return false;
5036 : :
5037 [ # # ]: 0 : auto poll_result{pfrom->PollMessage()};
5038 [ # # ]: 0 : if (!poll_result) {
5039 : : // No message to process
5040 : 0 : return false;
5041 : : }
5042 : :
5043 : 0 : CNetMessage& msg{poll_result->first};
5044 : 0 : bool fMoreWork = poll_result->second;
5045 : :
5046 : : TRACE6(net, inbound_message,
5047 : : pfrom->GetId(),
5048 : : pfrom->m_addr_name.c_str(),
5049 : : pfrom->ConnectionTypeAsString().c_str(),
5050 : : msg.m_type.c_str(),
5051 : : msg.m_recv.size(),
5052 : : msg.m_recv.data()
5053 : : );
5054 : :
5055 [ # # ]: 0 : if (m_opts.capture_messages) {
5056 [ # # ][ # # ]: 0 : CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5057 : 0 : }
5058 : :
5059 : : try {
5060 [ # # ]: 0 : ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5061 [ # # ]: 0 : if (interruptMsgProc) return false;
5062 : : {
5063 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5064 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5065 : 0 : }
5066 : : // Does this peer has an orphan ready to reconsider?
5067 : : // (Note: we may have provided a parent for an orphan provided
5068 : : // by another peer that was already processed; in that case,
5069 : : // the extra work may not be noticed, possibly resulting in an
5070 : : // unnecessary 100ms delay)
5071 [ # # ][ # # ]: 0 : if (m_orphanage.HaveTxToReconsider(peer->m_id)) fMoreWork = true;
5072 [ # # ]: 0 : } catch (const std::exception& e) {
5073 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
[ # # ][ # # ]
[ # # ][ # # ]
5074 [ # # ][ # # ]: 0 : } catch (...) {
5075 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
[ # # ][ # # ]
[ # # ][ # # ]
5076 [ # # ][ # # ]: 0 : }
5077 : :
5078 : 0 : return fMoreWork;
5079 : 0 : }
5080 : :
5081 : 0 : void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5082 : : {
5083 : 0 : AssertLockHeld(cs_main);
5084 : :
5085 : 0 : CNodeState &state = *State(pto.GetId());
5086 : :
5087 [ # # ][ # # ]: 0 : if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
[ # # ]
5088 : : // This is an outbound peer subject to disconnection if they don't
5089 : : // announce a block with as much work as the current tip within
5090 : : // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5091 : : // their chain has more work than ours, we should sync to it,
5092 : : // unless it's invalid, in which case we should find that out and
5093 : : // disconnect from them elsewhere).
5094 [ # # ][ # # ]: 0 : if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5095 [ # # ]: 0 : if (state.m_chain_sync.m_timeout != 0s) {
5096 : 0 : state.m_chain_sync.m_timeout = 0s;
5097 : 0 : state.m_chain_sync.m_work_header = nullptr;
5098 : 0 : state.m_chain_sync.m_sent_getheaders = false;
5099 : 0 : }
5100 [ # # ][ # # ]: 0 : } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
[ # # ][ # # ]
5101 : : // Our best block known by this peer is behind our tip, and we're either noticing
5102 : : // that for the first time, OR this peer was able to catch up to some earlier point
5103 : : // where we checked against our tip.
5104 : : // Either way, set a new timeout based on current tip.
5105 : 0 : state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5106 : 0 : state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5107 : 0 : state.m_chain_sync.m_sent_getheaders = false;
5108 [ # # ][ # # ]: 0 : } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5109 : : // No evidence yet that our peer has synced to a chain with work equal to that
5110 : : // of our tip, when we first detected it was behind. Send a single getheaders
5111 : : // message to give the peer a chance to update us.
5112 [ # # ]: 0 : if (state.m_chain_sync.m_sent_getheaders) {
5113 : : // They've run out of time to catch up!
5114 [ # # ][ # # ]: 0 : LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
5115 : 0 : pto.fDisconnect = true;
5116 : 0 : } else {
5117 [ # # ]: 0 : assert(state.m_chain_sync.m_work_header);
5118 : : // Here, we assume that the getheaders message goes out,
5119 : : // because it'll either go out or be skipped because of a
5120 : : // getheaders in-flight already, in which case the peer should
5121 : : // still respond to us with a sufficiently high work chain tip.
5122 [ # # ][ # # ]: 0 : MaybeSendGetHeaders(pto,
5123 : 0 : GetLocator(state.m_chain_sync.m_work_header->pprev),
5124 : 0 : peer);
5125 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
5126 : 0 : state.m_chain_sync.m_sent_getheaders = true;
5127 : : // Bump the timeout to allow a response, which could clear the timeout
5128 : : // (if the response shows the peer has synced), reset the timeout (if
5129 : : // the peer syncs to the required work but not to our tip), or result
5130 : : // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5131 : : // has not sufficiently progressed)
5132 : 0 : state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5133 : : }
5134 : 0 : }
5135 : 0 : }
5136 : 0 : }
5137 : :
5138 : 0 : void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5139 : : {
5140 : : // If we have any extra block-relay-only peers, disconnect the youngest unless
5141 : : // it's given us a block -- in which case, compare with the second-youngest, and
5142 : : // out of those two, disconnect the peer who least recently gave us a block.
5143 : : // The youngest block-relay-only peer would be the extra peer we connected
5144 : : // to temporarily in order to sync our tip; see net.cpp.
5145 : : // Note that we use higher nodeid as a measure for most recent connection.
