Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #if defined(HAVE_CONFIG_H)
7 : : #include <config/bitcoin-config.h>
8 : : #endif
9 : :
10 : : #include <net.h>
11 : :
12 : : #include <addrdb.h>
13 : : #include <addrman.h>
14 : : #include <banman.h>
15 : : #include <clientversion.h>
16 : : #include <common/args.h>
17 [ + - ]: 2 : #include <compat/compat.h>
18 [ + - ]: 2 : #include <consensus/consensus.h>
19 : : #include <crypto/sha256.h>
20 : : #include <i2p.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #ifdef WIN32
41 : : #include <string.h>
42 : : #endif
43 : :
44 : : #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45 : : #include <ifaddrs.h>
46 : : #endif
47 : :
48 : : #include <algorithm>
49 : : #include <array>
50 : : #include <cstdint>
51 : : #include <functional>
52 : : #include <optional>
53 : : #include <unordered_map>
54 : :
55 : : #include <math.h>
56 : :
57 : : /** Maximum number of block-relay-only anchor connections */
58 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
59 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
60 : : /** Anchor IP address database file name */
61 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
62 : :
63 : : // How often to dump addresses to peers.dat
64 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
65 : :
66 : : /** Number of DNS seeds to query when the number of connections is low. */
67 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
68 : :
69 : : /** How long to delay before querying DNS seeds
70 : : *
71 : : * If we have more than THRESHOLD entries in addrman, then it's likely
72 : : * that we got those addresses from having previously connected to the P2P
73 : : * network, and that we'll be able to successfully reconnect to the P2P
74 : : * network via contacting one of them. So if that's the case, spend a
75 : : * little longer trying to connect to known peers before querying the
76 : : * DNS seeds.
77 : : */
78 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
79 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
80 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
81 : :
82 : : /** The default timeframe for -maxuploadtarget. 1 day. */
83 [ + - ]: 2 : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
84 : :
85 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
86 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
87 : :
88 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
89 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
90 : :
91 : : /** Used to pass flags to the Bind() function */
92 : : enum BindFlags {
93 : : BF_NONE = 0,
94 : : BF_REPORT_ERROR = (1U << 0),
95 : : /**
96 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
97 : : * Tor connections, to prevent gossiping them over the network.
98 : : */
99 : : BF_DONT_ADVERTISE = (1U << 1),
100 : : };
101 : :
102 : : // The set of sockets cannot be modified while waiting
103 : : // The sleep time needs to be small to avoid new sockets stalling
104 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
105 : :
106 [ + - ]: 2 : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
107 : :
108 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
109 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
110 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
111 : : //
112 : : // Global state variables
113 : : //
114 : : bool fDiscover = true;
115 : : bool fListen = true;
116 : : GlobalMutex g_maplocalhost_mutex;
117 : 2 : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
118 : 2 : std::string strSubVersion;
119 : :
120 : 0 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
121 : : {
122 : : // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
123 : : // "small string" optimization area (which stores data inside the object itself, up to some
124 : : // size; 15 bytes in modern libstdc++).
125 [ # # ]: 0 : return sizeof(*this) + memusage::DynamicUsage(data);
126 : : }
127 : :
128 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
129 : : {
130 : 0 : LOCK(m_addr_fetches_mutex);
131 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
132 : 0 : }
133 : :
134 : 0 : uint16_t GetListenPort()
135 : : {
136 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
137 [ # # ][ # # ]: 0 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
[ # # ][ # # ]
138 : 0 : constexpr uint16_t dummy_port = 0;
139 : :
140 [ # # ][ # # ]: 0 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
141 [ # # ][ # # ]: 0 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
[ # # ][ # # ]
142 [ # # ]: 0 : }
143 : :
144 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
145 : : // (-whitebind= is required to have ":port").
146 [ # # ][ # # ]: 0 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
[ # # ][ # # ]
147 [ # # ]: 0 : NetWhitebindPermissions whitebind;
148 : 0 : bilingual_str error;
149 [ # # ][ # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
150 [ # # ][ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
151 [ # # ]: 0 : return whitebind.m_service.GetPort();
152 : : }
153 : 0 : }
154 [ # # ]: 0 : }
155 : :
156 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
157 [ # # ][ # # ]: 0 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
[ # # ][ # # ]
158 : 0 : }
159 : :
160 : : // Determine the "best" local address for a particular peer.
161 : 0 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
162 : : {
163 [ # # ]: 0 : if (!fListen) return std::nullopt;
164 : :
165 : 0 : std::optional<CService> addr;
166 : 0 : int nBestScore = -1;
167 : 0 : int nBestReachability = -1;
168 : : {
169 [ # # ][ # # ]: 0 : LOCK(g_maplocalhost_mutex);
170 [ # # ]: 0 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
171 : : // For privacy reasons, don't advertise our privacy-network address
172 : : // to other networks and don't advertise our other-network address
173 : : // to privacy networks.
174 [ # # ][ # # ]: 0 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
[ # # ]
175 [ # # ][ # # ]: 0 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
[ # # ][ # # ]
176 : 0 : continue;
177 : : }
178 : 0 : const int nScore{local_service_info.nScore};
179 [ # # ]: 0 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
180 [ # # ][ # # ]: 0 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
[ # # ]
181 [ # # ]: 0 : addr.emplace(CService{local_addr, local_service_info.nPort});
182 : 0 : nBestReachability = nReachability;
183 : 0 : nBestScore = nScore;
184 : 0 : }
185 : : }
186 : 0 : }
187 : 0 : return addr;
188 [ # # ]: 0 : }
189 : :
190 : : //! Convert the serialized seeds into usable address objects.
191 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
192 : : {
193 : : // It'll only connect to one or two seed nodes because once it connects,
194 : : // it'll get a pile of addresses with newer timestamps.
195 : : // Seed nodes are given a random 'last seen time' of between one and two
196 : : // weeks ago.
197 : 0 : const auto one_week{7 * 24h};
198 : 0 : std::vector<CAddress> vSeedsOut;
199 : 0 : FastRandomContext rng;
200 [ # # ][ # # ]: 0 : DataStream underlying_stream{vSeedsIn};
201 [ # # ]: 0 : ParamsStream s{CAddress::V2_NETWORK, underlying_stream};
202 [ # # ][ # # ]: 0 : while (!s.eof()) {
203 [ # # ]: 0 : CService endpoint;
204 [ # # ]: 0 : s >> endpoint;
205 [ # # ][ # # ]: 0 : CAddress addr{endpoint, GetDesirableServiceFlags(NODE_NONE)};
[ # # ]
206 [ # # ][ # # ]: 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
[ # # ][ # # ]
[ # # ]
207 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ][ # # ]
208 [ # # ]: 0 : vSeedsOut.push_back(addr);
209 : 0 : }
210 : 0 : return vSeedsOut;
211 [ # # ]: 0 : }
212 : :
213 : : // Determine the "best" local address for a particular peer.
214 : : // If none, return the unroutable 0.0.0.0 but filled in with
215 : : // the normal parameters, since the IP may be changed to a useful
216 : : // one by discovery.
217 : 0 : CService GetLocalAddress(const CNode& peer)
218 : : {
219 [ # # ][ # # ]: 0 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
[ # # ][ # # ]
220 : 0 : }
221 : :
222 : 0 : static int GetnScore(const CService& addr)
223 : : {
224 : 0 : LOCK(g_maplocalhost_mutex);
225 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
226 [ # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
227 : 0 : }
228 : :
229 : : // Is our peer's addrLocal potentially useful as an external IP source?
230 : 0 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
231 : : {
232 : 0 : CService addrLocal = pnode->GetAddrLocal();
233 [ # # ][ # # ]: 0 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
[ # # ][ # # ]
[ # # ]
234 [ # # ]: 0 : g_reachable_nets.Contains(addrLocal);
235 : 0 : }
236 : :
237 : 0 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
238 : : {
239 : 0 : CService addrLocal{GetLocalAddress(node)};
240 [ # # ][ # # ]: 0 : if (gArgs.GetBoolArg("-addrmantest", false)) {
[ # # ]
241 : : // use IPv4 loopback during addrmantest
242 [ # # ][ # # ]: 0 : addrLocal = CService(LookupNumeric("127.0.0.1", GetListenPort()));
[ # # ][ # # ]
243 : 0 : }
244 : : // If discovery is enabled, sometimes give our peer the address it
245 : : // tells us that it sees us as in case it has a better idea of our
246 : : // address than we do.
247 : 0 : FastRandomContext rng;
248 [ # # ][ # # ]: 0 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
[ # # ][ # # ]
249 [ # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
250 : : {
251 [ # # ][ # # ]: 0 : if (node.IsInboundConn()) {
252 : : // For inbound connections, assume both the address and the port
253 : : // as seen from the peer.
254 [ # # ]: 0 : addrLocal = CService{node.GetAddrLocal()};
255 : 0 : } else {
256 : : // For outbound connections, assume just the address as seen from
257 : : // the peer and leave the port in `addrLocal` as returned by
258 : : // `GetLocalAddress()` above. The peer has no way to observe our
259 : : // listening port when we have initiated the connection.
260 [ # # ][ # # ]: 0 : addrLocal.SetIP(node.GetAddrLocal());
261 : : }
262 : 0 : }
263 [ # # ][ # # ]: 0 : if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
264 : : {
265 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
266 : 0 : return addrLocal;
267 : : }
268 : : // Address is unroutable. Don't advertise.