5146 [ # # ]: 0 : if (m_connman.GetExtraBlockRelayCount() > 0) {
5147 : 0 : std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5148 : :
5149 [ # # ]: 0 : m_connman.ForEachNode([&](CNode* pnode) {
5150 [ # # ][ # # ]: 0 : if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5151 [ # # ]: 0 : if (pnode->GetId() > youngest_peer.first) {
5152 : 0 : next_youngest_peer = youngest_peer;
5153 : 0 : youngest_peer.first = pnode->GetId();
5154 : 0 : youngest_peer.second = pnode->m_last_block_time;
5155 : 0 : }
5156 : 0 : });
5157 : 0 : NodeId to_disconnect = youngest_peer.first;
5158 [ # # ]: 0 : if (youngest_peer.second > next_youngest_peer.second) {
5159 : : // Our newest block-relay-only peer gave us a block more recently;
5160 : : // disconnect our second youngest.
5161 : 0 : to_disconnect = next_youngest_peer.first;
5162 : 0 : }
5163 [ # # ]: 0 : m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5164 : 0 : AssertLockHeld(::cs_main);
5165 : : // Make sure we're not getting a block right now, and that
5166 : : // we've been connected long enough for this eviction to happen
5167 : : // at all.
5168 : : // Note that we only request blocks from a peer if we learn of a
5169 : : // valid headers chain with at least as much work as our tip.
5170 : 0 : CNodeState *node_state = State(pnode->GetId());
5171 [ # # ][ # # ]: 0 : if (node_state == nullptr ||
5172 [ # # ]: 0 : (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5173 : 0 : pnode->fDisconnect = true;
5174 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
[ # # ][ # # ]
5175 : : pnode->GetId(), count_seconds(pnode->m_last_block_time));
5176 : 0 : return true;
5177 : : } else {
5178 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
[ # # ][ # # ]
5179 : : pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5180 : : }
5181 : 0 : return false;
5182 : 0 : });
5183 : 0 : }
5184 : :
5185 : : // Check whether we have too many outbound-full-relay peers
5186 [ # # ]: 0 : if (m_connman.GetExtraFullOutboundCount() > 0) {
5187 : : // If we have more outbound-full-relay peers than we target, disconnect one.
5188 : : // Pick the outbound-full-relay peer that least recently announced
5189 : : // us a new block, with ties broken by choosing the more recent
5190 : : // connection (higher node id)
5191 : : // Protect peers from eviction if we don't have another connection
5192 : : // to their network, counting both outbound-full-relay and manual peers.
5193 : 0 : NodeId worst_peer = -1;
5194 : 0 : int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5195 : :
5196 [ # # ]: 0 : m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5197 : 0 : AssertLockHeld(::cs_main);
5198 : :
5199 : : // Only consider outbound-full-relay peers that are not already
5200 : : // marked for disconnection
5201 [ # # ][ # # ]: 0 : if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5202 : 0 : CNodeState *state = State(pnode->GetId());
5203 [ # # ]: 0 : if (state == nullptr) return; // shouldn't be possible, but just in case
5204 : : // Don't evict our protected peers
5205 [ # # ]: 0 : if (state->m_chain_sync.m_protect) return;
5206 : : // If this is the only connection on a particular network that is
5207 : : // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5208 [ # # ]: 0 : if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5209 [ # # ][ # # ]: 0 : if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
[ # # ]
5210 : 0 : worst_peer = pnode->GetId();
5211 : 0 : oldest_block_announcement = state->m_last_block_announcement;
5212 : 0 : }
5213 : 0 : });
5214 [ # # ]: 0 : if (worst_peer != -1) {
5215 [ # # ]: 0 : bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5216 : 0 : AssertLockHeld(::cs_main);
5217 : :
5218 : : // Only disconnect a peer that has been connected to us for
5219 : : // some reasonable fraction of our check-frequency, to give
5220 : : // it time for new information to have arrived.
5221 : : // Also don't disconnect any peer we're trying to download a
5222 : : // block from.
5223 : 0 : CNodeState &state = *State(pnode->GetId());
5224 [ # # ][ # # ]: 0 : if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5225 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
[ # # ][ # # ]
5226 : 0 : pnode->fDisconnect = true;
5227 : 0 : return true;
5228 : : } else {
5229 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
[ # # ][ # # ]
5230 : : pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5231 : 0 : return false;
5232 : : }
5233 : 0 : });
5234 [ # # ]: 0 : if (disconnected) {
5235 : : // If we disconnected an extra peer, that means we successfully
5236 : : // connected to at least one peer after the last time we
5237 : : // detected a stale tip. Don't try any more extra peers until
5238 : : // we next detect a stale tip, to limit the load we put on the
5239 : : // network from these extra connections.
5240 : 0 : m_connman.SetTryNewOutboundPeer(false);
5241 : 0 : }
5242 : 0 : }
5243 : 0 : }
5244 : 0 : }
5245 : :
5246 : 0 : void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5247 : : {
5248 : 0 : LOCK(cs_main);
5249 : :
5250 [ # # ]: 0 : auto now{GetTime<std::chrono::seconds>()};
5251 : :
5252 [ # # ]: 0 : EvictExtraOutboundPeers(now);
5253 : :
5254 [ # # ][ # # ]: 0 : if (now > m_stale_tip_check_time) {
5255 : : // Check whether our tip is stale, and if so, allow using an extra
5256 : : // outbound peer
5257 [ # # ][ # # ]: 0 : if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5258 [ # # ][ # # ]: 0 : LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
[ # # ][ # # ]
5259 : : count_seconds(now - m_last_tip_update.load()));
5260 [ # # ]: 0 : m_connman.SetTryNewOutboundPeer(true);
5261 [ # # ][ # # ]: 0 : } else if (m_connman.GetTryNewOutboundPeer()) {
5262 [ # # ]: 0 : m_connman.SetTryNewOutboundPeer(false);
5263 : 0 : }
5264 [ # # ]: 0 : m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5265 : 0 : }
5266 : :
5267 [ # # ][ # # ]: 0 : if (!m_initial_sync_finished && CanDirectFetch()) {
[ # # ]
5268 [ # # ]: 0 : m_connman.StartExtraBlockRelayPeers();
5269 : 0 : m_initial_sync_finished = true;
5270 : 0 : }
5271 : 0 : }
5272 : :
5273 : 0 : void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5274 : : {
5275 [ # # ][ # # ]: 0 : if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5276 [ # # ]: 0 : peer.m_ping_nonce_sent &&
5277 : 0 : now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5278 : : {
5279 : : // The ping timeout is using mocktime. To disable the check during
5280 : : // testing, increase -peertimeout.
5281 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
[ # # ][ # # ]
[ # # ][ # # ]
5282 : 0 : node_to.fDisconnect = true;
5283 : 0 : return;
5284 : : }
5285 : :
5286 : 0 : bool pingSend = false;
5287 : :
5288 [ # # ]: 0 : if (peer.m_ping_queued) {
5289 : : // RPC ping request by user
5290 : 0 : pingSend = true;
5291 : 0 : }
5292 : :
5293 [ # # ][ # # ]: 0 : if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5294 : : // Ping automatically sent as a latency probe & keepalive.
5295 : 0 : pingSend = true;
5296 : 0 : }
5297 : :
5298 [ # # ]: 0 : if (pingSend) {
5299 : : uint64_t nonce;
5300 : 0 : do {
5301 : 0 : nonce = GetRand<uint64_t>();
5302 [ # # ]: 0 : } while (nonce == 0);
5303 : 0 : peer.m_ping_queued = false;
5304 : 0 : peer.m_ping_start = now;
5305 [ # # ]: 0 : if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5306 : 0 : peer.m_ping_nonce_sent = nonce;
5307 [ # # ][ # # ]: 0 : MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5308 : 0 : } else {
5309 : : // Peer is too old to support ping command with nonce, pong will never arrive.
5310 : 0 : peer.m_ping_nonce_sent = 0;
5311 [ # # ][ # # ]: 0 : MakeAndPushMessage(node_to, NetMsgType::PING);
5312 : : }
5313 : 0 : }
5314 : 0 : }
5315 : :
5316 : 0 : void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5317 : : {
5318 : : // Nothing to do for non-address-relay peers
5319 [ # # ]: 0 : if (!peer.m_addr_relay_enabled) return;
5320 : :
5321 : 0 : LOCK(peer.m_addr_send_times_mutex);
5322 : : // Periodically advertise our local address to the peer.
5323 [ # # ][ # # ]: 0 : if (fListen && !m_chainman.IsInitialBlockDownload() &&
[ # # ][ # # ]
5324 [ # # ]: 0 : peer.m_next_local_addr_send < current_time) {
5325 : : // If we've sent before, clear the bloom filter for the peer, so that our
5326 : : // self-announcement will actually go out.
5327 : : // This might be unnecessary if the bloom filter has already rolled
5328 : : // over since our last self-announcement, but there is only a small
5329 : : // bandwidth cost that we can incur by doing this (which happens
5330 : : // once a day on average).
5331 [ # # ][ # # ]: 0 : if (peer.m_next_local_addr_send != 0us) {
[ # # ]
5332 [ # # ]: 0 : peer.m_addr_known->reset();
5333 : 0 : }
5334 [ # # ][ # # ]: 0 : if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5335 [ # # ][ # # ]: 0 : CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
[ # # ]
5336 [ # # ]: 0 : PushAddress(peer, local_addr);
5337 : 0 : }
5338 [ # # ][ # # ]: 0 : peer.m_next_local_addr_send = GetExponentialRand(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5339 : 0 : }
5340 : :
5341 : : // We sent an `addr` message to this peer recently. Nothing more to do.
5342 [ # # ][ # # ]: 0 : if (current_time <= peer.m_next_addr_send) return;
5343 : :
5344 [ # # ]: 0 : peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
5345 : :
5346 [ # # ][ # # ]: 0 : if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5347 : : // Should be impossible since we always check size before adding to
5348 : : // m_addrs_to_send. Recover by trimming the vector.
5349 [ # # ]: 0 : peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5350 : 0 : }
5351 : :
5352 : : // Remove addr records that the peer already knows about, and add new
5353 : : // addrs to the m_addr_known filter on the same pass.
5354 : 0 : auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5355 [ # # ][ # # ]: 0 : bool ret = peer.m_addr_known->contains(addr.GetKey());
5356 [ # # ][ # # ]: 0 : if (!ret) peer.m_addr_known->insert(addr.GetKey());
[ # # ]
5357 : 0 : return ret;
5358 : 0 : };
5359 [ # # ][ # # ]: 0 : peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
[ # # ]
5360 : 0 : peer.m_addrs_to_send.end());
5361 : :
5362 : : // No addr messages to send
5363 [ # # ]: 0 : if (peer.m_addrs_to_send.empty()) return;
5364 : :
5365 [ # # ]: 0 : if (peer.m_wants_addrv2) {
5366 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
[ # # ]
5367 : 0 : } else {
5368 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
[ # # ]
5369 : : }
5370 : 0 : peer.m_addrs_to_send.clear();
5371 : :
5372 : : // we only send the big addr message once
5373 [ # # ]: 0 : if (peer.m_addrs_to_send.capacity() > 40) {
5374 [ # # ]: 0 : peer.m_addrs_to_send.shrink_to_fit();
5375 : 0 : }
5376 [ # # ]: 0 : }
5377 : :
5378 : 0 : void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5379 : : {
5380 : : // Delay sending SENDHEADERS (BIP 130) until we're done with an
5381 : : // initial-headers-sync with this peer. Receiving headers announcements for
5382 : : // new blocks while trying to sync their headers chain is problematic,
5383 : : // because of the state tracking done.