269 : 0 : return std::nullopt;
270 : 0 : }
271 : :
272 : : // learn a new local address
273 : 0 : bool AddLocal(const CService& addr_, int nScore)
274 : : {
275 : 0 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
276 : :
277 [ # # ][ # # ]: 0 : if (!addr.IsRoutable())
278 : 0 : return false;
279 : :
280 [ # # ][ # # ]: 0 : if (!fDiscover && nScore < LOCAL_MANUAL)
281 : 0 : return false;
282 : :
283 [ # # ][ # # ]: 0 : if (!g_reachable_nets.Contains(addr))
284 : 0 : return false;
285 : :
286 [ # # ][ # # ]: 0 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
[ # # ][ # # ]
287 : :
288 : : {
289 [ # # ][ # # ]: 0 : LOCK(g_maplocalhost_mutex);
290 [ # # ]: 0 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
291 : 0 : LocalServiceInfo &info = it->second;
292 [ # # ][ # # ]: 0 : if (is_newly_added || nScore >= info.nScore) {
293 : 0 : info.nScore = nScore + (is_newly_added ? 0 : 1);
294 [ # # ]: 0 : info.nPort = addr.GetPort();
295 : 0 : }
296 : 0 : }
297 : :
298 : 0 : return true;
299 : 0 : }
300 : :
301 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
302 : : {
303 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
304 : 0 : }
305 : :
306 : 0 : void RemoveLocal(const CService& addr)
307 : : {
308 : 0 : LOCK(g_maplocalhost_mutex);
309 [ # # ][ # # ]: 0 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
[ # # ][ # # ]
310 [ # # ]: 0 : mapLocalHost.erase(addr);
311 : 0 : }
312 : :
313 : : /** vote for a local address */
314 : 0 : bool SeenLocal(const CService& addr)
315 : : {
316 : 0 : LOCK(g_maplocalhost_mutex);
317 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
318 [ # # ]: 0 : if (it == mapLocalHost.end()) return false;
319 : 0 : ++it->second.nScore;
320 : 0 : return true;
321 : 0 : }
322 : :
323 : :
324 : : /** check whether a given address is potentially local */
325 : 0 : bool IsLocal(const CService& addr)
326 : : {
327 : 0 : LOCK(g_maplocalhost_mutex);
328 [ # # ]: 0 : return mapLocalHost.count(addr) > 0;
329 : 0 : }
330 : :
331 : 0 : CNode* CConnman::FindNode(const CNetAddr& ip)
332 : : {
333 : 0 : LOCK(m_nodes_mutex);
334 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
335 [ # # ][ # # ]: 0 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
[ # # ]
336 : 0 : return pnode;
337 : : }
338 : : }
339 : 0 : return nullptr;
340 : 0 : }
341 : :
342 : 0 : CNode* CConnman::FindNode(const std::string& addrName)
343 : : {
344 : 0 : LOCK(m_nodes_mutex);
345 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
346 [ # # ]: 0 : if (pnode->m_addr_name == addrName) {
347 : 0 : return pnode;
348 : : }
349 : : }
350 : 0 : return nullptr;
351 : 0 : }
352 : :
353 : 0 : CNode* CConnman::FindNode(const CService& addr)
354 : : {
355 : 0 : LOCK(m_nodes_mutex);
356 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
357 [ # # ][ # # ]: 0 : if (static_cast<CService>(pnode->addr) == addr) {
[ # # ]
358 : 0 : return pnode;
359 : : }
360 : : }
361 : 0 : return nullptr;
362 : 0 : }
363 : :
364 : 0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
365 : : {
366 [ # # ][ # # ]: 0 : return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ][ # # ]
367 : 0 : }
368 : :
369 : 0 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
370 : : {
371 : 0 : LOCK(m_nodes_mutex);
372 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
373 [ # # ][ # # ]: 0 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
[ # # ][ # # ]
[ # # ]
374 : 0 : return false;
375 : : }
376 : 0 : return true;
377 : 0 : }
378 : :
379 : : /** Get the bind address for a socket as CAddress */
380 : 0 : static CAddress GetBindAddress(const Sock& sock)
381 : : {
382 : 0 : CAddress addr_bind;
383 : : struct sockaddr_storage sockaddr_bind;
384 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
385 [ # # ][ # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
386 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
387 : 0 : } else {
388 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
[ # # ][ # # ]
[ # # ]
389 : : }
390 : 0 : return addr_bind;
391 [ # # ]: 0 : }
392 : :
393 : 0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
394 : : {
395 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
396 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
397 : :
398 [ # # ]: 0 : if (pszDest == nullptr) {
399 [ # # ]: 0 : if (IsLocal(addrConnect))
400 : 0 : return nullptr;
401 : :
402 : : // Look for an existing connection
403 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
404 [ # # ]: 0 : if (pnode)
405 : : {
406 [ # # ][ # # ]: 0 : LogPrintf("Failed to open new connection, already connected\n");
[ # # ]
407 : 0 : return nullptr;
408 : : }
409 : 0 : }
410 : :
411 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
412 : : use_v2transport ? "v2" : "v1",
413 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
414 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
415 : :
416 : : // Resolve
417 [ # # ][ # # ]: 0 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
418 [ # # ]: 0 : m_params.GetDefaultPort()};
419 [ # # ]: 0 : if (pszDest) {
420 [ # # ][ # # ]: 0 : const std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
[ # # ][ # # ]
[ # # ]
421 [ # # ]: 0 : if (!resolved.empty()) {
422 : 0 : const CService& rnd{resolved[GetRand(resolved.size())]};
423 [ # # ][ # # ]: 0 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(rnd), NODE_NONE};
424 [ # # ][ # # ]: 0 : if (!addrConnect.IsValid()) {
425 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
[ # # ][ # # ]
[ # # ][ # # ]
426 : 0 : return nullptr;
427 : : }
428 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
429 : : // In that case, drop the connection that was just created.
430 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
431 [ # # ][ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
432 [ # # ]: 0 : if (pnode) {
433 [ # # ][ # # ]: 0 : LogPrintf("Failed to open new connection, already connected\n");
[ # # ]
434 : 0 : return nullptr;
435 : : }
436 [ # # ]: 0 : }
437 [ # # # ]: 0 : }
438 : :
439 : : // Connect
440 : 0 : bool connected = false;
441 : 0 : std::unique_ptr<Sock> sock;
442 [ # # ]: 0 : Proxy proxy;
443 [ # # ]: 0 : CAddress addr_bind;
444 [ # # ][ # # ]: 0 : assert(!addr_bind.IsValid());
445 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
446 : :
447 [ # # ][ # # ]: 0 : if (addrConnect.IsValid()) {
448 [ # # ][ # # ]: 0 : const bool use_proxy{GetProxy(addrConnect.GetNetwork(), proxy)};
449 : 0 : bool proxyConnectionFailed = false;
450 : :
451 [ # # ][ # # ]: 0 : if (addrConnect.IsI2P() && use_proxy) {
[ # # ]
452 [ # # ]: 0 : i2p::Connection conn;
453 : :
454 [ # # ]: 0 : if (m_i2p_sam_session) {
455 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed);
456 : 0 : } else {
457 : : {
458 [ # # ][ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
459 [ # # ][ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
460 : 0 : i2p_transient_session =
461 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy.proxy, &interruptNet);
462 : 0 : } else {
463 [ # # ]: 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
464 [ # # ]: 0 : m_unused_i2p_sessions.pop();
465 : : }
466 : 0 : }
467 [ # # ]: 0 : connected = i2p_transient_session->Connect(addrConnect, conn, proxyConnectionFailed);
468 [ # # ]: 0 : if (!connected) {
469 [ # # ][ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
470 [ # # ][ # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
471 [ # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
472 : 0 : }
473 : 0 : }
474 : : }
475 : :
476 [ # # ]: 0 : if (connected) {
477 : 0 : sock = std::move(conn.sock);
478 [ # # ][ # # ]: 0 : addr_bind = CAddress{conn.me, NODE_NONE};
479 : 0 : }
480 [ # # ]: 0 : } else if (use_proxy) {
481 [ # # ]: 0 : sock = CreateSock(proxy.proxy);
482 [ # # ]: 0 : if (!sock) {
483 : 0 : return nullptr;
484 : : }
485 [ # # ][ # # ]: 0 : connected = ConnectThroughProxy(proxy, addrConnect.ToStringAddr(), addrConnect.GetPort(),
[ # # ]
486 : 0 : *sock, nConnectTimeout, proxyConnectionFailed);
487 : 0 : } else {
488 : : // no proxy needed (none set for target network)
489 [ # # ]: 0 : sock = CreateSock(addrConnect);
490 [ # # ]: 0 : if (!sock) {
491 : 0 : return nullptr;
492 : : }
493 [ # # ][ # # ]: 0 : connected = ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout,
494 : 0 : conn_type == ConnectionType::MANUAL);
495 : : }
496 [ # # ]: 0 : if (!proxyConnectionFailed) {
497 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
498 : : // the proxy, mark this as an attempt.
499 [ # # ][ # # ]: 0 : addrman.Attempt(addrConnect, fCountFailure);
500 : 0 : }
501 [ # # ][ # # ]: 0 : } else if (pszDest && GetNameProxy(proxy)) {
[ # # ]
502 [ # # ]: 0 : sock = CreateSock(proxy.proxy);
503 [ # # ]: 0 : if (!sock) {
504 : 0 : return nullptr;
505 : : }
506 : 0 : std::string host;
507 : 0 : uint16_t port{default_port};
508 [ # # ][ # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
509 : : bool proxyConnectionFailed;
510 [ # # ]: 0 : connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout,
511 : : proxyConnectionFailed);
512 : 0 : }
513 [ # # ]: 0 : if (!connected) {
514 : 0 : return nullptr;
515 : : }
516 : :
517 : : // Add node
518 [ # # ]: 0 : NodeId id = GetNewNodeId();
519 [ # # ][ # # ]: 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
[ # # ]
520 [ # # ][ # # ]: 0 : if (!addr_bind.IsValid()) {
521 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
522 : 0 : }
523 [ # # ][ # # ]: 0 : CNode* pnode = new CNode(id,
[ # # ]
524 [ # # ]: 0 : std::move(sock),
525 : : addrConnect,
526 [ # # ]: 0 : CalculateKeyedNetGroup(addrConnect),
527 : 0 : nonce,
528 : : addr_bind,
529 [ # # ][ # # ]: 0 : pszDest ? pszDest : "",
530 : 0 : conn_type,
531 : : /*inbound_onion=*/false,
532 : 0 : CNodeOptions{
533 : 0 : .i2p_sam_session = std::move(i2p_transient_session),
534 : 0 : .recv_flood_size = nReceiveFloodSize,
535 : 0 : .use_v2transport = use_v2transport,
536 : : });
537 [ # # ]: 0 : pnode->AddRef();
538 : :
539 : : // We're making a new connection, harvest entropy from the time (and our peer count)
540 : 0 : RandAddEvent((uint32_t)id);
541 : :
542 : 0 : return pnode;
543 : 0 : }
544 : :
545 : 0 : void CNode::CloseSocketDisconnect()
546 : : {
547 : 0 : fDisconnect = true;
548 : 0 : LOCK(m_sock_mutex);
549 [ # # ]: 0 : if (m_sock) {
550 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
[ # # ][ # # ]
[ # # ]
551 : 0 : m_sock.reset();
552 : 0 : }
553 : 0 : m_i2p_sam_session.reset();
554 : 0 : }
555 : :
556 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
557 [ # # ]: 0 : for (const auto& subnet : vWhitelistedRange) {
558 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
559 : : }
560 : 0 : }
561 : :
562 : 0 : CService CNode::GetAddrLocal() const
563 : : {
564 : 0 : AssertLockNotHeld(m_addr_local_mutex);
565 : 0 : LOCK(m_addr_local_mutex);
566 [ # # ]: 0 : return addrLocal;
567 : 0 : }
568 : :
569 : 0 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
570 : 0 : AssertLockNotHeld(m_addr_local_mutex);
571 : 0 : LOCK(m_addr_local_mutex);
572 [ # # ][ # # ]: 0 : if (addrLocal.IsValid()) {
573 [ # # ][ # # ]: 0 : error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToStringAddrPort(), addrLocalIn.ToStringAddrPort());
[ # # ]
574 : 0 : } else {
575 [ # # ]: 0 : addrLocal = addrLocalIn;
576 : : }
577 : 0 : }
578 : :
579 : 0 : Network CNode::ConnectedThroughNetwork() const
580 : : {
581 [ # # ]: 0 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
582 : : }
583 : :
584 : 0 : bool CNode::IsConnectedThroughPrivacyNet() const
585 : : {
586 [ # # ]: 0 : return m_inbound_onion || addr.IsPrivacyNet();
587 : : }
588 : :
589 : : #undef X
590 : : #define X(name) stats.name = name
591 : 0 : void CNode::CopyStats(CNodeStats& stats)
592 : : {
593 : 0 : stats.nodeid = this->GetId();
594 : 0 : X(addr);
595 : 0 : X(addrBind);
596 : 0 : stats.m_network = ConnectedThroughNetwork();
597 : 0 : X(m_last_send);
598 : 0 : X(m_last_recv);
599 : 0 : X(m_last_tx_time);
600 : 0 : X(m_last_block_time);
601 : 0 : X(m_connected);
602 : 0 : X(nTimeOffset);
603 : 0 : X(m_addr_name);
604 : 0 : X(nVersion);
605 : : {
606 : 0 : LOCK(m_subver_mutex);
607 [ # # ]: 0 : X(cleanSubVer);
608 : 0 : }
609 : 0 : stats.fInbound = IsInboundConn();
610 : 0 : X(m_bip152_highbandwidth_to);
611 : 0 : X(m_bip152_highbandwidth_from);
612 : : {
613 : 0 : LOCK(cs_vSend);
614 [ # # ]: 0 : X(mapSendBytesPerMsgType);
615 : 0 : X(nSendBytes);
616 : 0 : }
617 : : {
618 : 0 : LOCK(cs_vRecv);
619 [ # # ]: 0 : X(mapRecvBytesPerMsgType);
620 : 0 : X(nRecvBytes);
621 : 0 : Transport::Info info = m_transport->GetInfo();
622 : 0 : stats.m_transport_type = info.transport_type;
623 [ # # ][ # # ]: 0 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
[ # # ]
624 : 0 : }
625 : 0 : X(m_permission_flags);
626 : :
627 : 0 : X(m_last_ping_time);
628 : 0 : X(m_min_ping_time);
629 : :
630 : : // Leave string empty if addrLocal invalid (not filled in yet)
631 : 0 : CService addrLocalUnlocked = GetAddrLocal();
632 [ # # ][ # # ]: 0 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
[ # # ][ # # ]
[ # # ][ # # ]
633 : :
634 : 0 : X(m_conn_type);
635 : 0 : }
636 : : #undef X
637 : :
638 : 0 : bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
639 : : {
640 : 0 : complete = false;
641 : 0 : const auto time = GetTime<std::chrono::microseconds>();
642 : 0 : LOCK(cs_vRecv);
643 [ # # ]: 0 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
644 : 0 : nRecvBytes += msg_bytes.size();
645 [ # # ]: 0 : while (msg_bytes.size() > 0) {
646 : : // absorb network data
647 [ # # ][ # # ]: 0 : if (!m_transport->ReceivedBytes(msg_bytes)) {
648 : : // Serious transport problem, disconnect from the peer.
649 : 0 : return false;
650 : : }
651 : :
652 [ # # ][ # # ]: 0 : if (m_transport->ReceivedMessageComplete()) {
653 : : // decompose a transport agnostic CNetMessage from the deserializer
654 : 0 : bool reject_message{false};
655 [ # # ]: 0 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
656 [ # # ]: 0 : if (reject_message) {
657 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
658 : : // store the size of the corrupt message
659 [ # # ]: 0 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
660 : 0 : continue;
661 : : }
662 : :
663 : : // Store received bytes per message type.
664 : : // To prevent a memory DOS, only allow known message types.
665 [ # # ]: 0 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
666 [ # # ]: 0 : if (i == mapRecvBytesPerMsgType.end()) {
667 [ # # ]: 0 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
668 : 0 : }
669 [ # # ]: 0 : assert(i != mapRecvBytesPerMsgType.end());
670 : 0 : i->second += msg.m_raw_message_size;
671 : :
672 : : // push the message to the process queue,
673 [ # # ]: 0 : vRecvMsg.push_back(std::move(msg));
674 : :
675 : 0 : complete = true;
676 [ # # # ]: 0 : }
677 : : }
678 : :
679 : 0 : return true;
680 : 0 : }
681 : :
682 [ # # ][ # # ]: 0 : V1Transport::V1Transport(const NodeId node_id, int nTypeIn, int nVersionIn) noexcept :
[ # # ][ # # ]
683 [ # # ][ # # ]: 0 : m_node_id(node_id), hdrbuf(nTypeIn, nVersionIn), vRecv(nTypeIn, nVersionIn)
684 : 0 : {
685 [ # # ][ # # ]: 0 : assert(std::size(Params().MessageStart()) == std::size(m_magic_bytes));
[ # # ]
686 [ # # ][ # # ]: 0 : m_magic_bytes = Params().MessageStart();
687 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
688 [ # # ]: 0 : Reset();
689 : 0 : }
690 : :
691 : 0 : Transport::Info V1Transport::GetInfo() const noexcept
692 : : {
693 : 0 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
694 : : }
695 : :
696 : 0 : int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
697 : : {
698 : 0 : AssertLockHeld(m_recv_mutex);
699 : : // copy data to temporary parsing buffer
700 : 0 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
701 : 0 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
702 : :
703 : 0 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
704 : 0 : nHdrPos += nCopy;
705 : 0 :
706 : : // if header incomplete, exit
707 [ # # ]: 0 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
708 : 0 : return nCopy;
709 : :
710 : : // deserialize to CMessageHeader
711 : : try {
712 [ # # ]: 0 : hdrbuf >> hdr;
713 [ # # ]: 0 : }
714 [ # # ]: 0 : catch (const std::exception&) {
715 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
[ # # ][ # # ]
[ # # ][ # # ]
716 : 0 : return -1;
717 [ # # ]: 0 : }
718 : 0 :
719 : : // Check start string, network magic
720 [ # # ]: 0 : if (hdr.pchMessageStart != m_magic_bytes) {
721 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
[ # # ][ # # ]
[ # # ][ # # ]
722 : 0 : return -1;
723 : : }
724 : :
725 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
726 [ # # ][ # # ]: 0 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
727 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
[ # # ][ # # ]
[ # # ][ # # ]
728 : 0 : return -1;
729 : : }
730 : :
731 : : // switch state to reading message data
732 : 0 : in_data = true;
733 : :
734 : 0 : return nCopy;
735 : 0 : }
736 : :
737 : 0 : int V1Transport::readData(Span<const uint8_t> msg_bytes)
738 : : {
739 : 0 : AssertLockHeld(m_recv_mutex);
740 : 0 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
741 : 0 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
742 : :
743 [ # # ]: 0 : if (vRecv.size() < nDataPos + nCopy) {
744 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
745 : 0 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
746 : 0 : }
747 : :
748 : 0 : hasher.Write(msg_bytes.first(nCopy));
749 : 0 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
750 : 0 : nDataPos += nCopy;
751 : :
752 : 0 : return nCopy;
753 : : }
754 : :
755 : 0 : const uint256& V1Transport::GetMessageHash() const
756 : : {
757 : 0 : AssertLockHeld(m_recv_mutex);
758 [ # # ]: 0 : assert(CompleteInternal());
759 [ # # ]: 0 : if (data_hash.IsNull())
760 : 0 : hasher.Finalize(data_hash);
761 : 0 : return data_hash;
762 : : }
763 : :
764 : 0 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
765 : : {
766 : 0 : AssertLockNotHeld(m_recv_mutex);
767 : : // Initialize out parameter
768 : 0 : reject_message = false;
769 : : // decompose a single CNetMessage from the TransportDeserializer
770 : 0 : LOCK(m_recv_mutex);
771 [ # # ]: 0 : CNetMessage msg(std::move(vRecv));
772 : :
773 : : // store message type string, time, and sizes
774 [ # # ]: 0 : msg.m_type = hdr.GetCommand();
775 : 0 : msg.m_time = time;
776 : 0 : msg.m_message_size = hdr.nMessageSize;
777 : 0 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
778 : :
779 [ # # ]: 0 : uint256 hash = GetMessageHash();
780 : :
781 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
782 [ # # ][ # # ]: 0 : RandAddEvent(ReadLE32(hash.begin()));
783 : :
784 : : // Check checksum and header message type string
785 [ # # ][ # # ]: 0 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
786 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
787 : : SanitizeString(msg.m_type), msg.m_message_size,
788 : : HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
789 : : HexStr(hdr.pchChecksum),
790 : : m_node_id);
791 : 0 : reject_message = true;
792 [ # # ][ # # ]: 0 : } else if (!hdr.IsCommandValid()) {
793 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
794 : : SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
795 : 0 : reject_message = true;
796 : 0 : }
797 : :
798 : : // Always reset the network deserializer (prepare for the next message)
799 [ # # ]: 0 : Reset();
800 : 0 : return msg;
801 [ # # ]: 0 : }
802 : :
803 : 0 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
804 : : {
805 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
806 : : // Determine whether a new message can be set.