5384 [ # # ][ # # ]: 0 : if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5385 : 0 : LOCK(cs_main);
5386 [ # # ]: 0 : CNodeState &state = *State(node.GetId());
5387 [ # # ][ # # ]: 0 : if (state.pindexBestKnownBlock != nullptr &&
5388 [ # # ][ # # ]: 0 : state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5389 : : // Tell our peer we prefer to receive headers rather than inv's
5390 : : // We send this to non-NODE NETWORK peers as well, because even
5391 : : // non-NODE NETWORK peers can announce blocks (such as pruning
5392 : : // nodes)
5393 [ # # ][ # # ]: 0 : MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5394 : 0 : peer.m_sent_sendheaders = true;
5395 : 0 : }
5396 : 0 : }
5397 : 0 : }
5398 : :
5399 : 0 : void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5400 : : {
5401 [ # # ]: 0 : if (m_opts.ignore_incoming_txs) return;
5402 [ # # ]: 0 : if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5403 : : // peers with the forcerelay permission should not filter txs to us
5404 [ # # ]: 0 : if (pto.HasPermission(NetPermissionFlags::ForceRelay)) return;
5405 : : // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5406 : : // transactions to us, regardless of feefilter state.
5407 [ # # ]: 0 : if (pto.IsBlockOnlyConn()) return;
5408 : :
5409 : 0 : CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5410 : :
5411 [ # # ]: 0 : if (m_chainman.IsInitialBlockDownload()) {
5412 : : // Received tx-inv messages are discarded when the active
5413 : : // chainstate is in IBD, so tell the peer to not send them.
5414 : 0 : currentFilter = MAX_MONEY;
5415 : 0 : } else {
5416 [ # # ][ # # ]: 0 : static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
[ # # ]
5417 [ # # ]: 0 : if (peer.m_fee_filter_sent == MAX_FILTER) {
5418 : : // Send the current filter if we sent MAX_FILTER previously
5419 : : // and made it out of IBD.
5420 : 0 : peer.m_next_send_feefilter = 0us;
5421 : 0 : }
5422 : : }
5423 [ # # ]: 0 : if (current_time > peer.m_next_send_feefilter) {
5424 : 0 : CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5425 : : // We always have a fee filter of at least the min relay fee
5426 : 0 : filterToSend = std::max(filterToSend, m_mempool.m_min_relay_feerate.GetFeePerK());
5427 [ # # ]: 0 : if (filterToSend != peer.m_fee_filter_sent) {
5428 [ # # ][ # # ]: 0 : MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5429 : 0 : peer.m_fee_filter_sent = filterToSend;
5430 : 0 : }
5431 : 0 : peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL);
5432 : 0 : }
5433 : : // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5434 : : // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5435 [ # # ][ # # ]: 0 : else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5436 [ # # ]: 0 : (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5437 : 0 : peer.m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5438 : 0 : }
5439 : 0 : }
5440 : :
5441 : : namespace {
5442 : : class CompareInvMempoolOrder
5443 : : {
5444 : : CTxMemPool* mp;
5445 : : bool m_wtxid_relay;
5446 : : public:
5447 : 0 : explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5448 : : {
5449 : 0 : mp = _mempool;
5450 : 0 : m_wtxid_relay = use_wtxid;
5451 : 0 : }
5452 : :
5453 : 0 : bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5454 : : {
5455 : : /* As std::make_heap produces a max-heap, we want the entries with the
5456 : : * fewest ancestors/highest fee to sort later. */
5457 : 0 : return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5458 : : }
5459 : : };
5460 : : } // namespace
5461 : :
5462 : 0 : bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5463 : : {
5464 : : // block-relay-only peers may never send txs to us
5465 [ # # ]: 0 : if (peer.IsBlockOnlyConn()) return true;
5466 [ # # ]: 0 : if (peer.IsFeelerConn()) return true;
5467 : : // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5468 [ # # ][ # # ]: 0 : if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5469 : 0 : return false;
5470 : 0 : }
5471 : :
5472 : 0 : bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5473 : : {
5474 : : // We don't participate in addr relay with outbound block-relay-only
5475 : : // connections to prevent providing adversaries with the additional
5476 : : // information of addr traffic to infer the link.
5477 [ # # ]: 0 : if (node.IsBlockOnlyConn()) return false;
5478 : :
5479 [ # # ]: 0 : if (!peer.m_addr_relay_enabled.exchange(true)) {
5480 : : // During version message processing (non-block-relay-only outbound peers)
5481 : : // or on first addr-related message we have received (inbound peers), initialize
5482 : : // m_addr_known.
5483 : 0 : peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5484 : 0 : }
5485 : :
5486 : 0 : return true;
5487 : 0 : }
5488 : :
5489 : 0 : bool PeerManagerImpl::SendMessages(CNode* pto)
5490 : : {
5491 : 0 : AssertLockHeld(g_msgproc_mutex);
5492 : :
5493 : 0 : PeerRef peer = GetPeerRef(pto->GetId());
5494 [ # # ]: 0 : if (!peer) return false;
5495 : 0 : const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5496 : :
5497 : : // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5498 : : // disconnect misbehaving peers even before the version handshake is complete.
5499 [ # # ][ # # ]: 0 : if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5500 : :
5501 : : // Don't send anything until the version handshake is complete
5502 [ # # ][ # # ]: 0 : if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5503 : 0 : return true;
5504 : :
5505 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
5506 : :
5507 [ # # ][ # # ]: 0 : if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
[ # # ][ # # ]
[ # # ]
5508 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
[ # # ][ # # ]
[ # # ]
5509 : 0 : pto->fDisconnect = true;
5510 : 0 : return true;
5511 : : }
5512 : :
5513 [ # # ]: 0 : MaybeSendPing(*pto, *peer, current_time);
5514 : :
5515 : : // MaybeSendPing may have marked peer for disconnection
5516 [ # # ]: 0 : if (pto->fDisconnect) return true;
5517 : :
5518 [ # # ]: 0 : MaybeSendAddr(*pto, *peer, current_time);
5519 : :
5520 [ # # ]: 0 : MaybeSendSendHeaders(*pto, *peer);
5521 : :
5522 : : {
5523 [ # # ]: 0 : LOCK(cs_main);
5524 : :
5525 [ # # ]: 0 : CNodeState &state = *State(pto->GetId());
5526 : :
5527 : : // Start block sync
5528 [ # # ]: 0 : if (m_chainman.m_best_header == nullptr) {
5529 [ # # ]: 0 : m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5530 : 0 : }
5531 : :
5532 : : // Determine whether we might try initial headers sync or parallel
5533 : : // block download from this peer -- this mostly affects behavior while
5534 : : // in IBD (once out of IBD, we sync from all peers).
5535 : 0 : bool sync_blocks_and_headers_from_peer = false;
5536 [ # # ]: 0 : if (state.fPreferredDownload) {
5537 : 0 : sync_blocks_and_headers_from_peer = true;
5538 [ # # ][ # # ]: 0 : } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5539 : : // Typically this is an inbound peer. If we don't have any outbound
5540 : : // peers, or if we aren't downloading any blocks from such peers,
5541 : : // then allow block downloads from this peer, too.
5542 : : // We prefer downloading blocks from outbound peers to avoid
5543 : : // putting undue load on (say) some home user who is just making
5544 : : // outbound connections to the network, but if our only source of
5545 : : // the latest blocks is from an inbound peer, we have to be sure to
5546 : : // eventually download it (and not just wait indefinitely for an
5547 : : // outbound peer to have it).
5548 [ # # ][ # # ]: 0 : if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5549 : 0 : sync_blocks_and_headers_from_peer = true;
5550 : 0 : }
5551 : 0 : }
5552 : :
5553 [ # # ][ # # ]: 0 : if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
[ # # ]
5554 : : // Only actively request headers from a single peer, unless we're close to today.
5555 [ # # ][ # # ]: 0 : if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > GetAdjustedTime() - 24h) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5556 : 0 : const CBlockIndex* pindexStart = m_chainman.m_best_header;
5557 : : /* If possible, start at the block preceding the currently
5558 : : best known header. This ensures that we always get a
5559 : : non-empty list of headers back as long as the peer
5560 : : is up-to-date. With a non-empty response, we can initialise
5561 : : the peer's known best block. This wouldn't be possible
5562 : : if we requested starting at m_chainman.m_best_header and
5563 : : got back an empty response. */
5564 [ # # ]: 0 : if (pindexStart->pprev)
5565 : 0 : pindexStart = pindexStart->pprev;
5566 [ # # ][ # # ]: 0 : if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
[ # # ]
5567 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
[ # # ][ # # ]
[ # # ]
5568 : :
5569 : 0 : state.fSyncStarted = true;
5570 [ # # ][ # # ]: 0 : peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5571 : : (
5572 : : // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5573 : : // to maintain precision
5574 [ # # ][ # # ]: 0 : std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5575 [ # # ][ # # ]: 0 : Ticks<std::chrono::seconds>(GetAdjustedTime() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
[ # # ][ # # ]
[ # # ]
5576 : : );
5577 : 0 : nSyncStarted++;
5578 : 0 : }
5579 : 0 : }
5580 : 0 : }
5581 : :
5582 : : //
5583 : : // Try sending block announcements via headers
5584 : : //
5585 : : {
5586 : : // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5587 : : // list of block hashes we're relaying, and our peer wants
5588 : : // headers announcements, then find the first header
5589 : : // not yet known to our peer but would connect, and send.
5590 : : // If no header would connect, or if we have too many
5591 : : // blocks, or if the peer doesn't want headers, just
5592 : : // add all to the inv queue.
5593 [ # # ]: 0 : LOCK(peer->m_block_inv_mutex);
5594 : 0 : std::vector<CBlock> vHeaders;
5595 [ # # ]: 0 : bool fRevertToInv = ((!peer->m_prefers_headers &&
5596 [ # # ][ # # ]: 0 : (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5597 : 0 : peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5598 : 0 : const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5599 [ # # ]: 0 : ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5600 : :
5601 [ # # ]: 0 : if (!fRevertToInv) {
5602 : 0 : bool fFoundStartingHeader = false;
5603 : : // Try to find first header that our peer doesn't have, and
5604 : : // then send all headers past that one. If we come across any
5605 : : // headers that aren't on m_chainman.ActiveChain(), give up.
5606 [ # # ]: 0 : for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5607 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5608 [ # # ]: 0 : assert(pindex);
5609 [ # # ][ # # ]: 0 : if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5610 : : // Bail out if we reorged away from this block
5611 : 0 : fRevertToInv = true;
5612 : 0 : break;
5613 : : }
5614 [ # # ][ # # ]: 0 : if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5615 : : // This means that the list of blocks to announce don't
5616 : : // connect to each other.
5617 : : // This shouldn't really be possible to hit during
5618 : : // regular operation (because reorgs should take us to
5619 : : // a chain that has some block not on the prior chain,
5620 : : // which should be caught by the prior check), but one
5621 : : // way this could happen is by using invalidateblock /
5622 : : // reconsiderblock repeatedly on the tip, causing it to
5623 : : // be added multiple times to m_blocks_for_headers_relay.