807 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
808 [ # # ][ # # ]: 0 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
809 : :
810 : : // create dbl-sha256 checksum
811 [ # # ]: 0 : uint256 hash = Hash(msg.data);
812 : :
813 : : // create header
814 [ # # ]: 0 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
815 [ # # ]: 0 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
816 : :
817 : : // serialize header
818 : 0 : m_header_to_send.clear();
819 [ # # ]: 0 : CVectorWriter{INIT_PROTO_VERSION, m_header_to_send, 0, hdr};
820 : :
821 : : // update state
822 : 0 : m_message_to_send = std::move(msg);
823 : 0 : m_sending_header = true;
824 : 0 : m_bytes_sent = 0;
825 : 0 : return true;
826 : 0 : }
827 : :
828 : 0 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
829 : : {
830 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
831 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
832 [ # # ]: 0 : if (m_sending_header) {
833 [ # # ]: 0 : return {Span{m_header_to_send}.subspan(m_bytes_sent),
834 : : // We have more to send after the header if the message has payload, or if there
835 : : // is a next message after that.
836 [ # # ]: 0 : have_next_message || !m_message_to_send.data.empty(),
837 : 0 : m_message_to_send.m_type
838 : : };
839 : : } else {
840 [ # # ]: 0 : return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
841 : : // We only have more to send after this message's payload if there is another
842 : : // message.
843 : : have_next_message,
844 : 0 : m_message_to_send.m_type
845 : : };
846 : : }
847 : 0 : }
848 : :
849 : 0 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
850 : : {
851 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
852 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
853 : 0 : m_bytes_sent += bytes_sent;
854 [ # # ][ # # ]: 0 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
855 : : // We're done sending a message's header. Switch to sending its data bytes.
856 : 0 : m_sending_header = false;
857 : 0 : m_bytes_sent = 0;
858 [ # # ][ # # ]: 0 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
859 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
860 : 0 : ClearShrink(m_message_to_send.data);
861 : 0 : m_bytes_sent = 0;
862 : 0 : }
863 : 0 : }
864 : :
865 : 0 : size_t V1Transport::GetSendMemoryUsage() const noexcept
866 : : {
867 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
868 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
869 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
870 : 0 : return m_message_to_send.GetMemoryUsage();
871 : 0 : }
872 : :
873 : : namespace {
874 : :
875 : : /** List of short messages as defined in BIP324, in order.
876 : : *
877 : : * Only message types that are actually implemented in this codebase need to be listed, as other
878 [ # # ]: 0 : * messages get ignored anyway - whether we know how to decode them or not.
879 : : */
880 [ # # ]: 2 : const std::array<std::string, 33> V2_MESSAGE_IDS = {
881 [ + - ]: 2 : "", // 12 bytes follow encoding the message type like in V1
882 [ + - ]: 2 : NetMsgType::ADDR,
883 [ + - ]: 2 : NetMsgType::BLOCK,
884 [ + - ][ # # ]: 2 : NetMsgType::BLOCKTXN,
885 [ + - ]: 2 : NetMsgType::CMPCTBLOCK,
886 [ + - ]: 2 : NetMsgType::FEEFILTER,
887 [ + - ][ # # ]: 2 : NetMsgType::FILTERADD,
888 [ + - ]: 2 : NetMsgType::FILTERCLEAR,
889 [ + - ]: 2 : NetMsgType::FILTERLOAD,
890 [ + - ]: 2 : NetMsgType::GETBLOCKS,
891 [ + - ]: 2 : NetMsgType::GETBLOCKTXN,
892 [ + - ]: 2 : NetMsgType::GETDATA,
893 [ + - ]: 2 : NetMsgType::GETHEADERS,
894 [ + - ]: 2 : NetMsgType::HEADERS,
895 [ + - ]: 2 : NetMsgType::INV,
896 [ + - ]: 2 : NetMsgType::MEMPOOL,
897 [ + - ]: 2 : NetMsgType::MERKLEBLOCK,
898 [ + - ]: 2 : NetMsgType::NOTFOUND,
899 [ + - ]: 2 : NetMsgType::PING,
900 [ + - ]: 2 : NetMsgType::PONG,
901 [ + - ]: 2 : NetMsgType::SENDCMPCT,
902 [ + - ]: 2 : NetMsgType::TX,
903 [ + - ]: 2 : NetMsgType::GETCFILTERS,
904 [ + - ]: 2 : NetMsgType::CFILTER,
905 [ + - ]: 2 : NetMsgType::GETCFHEADERS,
906 [ + - ]: 2 : NetMsgType::CFHEADERS,
907 [ + - ]: 2 : NetMsgType::GETCFCHECKPT,
908 [ + - ]: 2 : NetMsgType::CFCHECKPT,
909 [ + - ]: 2 : NetMsgType::ADDRV2,
910 : : // Unimplemented message types that are assigned in BIP324:
911 [ + - ]: 2 : "",
912 [ + - ]: 2 : "",
913 [ + - ]: 2 : "",
914 [ + - ]: 2 : ""
915 : : };
916 : :
917 : 0 : class V2MessageMap
918 : : {
919 : : std::unordered_map<std::string, uint8_t> m_map;
920 : :
921 : : public:
922 : 2 : V2MessageMap() noexcept
923 : : {
924 [ + + ]: 66 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
925 [ + - ]: 64 : m_map.emplace(V2_MESSAGE_IDS[i], i);
926 : 64 : }
927 : 2 : }
928 : :
929 : 0 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
930 : : {
931 [ # # ]: 0 : auto it = m_map.find(message_name);
932 [ # # ]: 0 : if (it == m_map.end()) return std::nullopt;
933 : 0 : return it->second;
934 : 0 : }
935 : : };
936 : :
937 : 2 : const V2MessageMap V2_MESSAGE_MAP;
938 : :
939 : 0 : CKey GenerateRandomKey() noexcept
940 : : {
941 : 0 : CKey key;
942 [ # # ]: 0 : key.MakeNewKey(/*fCompressed=*/true);
943 : 0 : return key;
944 [ # # ]: 0 : }
945 : :
946 : 0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
947 : : {
948 : 0 : std::vector<uint8_t> ret;
949 : 0 : FastRandomContext rng;
950 [ # # ]: 0 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
951 [ # # ]: 0 : rng.fillrand(MakeWritableByteSpan(ret));
952 : 0 : return ret;
953 [ # # ]: 0 : }
954 : :
955 : : } // namespace
956 : :
957 : 0 : void V2Transport::StartSendingHandshake() noexcept
958 : : {
959 [ # # ]: 0 : AssertLockHeld(m_send_mutex);
960 [ # # ]: 0 : Assume(m_send_state == SendState::AWAITING_KEY);
961 [ # # ]: 0 : Assume(m_send_buffer.empty());
962 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
963 [ # # ][ # # ]: 0 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
964 [ # # ][ # # ]: 0 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
[ # # ]
965 [ # # ][ # # ]: 0 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
966 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
967 : 0 : }
968 : :
969 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept :
970 : 0 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
971 : 0 : m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
972 : 0 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
973 : 0 : m_send_garbage{std::move(garbage)},
974 : 0 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
975 : 0 : {
976 [ # # ]: 0 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
977 : : // Start sending immediately if we're the initiator of the connection.
978 [ # # ]: 0 : if (initiating) {
979 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
980 : 0 : StartSendingHandshake();
981 : 0 : }
982 : 0 : }
983 : :
984 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
985 : 0 : V2Transport{nodeid, initiating, type_in, version_in, GenerateRandomKey(),
986 : 0 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} { }
987 : :
988 : 0 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
989 : : {
990 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
991 : : // Enforce allowed state transitions.
992 [ # # # # : 0 : switch (m_recv_state) {
# # # # ]
993 : : case RecvState::KEY_MAYBE_V1:
994 [ # # ][ # # ]: 0 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
995 : 0 : break;
996 : : case RecvState::KEY:
997 [ # # ]: 0 : Assume(recv_state == RecvState::GARB_GARBTERM);
998 : 0 : break;
999 : : case RecvState::GARB_GARBTERM:
1000 [ # # ]: 0 : Assume(recv_state == RecvState::VERSION);
1001 : 0 : break;
1002 : : case RecvState::VERSION:
1003 [ # # ]: 0 : Assume(recv_state == RecvState::APP);
1004 : 0 : break;
1005 : : case RecvState::APP:
1006 [ # # ]: 0 : Assume(recv_state == RecvState::APP_READY);
1007 : 0 : break;
1008 : : case RecvState::APP_READY:
1009 [ # # ]: 0 : Assume(recv_state == RecvState::APP);
1010 : 0 : break;
1011 : : case RecvState::V1:
1012 [ # # ]: 0 : Assume(false); // V1 state cannot be left
1013 : 0 : break;
1014 : : }
1015 : : // Change state.
1016 : 0 : m_recv_state = recv_state;
1017 : 0 : }
1018 : :
1019 : 0 : void V2Transport::SetSendState(SendState send_state) noexcept
1020 : : {
1021 [ # # ]: 0 : AssertLockHeld(m_send_mutex);
1022 : : // Enforce allowed state transitions.