5624 : : // Robustly deal with this rare situation by reverting
5625 : : // to an inv.
5626 : 0 : fRevertToInv = true;
5627 : 0 : break;
5628 : : }
5629 : 0 : pBestIndex = pindex;
5630 [ # # ]: 0 : if (fFoundStartingHeader) {
5631 : : // add this to the headers message
5632 [ # # ][ # # ]: 0 : vHeaders.emplace_back(pindex->GetBlockHeader());
5633 [ # # ][ # # ]: 0 : } else if (PeerHasHeader(&state, pindex)) {
5634 : 0 : continue; // keep looking for the first new block
5635 [ # # ][ # # ]: 0 : } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
[ # # ]
5636 : : // Peer doesn't have this header but they do have the prior one.
5637 : : // Start sending headers.
5638 : 0 : fFoundStartingHeader = true;
5639 [ # # ][ # # ]: 0 : vHeaders.emplace_back(pindex->GetBlockHeader());
5640 : 0 : } else {
5641 : : // Peer doesn't have this header or the prior one -- nothing will
5642 : : // connect, so bail out.
5643 : 0 : fRevertToInv = true;
5644 : 0 : break;
5645 : : }
5646 : : }
5647 : 0 : }
5648 [ # # ][ # # ]: 0 : if (!fRevertToInv && !vHeaders.empty()) {
5649 [ # # ][ # # ]: 0 : if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5650 : : // We only send up to 1 block as header-and-ids, as otherwise
5651 : : // probably means we're doing an initial-ish-sync or they're slow
5652 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5653 : : vHeaders.front().GetHash().ToString(), pto->GetId());
5654 : :
5655 : 0 : std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5656 : : {
5657 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
5658 [ # # ]: 0 : if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5659 [ # # ][ # # ]: 0 : cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5660 : 0 : }
5661 : 0 : }
5662 [ # # ]: 0 : if (cached_cmpctblock_msg.has_value()) {
5663 [ # # ][ # # ]: 0 : PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5664 : 0 : } else {
5665 [ # # ]: 0 : CBlock block;
5666 [ # # ]: 0 : const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
5667 [ # # ]: 0 : assert(ret);
5668 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock{block};
5669 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5670 : 0 : }
5671 : 0 : state.pindexBestHeaderSent = pBestIndex;
5672 [ # # ]: 0 : } else if (peer->m_prefers_headers) {
5673 [ # # ]: 0 : if (vHeaders.size() > 1) {
5674 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5675 : : vHeaders.size(),
5676 : : vHeaders.front().GetHash().ToString(),
5677 : : vHeaders.back().GetHash().ToString(), pto->GetId());
5678 : 0 : } else {
5679 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5680 : : vHeaders.front().GetHash().ToString(), pto->GetId());
5681 : : }
5682 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
[ # # ]
5683 : 0 : state.pindexBestHeaderSent = pBestIndex;
5684 : 0 : } else
5685 : 0 : fRevertToInv = true;
5686 : 0 : }
5687 [ # # ]: 0 : if (fRevertToInv) {
5688 : : // If falling back to using an inv, just try to inv the tip.
5689 : : // The last entry in m_blocks_for_headers_relay was our tip at some point
5690 : : // in the past.
5691 [ # # ]: 0 : if (!peer->m_blocks_for_headers_relay.empty()) {
5692 : 0 : const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5693 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5694 [ # # ]: 0 : assert(pindex);
5695 : :
5696 : : // Warn if we're announcing a block that is not on the main chain.
5697 : : // This should be very rare and could be optimized out.
5698 : : // Just log for now.
5699 [ # # ][ # # ]: 0 : if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5700 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
5701 : : hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5702 : 0 : }
5703 : :
5704 : : // If the peer's chain has this block, don't inv it back.
5705 [ # # ][ # # ]: 0 : if (!PeerHasHeader(&state, pindex)) {
5706 [ # # ]: 0 : peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5707 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
[ # # ][ # # ]
[ # # ][ # # ]
5708 : : pto->GetId(), hashToAnnounce.ToString());
5709 : 0 : }
5710 : 0 : }
5711 : 0 : }
5712 : 0 : peer->m_blocks_for_headers_relay.clear();
5713 : 0 : }
5714 : :
5715 : : //
5716 : : // Message: inventory
5717 : : //
5718 : 0 : std::vector<CInv> vInv;
5719 : : {
5720 [ # # ]: 0 : LOCK(peer->m_block_inv_mutex);
5721 [ # # ]: 0 : vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5722 : :
5723 : : // Add blocks
5724 [ # # ]: 0 : for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5725 [ # # ]: 0 : vInv.emplace_back(MSG_BLOCK, hash);
5726 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5727 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5728 : 0 : vInv.clear();
5729 : 0 : }
5730 : : }
5731 : 0 : peer->m_blocks_for_inv_relay.clear();
5732 : 0 : }
5733 : :
5734 [ # # ][ # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5735 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
5736 : : // Check whether periodic sends should happen
5737 [ # # ]: 0 : bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5738 [ # # ][ # # ]: 0 : if (tx_relay->m_next_inv_send_time < current_time) {
5739 : 0 : fSendTrickle = true;
5740 [ # # ]: 0 : if (pto->IsInboundConn()) {
5741 [ # # ]: 0 : tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5742 : 0 : } else {
5743 [ # # ]: 0 : tx_relay->m_next_inv_send_time = GetExponentialRand(current_time, OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5744 : : }
5745 : 0 : }
5746 : :
5747 : : // Time to send but the peer has requested we not relay transactions.
5748 [ # # ]: 0 : if (fSendTrickle) {
5749 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5750 [ # # ]: 0 : if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5751 : 0 : }
5752 : :
5753 : : // Respond to BIP35 mempool requests
5754 [ # # ][ # # ]: 0 : if (fSendTrickle && tx_relay->m_send_mempool) {
5755 [ # # ]: 0 : auto vtxinfo = m_mempool.infoAll();
5756 : 0 : tx_relay->m_send_mempool = false;
5757 [ # # ]: 0 : const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5758 : :
5759 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5760 : :
5761 [ # # ]: 0 : for (const auto& txinfo : vtxinfo) {
5762 [ # # ]: 0 : CInv inv{
5763 : 0 : peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5764 [ # # ]: 0 : peer->m_wtxid_relay ?
5765 : 0 : txinfo.tx->GetWitnessHash().ToUint256() :
5766 : 0 : txinfo.tx->GetHash().ToUint256(),
5767 : : };
5768 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5769 : :
5770 : : // Don't send transactions that peers will not put into their mempool
5771 [ # # ][ # # ]: 0 : if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5772 : 0 : continue;
5773 : : }
5774 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
5775 [ # # ][ # # ]: 0 : if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5776 : 0 : }
5777 [ # # ][ # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5778 [ # # ]: 0 : vInv.push_back(inv);
5779 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5780 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5781 : 0 : vInv.clear();
5782 : 0 : }
5783 : : }
5784 : 0 : }
5785 : :
5786 : : // Determine transactions to relay
5787 [ # # ]: 0 : if (fSendTrickle) {
5788 : : // Produce a vector with all candidates for sending
5789 : 0 : std::vector<std::set<uint256>::iterator> vInvTx;
5790 [ # # ]: 0 : vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5791 [ # # ]: 0 : for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5792 [ # # ]: 0 : vInvTx.push_back(it);
5793 : 0 : }
5794 [ # # ]: 0 : const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5795 : : // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5796 : : // A heap is used so that not all items need sorting if only a few are being sent.
5797 [ # # ]: 0 : CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5798 [ # # ]: 0 : std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5799 : : // No reason to drain out at many times the network's capacity,
5800 : : // especially since we have many peers and some will draw much shorter delays.
5801 : 0 : unsigned int nRelayedTransactions = 0;
5802 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5803 : 0 : size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5804 : 0 : broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5805 [ # # ][ # # ]: 0 : while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5806 : : // Fetch the top element from the heap
5807 [ # # ]: 0 : std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5808 : 0 : std::set<uint256>::iterator it = vInvTx.back();
5809 : 0 : vInvTx.pop_back();
5810 : 0 : uint256 hash = *it;
5811 [ # # ]: 0 : CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5812 : : // Remove it from the to-be-sent set
5813 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.erase(it);
5814 : : // Check if not in the filter already
5815 [ # # ][ # # ]: 0 : if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
[ # # ]
5816 : 0 : continue;
5817 : : }
5818 : : // Not in the mempool anymore? don't bother sending it.
5819 [ # # ][ # # ]: 0 : auto txinfo = m_mempool.info(ToGenTxid(inv));
5820 [ # # ]: 0 : if (!txinfo.tx) {
5821 : 0 : continue;
5822 : : }
5823 : : // Peer told you to not send transactions at that feerate? Don't bother sending it.
5824 [ # # ][ # # ]: 0 : if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5825 : 0 : continue;
5826 : : }
5827 [ # # ][ # # ]: 0 : if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
[ # # ]
5828 : : // Send
5829 [ # # ]: 0 : vInv.push_back(inv);
5830 : 0 : nRelayedTransactions++;
5831 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5832 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5833 : 0 : vInv.clear();
5834 : 0 : }
5835 [ # # ][ # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(hash);
5836 [ # # # ]: 0 : }
5837 : :
5838 : : // Ensure we'll respond to GETDATA requests for anything we've just announced
5839 [ # # ]: 0 : LOCK(m_mempool.cs);
5840 [ # # ]: 0 : tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5841 : 0 : }
5842 : 0 : }
5843 [ # # ]: 0 : if (!vInv.empty())
5844 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5845 : :
5846 : : // Detect whether we're stalling
5847 : 0 : auto stalling_timeout = m_block_stalling_timeout.load();
5848 [ # # ][ # # ]: 0 : if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
[ # # ][ # # ]
5849 : : // Stalling only triggers when the block download window cannot move. During normal steady state,
5850 : : // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5851 : : // should only happen during initial block download.
5852 [ # # ][ # # ]: 0 : LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5853 : 0 : pto->fDisconnect = true;
5854 : : // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5855 : : // bandwidth is insufficient.
5856 [ # # ][ # # ]: 0 : const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5857 [ # # ][ # # ]: 0 : if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5858 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
[ # # ][ # # ]
[ # # ]
5859 : 0 : }
5860 : 0 : return true;
5861 : : }
5862 : : // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5863 : : // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5864 : : // We compensate for other peers to prevent killing off peers due to our own downstream link
5865 : : // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5866 : : // to unreasonably increase our timeout.
5867 [ # # ]: 0 : if (state.vBlocksInFlight.size() > 0) {
5868 : 0 : QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5869 : 0 : int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5870 [ # # ][ # # ]: 0 : if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
[ # # ][ # # ]
[ # # ]
5871 [ # # ][ # # ]: 0 : LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
5872 : 0 : pto->fDisconnect = true;
5873 : 0 : return true;
5874 : : }
5875 : 0 : }
5876 : : // Check for headers sync timeouts
5877 [ # # ][ # # ]: 0 : if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
[ # # ]
5878 : : // Detect whether this is a stalling initial-headers-sync peer
5879 [ # # ][ # # ]: 0 : if (m_chainman.m_best_header->Time() <= GetAdjustedTime() - 24h) {
[ # # ][ # # ]
[ # # ][ # # ]
5880 [ # # ][ # # ]: 0 : if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
[ # # ][ # # ]
5881 : : // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5882 : : // and we have others we could be using instead.