1023 [ # # # # ]: 0 : switch (m_send_state) {
1024 : : case SendState::MAYBE_V1:
1025 [ # # ][ # # ]: 0 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1026 : 0 : break;
1027 : : case SendState::AWAITING_KEY:
1028 [ # # ]: 0 : Assume(send_state == SendState::READY);
1029 : 0 : break;
1030 : : case SendState::READY:
1031 : : case SendState::V1:
1032 [ # # ]: 0 : Assume(false); // Final states
1033 : 0 : break;
1034 : : }
1035 : : // Change state.
1036 : 0 : m_send_state = send_state;
1037 : 0 : }
1038 : :
1039 : 0 : bool V2Transport::ReceivedMessageComplete() const noexcept
1040 : : {
1041 [ # # ]: 0 : AssertLockNotHeld(m_recv_mutex);
1042 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
1043 [ # # ][ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1044 : :
1045 : 0 : return m_recv_state == RecvState::APP_READY;
1046 : 0 : }
1047 : :
1048 : 0 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1049 : : {
1050 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
1051 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1052 [ # # ]: 0 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1053 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1054 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1055 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1056 : : // sending of the key.
1057 : 0 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1058 [ # # ][ # # ]: 0 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1059 [ # # ]: 0 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1060 [ # # ][ # # ]: 0 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1061 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1062 : 0 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1063 : : // Transition the sender to AWAITING_KEY state and start sending.
1064 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1065 : 0 : SetSendState(SendState::AWAITING_KEY);
1066 : 0 : StartSendingHandshake();
1067 [ # # ]: 0 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1068 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1069 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1070 [ # # ]: 0 : Span<const uint8_t> feedback{m_recv_buffer};
1071 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1072 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1073 [ # # ]: 0 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1074 [ # # ]: 0 : Assume(feedback.empty());
1075 [ # # ]: 0 : Assume(ret);
1076 : 0 : SetReceiveState(RecvState::V1);
1077 : 0 : SetSendState(SendState::V1);
1078 : : // Reset v2 transport buffers to save memory.
1079 : 0 : ClearShrink(m_recv_buffer);
1080 : 0 : ClearShrink(m_send_buffer);
1081 : 0 : } else {
1082 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1083 : : }
1084 : 0 : }
1085 : :
1086 : 0 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1087 : : {
1088 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
1089 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1090 [ # # ]: 0 : Assume(m_recv_state == RecvState::KEY);
1091 [ # # ][ # # ]: 0 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1092 : :
1093 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1094 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1095 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1096 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1097 : : // they receive our uniformly random key and garbage, but detecting this case specially
1098 : : // means we can log it.
1099 : : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1100 : : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1101 [ # # ][ # # ]: 0 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1102 [ # # ][ # # ]: 0 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1103 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1104 : : HexStr(Span(m_recv_buffer).first(OFFSET)));
1105 : 0 : return false;
1106 : : }
1107 : 0 : }
1108 : :
1109 [ # # ][ # # ]: 0 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1110 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1111 : : // our key to initialize the encryption ciphers.
1112 : :
1113 : : // Initialize the ciphers.
1114 : 0 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1115 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1116 : 0 : m_cipher.Initialize(ellswift, m_initiating);
1117 : :
1118 : : // Switch receiver state to GARB_GARBTERM.
1119 : 0 : SetReceiveState(RecvState::GARB_GARBTERM);
1120 : 0 : m_recv_buffer.clear();
1121 : :
1122 : : // Switch sender state to READY.
1123 : 0 : SetSendState(SendState::READY);
1124 : :
1125 : : // Append the garbage terminator to the send buffer.
1126 [ # # ]: 0 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1127 [ # # ][ # # ]: 0 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1128 : 0 : m_cipher.GetSendGarbageTerminator().end(),
1129 : 0 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1130 : :
1131 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1132 [ # # ]: 0 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1133 : 0 : m_cipher.Encrypt(
1134 [ # # ]: 0 : /*contents=*/VERSION_CONTENTS,
1135 : 0 : /*aad=*/MakeByteSpan(m_send_garbage),
1136 : : /*ignore=*/false,
1137 : 0 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1138 : : // We no longer need the garbage.
1139 : 0 : ClearShrink(m_send_garbage);
1140 : 0 : } else {
1141 : : // We still have to receive more key bytes.
1142 : : }
1143 : 0 : return true;
1144 : 0 : }
1145 : :
1146 : 0 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1147 : : {
1148 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
1149 [ # # ]: 0 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1150 [ # # ]: 0 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1151 [ # # ]: 0 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1152 [ # # ]: 0 : if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
1153 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1154 : 0 : m_recv_aad = std::move(m_recv_buffer);
1155 [ # # ]: 0 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1156 : 0 : m_recv_buffer.clear();
1157 : 0 : SetReceiveState(RecvState::VERSION);
1158 [ # # ]: 0 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1159 : : // We've reached the maximum length for garbage + garbage terminator, and the
1160 : : // terminator still does not match. Abort.
1161 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
[ # # ][ # # ]
[ # # ]
1162 : 0 : return false;
1163 : : } else {
1164 : : // We still need to receive more garbage and/or garbage terminator bytes.
1165 : : }
1166 : 0 : } else {
1167 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1168 : : // more first.
1169 : : }
1170 : 0 : return true;
1171 : 0 : }
1172 : :
1173 : 0 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1174 : : {
1175 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
1176 [ # # ][ # # ]: 0 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1177 : :
1178 : : // The maximum permitted contents length for a packet, consisting of:
1179 : : // - 0x00 byte: indicating long message type encoding
1180 : : // - 12 bytes of message type
1181 : : // - payload
1182 : : static constexpr size_t MAX_CONTENTS_LEN =
1183 : : 1 + CMessageHeader::COMMAND_SIZE +
1184 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1185 : :
1186 [ # # ]: 0 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1187 : : // Length descriptor received.
1188 : 0 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1189 [ # # ]: 0 : if (m_recv_len > MAX_CONTENTS_LEN) {
1190 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
[ # # ][ # # ]
[ # # ]
1191 : 0 : return false;
1192 : : }
1193 [ # # ][ # # ]: 0 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1194 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1195 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1196 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1197 [ # # ]: 0 : m_recv_decode_buffer.resize(m_recv_len);
1198 : 0 : bool ignore{false};
1199 : 0 : bool ret = m_cipher.Decrypt(
1200 : 0 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1201 : 0 : /*aad=*/MakeByteSpan(m_recv_aad),
1202 : : /*ignore=*/ignore,
1203 : 0 : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1204 [ # # ]: 0 : if (!ret) {
1205 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
[ # # ][ # # ]
[ # # ]
1206 : 0 : return false;
1207 : : }
1208 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1209 : 0 : ClearShrink(m_recv_aad);
1210 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1211 [ # # ]: 0 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1212 : :
1213 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1214 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1215 [ # # ]: 0 : if (!ignore) {
1216 [ # # # ]: 0 : switch (m_recv_state) {
1217 : : case RecvState::VERSION:
1218 : : // Version message received; transition to application phase. The contents is
1219 : : // ignored, but can be used for future extensions.
1220 : 0 : SetReceiveState(RecvState::APP);
1221 : 0 : break;
1222 : : case RecvState::APP:
1223 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1224 : 0 : SetReceiveState(RecvState::APP_READY);
1225 : 0 : break;
1226 : : default:
1227 : : // Any other state is invalid (this function should not have been called).
1228 [ # # ]: 0 : Assume(false);
1229 : 0 : }
1230 : 0 : }
1231 : : // Wipe the receive buffer where the next packet will be received into.
1232 : 0 : ClearShrink(m_recv_buffer);
1233 : : // In all but APP_READY state, we can wipe the decoded contents.
1234 [ # # ]: 0 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1235 : 0 : } else {
1236 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1237 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1238 : : }
1239 : 0 : return true;
1240 : 0 : }
1241 : :
1242 : 0 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1243 : : {
1244 [ # # ]: 0 : AssertLockHeld(m_recv_mutex);
1245 [ # # # # : 0 : switch (m_recv_state) {
# # # ]
1246 : : case RecvState::KEY_MAYBE_V1:
1247 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1248 : : // receive buffer.
1249 [ # # ]: 0 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1250 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1251 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1252 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1253 : : // back into the m_v1_fallback V1 transport.
1254 : 0 : return V1_PREFIX_LEN - m_recv_buffer.size();
1255 : : case RecvState::KEY:
1256 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1257 [ # # ][ # # ]: 0 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1258 : : // As long as we have not received the other side's public key, don't receive more than
1259 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1260 : : // key exchange first.
1261 [ # # ]: 0 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1262 : : case RecvState::GARB_GARBTERM:
1263 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1264 : 0 : return 1;
1265 : : case RecvState::VERSION:
1266 : : case RecvState::APP:
1267 : : // These three states all involve decoding a packet. Process the length descriptor first,
1268 : : // so that we know where the current packet ends (and we don't process bytes from the next
1269 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1270 [ # # ]: 0 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1271 : 0 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1272 : : } else {
1273 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1274 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1275 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1276 : : // the encrypted packet length is left in the receive buffer.
1277 : 0 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1278 : : }
1279 : : case RecvState::APP_READY:
1280 : : // No bytes can be processed until GetMessage() is called.
1281 : 0 : return 0;
1282 : : case RecvState::V1:
1283 : : // Not allowed (must be dealt with by the caller).
1284 [ # # ]: 0 : Assume(false);
1285 : 0 : return 0;
1286 : : }
1287 [ # # ]: 0 : Assume(false); // unreachable
1288 : 0 : return 0;
1289 : 0 : }
1290 : :
1291 : 0 : bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1292 : : {
1293 [ # # ]: 0 : AssertLockNotHeld(m_recv_mutex);
1294 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1295 : : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1296 : :
1297 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
1298 [ # # ][ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1299 : :
1300 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1301 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1302 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1303 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1304 [ # # ]: 0 : while (!msg_bytes.empty()) {
1305 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1306 : 0 : size_t max_read = GetMaxBytesToProcess();
1307 : :
1308 : : // Reserve space in the buffer if there is not enough.
1309 [ # # ][ # # ]: 0 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1310 [ # # # # ]: 0 : switch (m_recv_state) {
1311 : : case RecvState::KEY_MAYBE_V1:
1312 : : case RecvState::KEY:
1313 : : case RecvState::GARB_GARBTERM:
1314 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1315 : : // bytes).
1316 [ # # ]: 0 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1317 : 0 : break;
1318 : : case RecvState::VERSION:
1319 : : case RecvState::APP: {
1320 : : // During states where a packet is being received, as much as is expected but never
1321 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1322 : : // This means attackers that want to cause us to waste allocated memory are limited
1323 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1324 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1325 [ # # ]: 0 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1326 [ # # ]: 0 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1327 : 0 : break;
1328 : : }
1329 : : case RecvState::APP_READY:
1330 : : // The buffer is empty in this state.
1331 [ # # ]: 0 : Assume(m_recv_buffer.empty());
1332 : 0 : break;
1333 : : case RecvState::V1:
1334 : : // Should have bailed out above.
1335 [ # # ]: 0 : Assume(false);
1336 : 0 : break;
1337 : : }
1338 : 0 : }
1339 : :
1340 : : // Can't read more than provided input.
1341 [ # # ]: 0 : max_read = std::min(msg_bytes.size(), max_read);
1342 : : // Copy data to buffer.
1343 [ # # ][ # # ]: 0 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
[ # # ]
1344 : 0 : msg_bytes = msg_bytes.subspan(max_read);
1345 : :
1346 : : // Process data in the buffer.
1347 [ # # # # : 0 : switch (m_recv_state) {
# # # ]
1348 : : case RecvState::KEY_MAYBE_V1:
1349 : 0 : ProcessReceivedMaybeV1Bytes();
1350 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return true;
1351 : 0 : break;
1352 : :
1353 : : case RecvState::KEY:
1354 [ # # ]: 0 : if (!ProcessReceivedKeyBytes()) return false;
1355 : 0 : break;
1356 : :
1357 : : case RecvState::GARB_GARBTERM:
1358 [ # # ]: 0 : if (!ProcessReceivedGarbageBytes()) return false;
1359 : 0 : break;
1360 : :
1361 : : case RecvState::VERSION:
1362 : : case RecvState::APP:
1363 [ # # ]: 0 : if (!ProcessReceivedPacketBytes()) return false;
1364 : 0 : break;
1365 : :
1366 : : case RecvState::APP_READY:
1367 : 0 : return true;
1368 : :
1369 : : case RecvState::V1:
1370 : : // We should have bailed out before.
1371 [ # # ]: 0 : Assume(false);
1372 : 0 : break;
1373 : : }
1374 : : // Make sure we have made progress before continuing.
1375 [ # # ]: 0 : Assume(max_read > 0);
1376 : : }
1377 : :
1378 : 0 : return true;
1379 : 0 : }
1380 : :
1381 : 0 : std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1382 : : {
1383 [ # # ]: 0 : if (contents.size() == 0) return std::nullopt; // Empty contents
1384 : 0 : uint8_t first_byte = contents[0];
1385 : 0 : contents = contents.subspan(1); // Strip first byte.
1386 : :
1387 [ # # ]: 0 : if (first_byte != 0) {
1388 : : // Short (1 byte) encoding.
1389 [ # # ]: 1 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1390 : 1 : // Valid short message id.
1391 [ # # ]: 0 : return V2_MESSAGE_IDS[first_byte];
1392 : : } else {
1393 : 1 : // Unknown short message id.
1394 [ + - ]: 1 : return std::nullopt;
1395 : : }
1396 : : }
1397 : :
1398 [ # # ]: 0 : if (contents.size() < CMessageHeader::COMMAND_SIZE) {
1399 : 0 : return std::nullopt; // Long encoding needs 12 message type bytes.
1400 : : }
1401 : :
1402 : 0 : size_t msg_type_len{0};
1403 [ # # ][ # # ]: 0 : while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
1404 : 1 : // Verify that message type bytes before the first 0x00 are in range.
1405 [ # # ][ # # ]: 1 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1406 : 0 : return {};
1407 : : }
1408 : 1 : ++msg_type_len;
1409 : 1 : }
1410 [ # # ]: 0 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1411 [ # # ]: 0 : while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
1412 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1413 [ # # ]: 0 : if (contents[msg_type_len] != 0) return {};
1414 : 0 : ++msg_type_len;
1415 : : }
1416 : : // Strip message type bytes of contents.
1417 : 0 : contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
1418 : 0 : return ret;
1419 : 0 : }
1420 : :
1421 : 0 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1422 : 1 : {
1423 [ # # ]: 1 : AssertLockNotHeld(m_recv_mutex);
1424 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
1425 [ # # ][ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1426 : 1 :
1427 [ # # ]: 0 : Assume(m_recv_state == RecvState::APP_READY);
1428 [ # # ]: 0 : Span<const uint8_t> contents{m_recv_decode_buffer};
1429 : 0 : auto msg_type = GetMessageType(contents);
1430 [ # # ]: 0 : CDataStream ret(m_recv_type, m_recv_version);
1431 [ # # ]: 0 : CNetMessage msg{std::move(ret)};
1432 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1433 : 0 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1434 [ # # ]: 0 : if (msg_type) {
1435 : 0 : reject_message = false;
1436 [ # # ]: 0 : msg.m_type = std::move(*msg_type);
1437 : 0 : msg.m_time = time;
1438 : 0 : msg.m_message_size = contents.size();
1439 [ # # ]: 0 : msg.m_recv.resize(contents.size());
1440 [ # # ][ # # ]: 0 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
[ # # ]
1441 : 0 : } else {
1442 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
[ # # ][ # # ]
[ # # ]
1443 : 0 : reject_message = true;
1444 : : }
1445 : 0 : ClearShrink(m_recv_decode_buffer);
1446 : 0 : SetReceiveState(RecvState::APP);
1447 : :
1448 : 0 : return msg;
1449 [ # # ]: 0 : }
1450 : :
1451 : 0 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1452 : : {
1453 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1454 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1455 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1456 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1457 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1458 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1459 [ # # ][ # # ]: 0 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1460 : : // Construct contents (encoding message type + payload).
1461 : 0 : std::vector<uint8_t> contents;
1462 : 0 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1463 [ # # ]: 0 : if (short_message_id) {
1464 [ # # ]: 0 : contents.resize(1 + msg.data.size());
1465 : 0 : contents[0] = *short_message_id;
1466 [ # # ]: 0 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1467 : 0 : } else {
1468 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1469 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1470 [ # # ]: 0 : contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
1471 [ # # ]: 0 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1472 [ # # ]: 0 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
1473 : : }
1474 : : // Construct ciphertext in send buffer.
1475 [ # # ]: 0 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1476 : 0 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1477 [ # # ]: 0 : m_send_type = msg.m_type;
1478 : : // Release memory
1479 : 0 : ClearShrink(msg.data);
1480 : 0 : return true;
1481 : 0 : }
1482 : :
1483 : 0 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1484 : : {
1485 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1486 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1487 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1488 : :
1489 [ # # ][ # # ]: 0 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1490 [ # # ]: 0 : Assume(m_send_pos <= m_send_buffer.size());
1491 : 0 : return {
1492 [ # # ]: 0 : Span{m_send_buffer}.subspan(m_send_pos),
1493 : : // We only have more to send after the current m_send_buffer if there is a (next)
1494 : : // message to be sent, and we're capable of sending packets. */
1495 [ # # ]: 0 : have_next_message && m_send_state == SendState::READY,
1496 : 0 : m_send_type
1497 : : };
1498 : 0 : }
1499 : :
1500 : 0 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1501 : 1 : {
1502 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1503 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1504 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1505 : :
1506 [ # # ][ # # ]: 0 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
[ # # ]
1507 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
[ # # ][ # # ]
[ # # ]
1508 : 0 : }
1509 : :
1510 : 0 : m_send_pos += bytes_sent;
1511 [ # # ]: 0 : Assume(m_send_pos <= m_send_buffer.size());
1512 [ # # ]: 0 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1513 : 0 : m_sent_v1_header_worth = true;
1514 : 0 : }
1515 : : // Wipe the buffer when everything is sent.
1516 [ # # ]: 0 : if (m_send_pos == m_send_buffer.size()) {
1517 : 0 : m_send_pos = 0;
1518 : 0 : ClearShrink(m_send_buffer);
1519 : 0 : }
1520 [ # # ]: 0 : }
1521 : :
1522 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1523 : : {
1524 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1525 [ # # ]: 0 : AssertLockNotHeld(m_recv_mutex);
1526 : : // Only outgoing connections need reconnection.
1527 [ # # ]: 0 : if (!m_initiating) return false;
1528 : :
1529 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
1530 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1531 : : // these conditions imply nothing has been received so far.
1532 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1533 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1534 : 1 : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1535 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1536 : 0 : return m_sent_v1_header_worth;
1537 : 0 : }
1538 : :
1539 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1540 : : {
1541 [ # # ]: 0 : AssertLockNotHeld(m_send_mutex);
1542 [ # # ][ # # ]: 0 : LOCK(m_send_mutex);
1543 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1544 : :
1545 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1546 : 0 : }
1547 : :
1548 : 0 : Transport::Info V2Transport::GetInfo() const noexcept
1549 : : {
1550 [ # # ]: 0 : AssertLockNotHeld(m_recv_mutex);
1551 [ # # ][ # # ]: 0 : LOCK(m_recv_mutex);
1552 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1553 : :
1554 : 0 : Transport::Info info;
1555 : :
1556 : : // Do not report v2 and session ID until the version packet has been received
1557 : : // and verified (confirming that the other side very likely has the same keys as us).