5883 : : // Note: If all our peers are inbound, then we won't
5884 : : // disconnect our sync peer for stalling; we have bigger
5885 : : // problems if we can't get any outbound peers.
5886 [ # # ][ # # ]: 0 : if (!pto->HasPermission(NetPermissionFlags::NoBan)) {
5887 [ # # ][ # # ]: 0 : LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5888 : 0 : pto->fDisconnect = true;
5889 : 0 : return true;
5890 : : } else {
5891 [ # # ][ # # ]: 0 : LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
5892 : : // Reset the headers sync state so that we have a
5893 : : // chance to try downloading from a different peer.
5894 : : // Note: this will also result in at least one more
5895 : : // getheaders message to be sent to
5896 : : // this peer (eventually).
5897 : 0 : state.fSyncStarted = false;
5898 : 0 : nSyncStarted--;
5899 [ # # ]: 0 : peer->m_headers_sync_timeout = 0us;
5900 : : }
5901 : 0 : }
5902 : 0 : } else {
5903 : : // After we've caught up once, reset the timeout so we can't trigger
5904 : : // disconnect later.
5905 : 0 : peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5906 : : }
5907 : 0 : }
5908 : :
5909 : : // Check that outbound peers have reasonable chains
5910 : : // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5911 [ # # ][ # # ]: 0 : ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5912 : :
5913 : : //
5914 : : // Message: getdata (blocks)
5915 : : //
5916 : 0 : std::vector<CInv> vGetData;
5917 [ # # ][ # # ]: 0 : if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
[ # # ][ # # ]
[ # # ][ # # ]
5918 : 0 : std::vector<const CBlockIndex*> vToDownload;
5919 : 0 : NodeId staller = -1;
5920 : 0 : auto get_inflight_budget = [&state]() {
5921 : 0 : return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5922 : : };
5923 : :
5924 : : // If a snapshot chainstate is in use, we want to find its next blocks
5925 : : // before the background chainstate to prioritize getting to network tip.
5926 [ # # ][ # # ]: 0 : FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5927 [ # # ][ # # ]: 0 : if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
[ # # ][ # # ]
5928 [ # # ]: 0 : TryDownloadingHistoricalBlocks(
5929 : 0 : *peer,
5930 [ # # ]: 0 : get_inflight_budget(),
5931 [ # # ]: 0 : vToDownload, m_chainman.GetBackgroundSyncTip(),
5932 [ # # ][ # # ]: 0 : Assert(m_chainman.GetSnapshotBaseBlock()));
5933 : 0 : }
5934 [ # # ]: 0 : for (const CBlockIndex *pindex : vToDownload) {
5935 : 0 : uint32_t nFetchFlags = GetFetchFlags(*peer);
5936 [ # # ]: 0 : vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5937 [ # # ]: 0 : BlockRequested(pto->GetId(), *pindex);
5938 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
[ # # ][ # # ]
[ # # ][ # # ]
5939 : : pindex->nHeight, pto->GetId());
5940 : : }
5941 [ # # ][ # # ]: 0 : if (state.vBlocksInFlight.empty() && staller != -1) {
5942 [ # # ][ # # ]: 0 : if (State(staller)->m_stalling_since == 0us) {
[ # # ][ # # ]
5943 [ # # ]: 0 : State(staller)->m_stalling_since = current_time;
5944 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
[ # # ][ # # ]
[ # # ]
5945 : 0 : }
5946 : 0 : }
5947 : 0 : }
5948 : :
5949 : : //
5950 : : // Message: getdata (transactions)
5951 : : //
5952 : 0 : std::vector<std::pair<NodeId, GenTxid>> expired;
5953 [ # # ]: 0 : auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
5954 [ # # ]: 0 : for (const auto& entry : expired) {
5955 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "timeout of inflight %s %s from peer=%d\n", entry.second.IsWtxid() ? "wtx" : "tx",
[ # # ][ # # ]
[ # # ][ # # ]
5956 : : entry.second.GetHash().ToString(), entry.first);
5957 : : }
5958 [ # # ]: 0 : for (const GenTxid& gtxid : requestable) {
5959 [ # # ][ # # ]: 0 : if (!AlreadyHaveTx(gtxid)) {
5960 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Requesting %s %s peer=%d\n", gtxid.IsWtxid() ? "wtx" : "tx",
[ # # ][ # # ]
[ # # ][ # # ]
5961 : : gtxid.GetHash().ToString(), pto->GetId());
5962 [ # # ][ # # ]: 0 : vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5963 [ # # ]: 0 : if (vGetData.size() >= MAX_GETDATA_SZ) {
5964 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5965 : 0 : vGetData.clear();
5966 : 0 : }
5967 [ # # ][ # # ]: 0 : m_txrequest.RequestedTx(pto->GetId(), gtxid.GetHash(), current_time + GETDATA_TX_INTERVAL);
5968 : 0 : } else {
5969 : : // We have already seen this transaction, no need to download. This is just a belt-and-suspenders, as
5970 : : // this should already be called whenever a transaction becomes AlreadyHaveTx().
5971 [ # # ]: 0 : m_txrequest.ForgetTxHash(gtxid.GetHash());
5972 : : }
5973 : : }
5974 : :
5975 : :
5976 [ # # ]: 0 : if (!vGetData.empty())
5977 [ # # ][ # # ]: 0 : MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5978 [ # # ]: 0 : } // release cs_main
5979 [ # # ]: 0 : MaybeSendFeefilter(*pto, *peer, current_time);
5980 : 0 : return true;
5981 : 0 : }
|