1558 [ # # ][ # # ]: 0 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
[ # # ]
1559 [ # # ]: 0 : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1560 : 0 : info.transport_type = TransportProtocolType::V2;
1561 [ # # ][ # # ]: 0 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1562 : 0 : } else {
1563 : 0 : info.transport_type = TransportProtocolType::DETECTING;
1564 : : }
1565 : :
1566 : 0 : return info;
1567 : 0 : }
1568 : :
1569 : 0 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1570 : : {
1571 : 0 : auto it = node.vSendMsg.begin();
1572 : 0 : size_t nSentSize = 0;
1573 : 0 : bool data_left{false}; //!< second return value (whether unsent data remains)
1574 : 0 : std::optional<bool> expected_more;
1575 : :
1576 : 0 : while (true) {
1577 [ # # ]: 0 : if (it != node.vSendMsg.end()) {
1578 : : // If possible, move one message from the send queue to the transport. This fails when
1579 : : // there is an existing message still being sent, or (for v2 transports) when the
1580 : : // handshake has not yet completed.
1581 : 0 : size_t memusage = it->GetMemoryUsage();
1582 [ # # ]: 0 : if (node.m_transport->SetMessageToSend(*it)) {
1583 : : // Update memory usage of send buffer (as *it will be deleted).
1584 : 0 : node.m_send_memusage -= memusage;
1585 : 0 : ++it;
1586 : 0 : }
1587 : 0 : }
1588 : 0 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1589 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1590 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1591 : : // verify that the previously returned 'more' was correct.
1592 [ # # ]: 0 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1593 : 0 : expected_more = more;
1594 : 0 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1595 : 0 : int nBytes = 0;
1596 [ # # ]: 0 : if (!data.empty()) {
1597 : 0 : LOCK(node.m_sock_mutex);
1598 : : // There is no socket in case we've already disconnected, or in test cases without
1599 : : // real connections. In these cases, we bail out immediately and just leave things
1600 : : // in the send queue and transport.
1601 [ # # ]: 0 : if (!node.m_sock) {
1602 : 0 : break;
1603 : : }
1604 : 0 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1605 : : #ifdef MSG_MORE
1606 [ # # ]: 0 : if (more) {
1607 : 0 : flags |= MSG_MORE;
1608 : 0 : }
1609 : : #endif
1610 [ # # ][ # # ]: 0 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
[ # # ]
1611 [ # # # ]: 0 : }
1612 [ # # ]: 0 : if (nBytes > 0) {
1613 : 0 : node.m_last_send = GetTime<std::chrono::seconds>();
1614 : 0 : node.nSendBytes += nBytes;
1615 : : // Notify transport that bytes have been processed.
1616 : 0 : node.m_transport->MarkBytesSent(nBytes);
1617 : : // Update statistics per message type.
1618 [ # # ]: 0 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1619 : 0 : node.AccountForSentBytes(msg_type, nBytes);
1620 : 0 : }
1621 : 0 : nSentSize += nBytes;
1622 [ # # ][ # # ]: 0 : if ((size_t)nBytes != data.size()) {
1623 : : // could not send full message; stop sending more
1624 : 0 : break;
1625 : : }
1626 : 0 : } else {
1627 [ # # ]: 0 : if (nBytes < 0) {
1628 : : // error
1629 : 0 : int nErr = WSAGetLastError();
1630 [ # # ][ # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
[ # # ][ # # ]
1631 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
[ # # ][ # # ]
[ # # ][ # # ]
1632 : 0 : node.CloseSocketDisconnect();
1633 : 0 : }
1634 : 0 : }
1635 : 0 : break;
1636 : : }
1637 : : }
1638 : :
1639 : 0 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1640 : :
1641 [ # # ]: 0 : if (it == node.vSendMsg.end()) {
1642 [ # # ]: 0 : assert(node.m_send_memusage == 0);
1643 : 0 : }
1644 : 0 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1645 : 0 : return {nSentSize, data_left};
1646 : 0 : }
1647 : :
1648 : : /** Try to find a connection to evict when the node is full.
1649 : : * Extreme care must be taken to avoid opening the node to attacker
1650 : : * triggered network partitioning.
1651 : : * The strategy used here is to protect a small number of peers
1652 : : * for each of several distinct characteristics which are difficult
1653 : : * to forge. In order to partition a node the attacker must be
1654 : : * simultaneously better at all of them than honest peers.
1655 : : */
1656 : 0 : bool CConnman::AttemptToEvictConnection()
1657 : : {
1658 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1659 : : {
1660 : :
1661 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
1662 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1663 [ # # ]: 0 : if (node->fDisconnect)
1664 : 0 : continue;
1665 : 0 : NodeEvictionCandidate candidate{
1666 [ # # ]: 0 : .id = node->GetId(),
1667 : 0 : .m_connected = node->m_connected,
1668 : 0 : .m_min_ping_time = node->m_min_ping_time,
1669 : 0 : .m_last_block_time = node->m_last_block_time,
1670 : 0 : .m_last_tx_time = node->m_last_tx_time,
1671 : 0 : .fRelevantServices = node->m_has_all_wanted_services,
1672 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1673 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1674 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1675 : 0 : .prefer_evict = node->m_prefer_evict,
1676 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1677 [ # # ]: 0 : .m_network = node->ConnectedThroughNetwork(),
1678 [ # # ]: 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1679 : 0 : .m_conn_type = node->m_conn_type,
1680 : : };
1681 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1682 : : }
1683 : 0 : }
1684 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1685 [ # # ]: 0 : if (!node_id_to_evict) {
1686 : 0 : return false;
1687 : : }
1688 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
1689 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1690 [ # # ][ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1691 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1692 : 0 : pnode->fDisconnect = true;
1693 : 0 : return true;
1694 : : }
1695 : : }
1696 : 0 : return false;
1697 : 0 : }
1698 : :
1699 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1700 : : struct sockaddr_storage sockaddr;
1701 : 0 : socklen_t len = sizeof(sockaddr);
1702 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1703 [ # # ]: 0 : CAddress addr;
1704 : :
1705 [ # # ]: 0 : if (!sock) {
1706 : 0 : const int nErr = WSAGetLastError();
1707 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1708 [ # # ][ # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
[ # # ][ # # ]
1709 : 0 : }
1710 : 0 : return;
1711 : : }
1712 : :
1713 [ # # ][ # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1714 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
[ # # ][ # # ]
[ # # ]
1715 : 0 : } else {
1716 [ # # ][ # # ]: 0 : addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1717 : : }
1718 : :
1719 [ # # ][ # # ]: 0 : const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
[ # # ]
1720 : :
1721 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1722 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1723 : :
1724 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1725 [ # # ]: 0 : }
1726 : :
1727 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1728 : : NetPermissionFlags permission_flags,
1729 : : const CAddress& addr_bind,
1730 : : const CAddress& addr)
1731 : : {
1732 : 0 : int nInbound = 0;
1733 : 0 : int nMaxInbound = nMaxConnections - m_max_outbound;
1734 : :
1735 : 0 : AddWhitelistPermissionFlags(permission_flags, addr);
1736 [ # # ]: 0 : if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::Implicit)) {
1737 : 0 : NetPermissions::ClearFlag(permission_flags, NetPermissionFlags::Implicit);
1738 [ # # ][ # # ]: 0 : if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::ForceRelay);
[ # # ]
1739 [ # # ][ # # ]: 0 : if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Relay);
[ # # ]
1740 : 0 : NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Mempool);
1741 : 0 : NetPermissions::AddFlag(permission_flags, NetPermissionFlags::NoBan);
1742 : 0 : }
1743 : :
1744 : : {
1745 : 0 : LOCK(m_nodes_mutex);
1746 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1747 [ # # ][ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1748 : : }
1749 : 0 : }
1750 : :
1751 [ # # ]: 0 : if (!fNetworkActive) {
1752 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ]
1753 : 0 : return;
1754 : : }
1755 : :
1756 [ # # ]: 0 : if (!sock->IsSelectable()) {
1757 [ # # ][ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
[ # # ][ # # ]
1758 : 0 : return;
1759 : : }
1760 : :
1761 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1762 : : // on all platforms. Set it again here just to be sure.
1763 : 0 : const int on{1};
1764 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1765 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
[ # # ][ # # ]
[ # # ]
1766 : : addr.ToStringAddrPort());
1767 : 0 : }
1768 : :
1769 : : // Don't accept connections from banned peers.
1770 [ # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1771 [ # # ][ # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1772 : : {
1773 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ]
1774 : 0 : return;
1775 : : }
1776 : :
1777 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1778 [ # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1779 [ # # ][ # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged)
[ # # ]
1780 : : {
1781 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ]
1782 : 0 : return;
1783 : : }
1784 : :
1785 [ # # ]: 0 : if (nInbound >= nMaxInbound)
1786 : : {
1787 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1788 : : // No connection to evict, disconnect the new connection
1789 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
[ # # ][ # # ]
1790 : 0 : return;
1791 : : }
1792 : 0 : }
1793 : :
1794 : 0 : NodeId id = GetNewNodeId();
1795 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1796 : :
1797 : 0 : ServiceFlags nodeServices = nLocalServices;
1798 [ # # ]: 0 : if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::BloomFilter)) {
1799 : 0 : nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
1800 : 0 : }
1801 : :
1802 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1803 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1804 : : // detected, so use it whenever we signal NODE_P2P_V2.
1805 : 0 : const bool use_v2transport(nodeServices & NODE_P2P_V2);
1806 : :
1807 [ # # ][ # # ]: 0 : CNode* pnode = new CNode(id,
1808 [ # # ]: 0 : std::move(sock),
1809 : 0 : addr,
1810 [ # # ]: 0 : CalculateKeyedNetGroup(addr),
1811 : 0 : nonce,
1812 : 0 : addr_bind,
1813 [ # # ]: 0 : /*addrNameIn=*/"",
1814 : : ConnectionType::INBOUND,
1815 : 0 : inbound_onion,
1816 : 0 : CNodeOptions{
1817 : 0 : .permission_flags = permission_flags,
1818 : 0 : .prefer_evict = discouraged,
1819 : 0 : .recv_flood_size = nReceiveFloodSize,
1820 : 0 : .use_v2transport = use_v2transport,
1821 : : });
1822 : 0 : pnode->AddRef();
1823 : 0 : m_msgproc->InitializeNode(*pnode, nodeServices);
1824 : :
1825 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
[ # # ][ # # ]
[ # # ]
1826 : :
1827 : : {
1828 : 0 : LOCK(m_nodes_mutex);
1829 [ # # ]: 0 : m_nodes.push_back(pnode);
1830 : 0 : }
1831 : :
1832 : : // We received a new connection, harvest entropy from the time (and our peer count)
1833 : 0 : RandAddEvent((uint32_t)id);
1834 : 0 : }
1835 : :
1836 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type)
1837 : : {
1838 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1839 : 0 : std::optional<int> max_connections;
1840 [ # # # # : 0 : switch (conn_type) {
# # ]
1841 : : case ConnectionType::INBOUND:
1842 : : case ConnectionType::MANUAL:
1843 : 0 : return false;
1844 : : case ConnectionType::OUTBOUND_FULL_RELAY:
1845 : 0 : max_connections = m_max_outbound_full_relay;
1846 : 0 : break;
1847 : : case ConnectionType::BLOCK_RELAY:
1848 : 0 : max_connections = m_max_outbound_block_relay;
1849 : 0 : break;
1850 : : // no limit for ADDR_FETCH because -seednode has no limit either
1851 : : case ConnectionType::ADDR_FETCH:
1852 : 0 : break;
1853 : : // no limit for FEELER connections since they're short-lived
1854 : : case ConnectionType::FEELER:
1855 : 0 : break;
1856 : : } // no default case, so the compiler can warn about missing cases
1857 : :
1858 : : // Count existing connections
1859 [ # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1860 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1861 : :
1862 : : // Max connections of specified type already exist
1863 [ # # ][ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1864 : :
1865 : : // Max total outbound connections already exist
1866 : 0 : CSemaphoreGrant grant(*semOutbound, true);
1867 [ # # ]: 0 : if (!grant) return false;
1868 : :
1869 [ # # ][ # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/false);
1870 : 0 : return true;
1871 : 0 : }
1872 : :
1873 : 0 : void CConnman::DisconnectNodes()
1874 : : {
1875 : 0 : AssertLockNotHeld(m_nodes_mutex);
1876 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1877 : :
1878 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1879 : : // m_reconnections_mutex while holding m_nodes_mutex.
1880 : 0 : decltype(m_reconnections) reconnections_to_add;
1881 : :
1882 : : {
1883 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
1884 : :
1885 [ # # ]: 0 : if (!fNetworkActive) {
1886 : : // Disconnect any connected nodes
1887 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1888 [ # # ]: 0 : if (!pnode->fDisconnect) {
1889 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
1890 : 0 : pnode->fDisconnect = true;
1891 : 0 : }
1892 : : }
1893 : 0 : }
1894 : :
1895 : : // Disconnect unused nodes
1896 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1897 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1898 : : {
1899 [ # # ]: 0 : if (pnode->fDisconnect)
1900 : : {
1901 : : // remove from m_nodes
1902 [ # # ][ # # ]: 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1903 : :
1904 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1905 : : // the creation of a connection is a blocking operation (up to several seconds),
1906 : : // and we don't want to hold up the socket handler thread for that long.
1907 [ # # ]: 0 : if (pnode->m_transport->ShouldReconnectV1()) {
1908 [ # # ][ # # ]: 0 : reconnections_to_add.push_back({
1909 [ # # ]: 0 : .addr_connect = pnode->addr,
1910 : 0 : .grant = std::move(pnode->grantOutbound),
1911 [ # # ]: 0 : .destination = pnode->m_dest,
1912 : 0 : .conn_type = pnode->m_conn_type,
1913 : : .use_v2transport = false});
1914 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
1915 : 0 : }
1916 : :
1917 : : // release outbound grant (if any)
1918 : 0 : pnode->grantOutbound.Release();
1919 : :
1920 : : // close socket and cleanup
1921 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1922 : :
1923 : : // update connection count by network
1924 [ # # ][ # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
[ # # ]
1925 : :
1926 : : // hold in disconnected pool until all refs are released
1927 [ # # ]: 0 : pnode->Release();
1928 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1929 : 0 : }
1930 : : }
1931 : 0 : }
1932 : : {
1933 : : // Delete disconnected nodes
1934 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1935 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1936 : : {
1937 : : // Destroy the object only after other threads have stopped using it.
1938 [ # # ][ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1939 [ # # ]: 0 : m_nodes_disconnected.remove(pnode);
1940 [ # # ]: 0 : DeleteNode(pnode);
1941 : 0 : }
1942 : : }
1943 : 0 : }
1944 : : {
1945 : : // Move entries from reconnections_to_add to m_reconnections.
1946 [ # # ][ # # ]: 0 : LOCK(m_reconnections_mutex);
1947 : 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1948 : 0 : }
1949 : 0 : }
1950 : :
1951 : 0 : void CConnman::NotifyNumConnectionsChanged()
1952 : : {
1953 : : size_t nodes_size;
1954 : : {
1955 : 0 : LOCK(m_nodes_mutex);
1956 : 0 : nodes_size = m_nodes.size();
1957 : 0 : }
1958 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1959 : 0 : nPrevNodeCount = nodes_size;
1960 [ # # ]: 0 : if (m_client_interface) {
1961 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1962 : 0 : }
1963 : 0 : }
1964 : 0 : }
1965 : :
1966 : 0 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1967 : : {
1968 : 0 : return node.m_connected + m_peer_connect_timeout < now;
1969 : : }
1970 : :
1971 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
1972 : : {
1973 : : // Tests that see disconnects after using mocktime can start nodes with a
1974 : : // large timeout. For example, -peertimeout=999999999.
1975 : 0 : const auto now{GetTime<std::chrono::seconds>()};
1976 : 0 : const auto last_send{node.m_last_send.load()};
1977 : 0 : const auto last_recv{node.m_last_recv.load()};
1978 : :
1979 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
1980 : :
1981 [ # # ][ # # ]: 0 : if (last_recv.count() == 0 || last_send.count() == 0) {
1982 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1983 : 0 : return true;
1984 : : }
1985 : :
1986 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
1987 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1988 : 0 : return true;
1989 : : }
1990 : :
1991 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
1992 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1993 : 0 : return true;
1994 : : }
1995 : :
1996 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
1997 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
[ # # ][ # # ]
[ # # ]
1998 : 0 : return true;
1999 : : }
2000 : :
2001 : 0 : return false;
2002 : 0 : }
2003 : :
2004 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
2005 : : {
2006 : 0 : Sock::EventsPerSock events_per_sock;
2007 : :
2008 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2009 [ # # ][ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2010 : : }
2011 : :
2012 [ # # ]: 0 : for (CNode* pnode : nodes) {
2013 : 0 : bool select_recv = !pnode->fPauseRecv;
2014 : : bool select_send;
2015 : : {
2016 [ # # ][ # # ]: 0 : LOCK(pnode->cs_vSend);
2017 : : // Sending is possible if either there are bytes to send right now, or if there will be
2018 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2019 : : // determines both of these in a single call.
2020 : 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2021 [ # # ]: 0 : select_send = !to_send.empty() || more;
2022 : 0 : }
2023 [ # # ][ # # ]: 0 : if (!select_recv && !select_send) continue;
2024 : :
2025 [ # # ][ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2026 [ # # ]: 0 : if (pnode->m_sock) {
2027 : 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2028 [ # # ][ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2029 : 0 : }
2030 : 0 : }
2031 : :
2032 : 0 : return events_per_sock;
2033 [ # # ]: 0 : }
2034 : :
2035 : 0 : void CConnman::SocketHandler()
2036 : : {
2037 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2038 : :
2039 : 0 : Sock::EventsPerSock events_per_sock;
2040 : :
2041 : : {
2042 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2043 : :
2044 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2045 : :
2046 : : // Check for the readiness of the already connected sockets and the
2047 : : // listening sockets in one call ("readiness" as in poll(2) or
2048 : : // select(2)). If none are ready, wait for a short while and return
2049 : : // empty sets.
2050 [ # # ][ # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
[ # # ]
2051 [ # # ][ # # ]: 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
[ # # ]
2052 [ # # ][ # # ]: 0 : interruptNet.sleep_for(timeout);
2053 : 0 : }
2054 : :
2055 : : // Service (send/receive) each of the already connected nodes.
2056 [ # # ][ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2057 : 0 : }
2058 : :
2059 : : // Accept new connections from listening sockets.
2060 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2061 : 0 : }
2062 : :
2063 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2064 : : const Sock::EventsPerSock& events_per_sock)
2065 : : {
2066 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2067 : :
2068 [ # # ]: 0 : for (CNode* pnode : nodes) {
2069 [ # # ]: 0 : if (interruptNet)
2070 : 0 : return;
2071 : :
2072 : : //
2073 : : // Receive
2074 : : //
2075 : 0 : bool recvSet = false;
2076 : 0 : bool sendSet = false;
2077 : 0 : bool errorSet = false;
2078 : : {
2079 : 0 : LOCK(pnode->m_sock_mutex);
2080 [ # # ]: 0 : if (!pnode->m_sock) {
2081 : 0 : continue;
2082 : : }
2083 [ # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2084 [ # # ]: 0 : if (it != events_per_sock.end()) {
2085 : 0 : recvSet = it->second.occurred & Sock::RECV;
2086 : 0 : sendSet = it->second.occurred & Sock::SEND;
2087 : 0 : errorSet = it->second.occurred & Sock::ERR;
2088 : 0 : }
2089 [ # # ]: 0 : }
2090 : :
2091 [ # # ]: 0 : if (sendSet) {
2092 : : // Send data
2093 [ # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2094 [ # # ]: 0 : if (bytes_sent) {
2095 : 0 : RecordBytesSent(bytes_sent);
2096 : :
2097 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2098 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2099 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2100 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2101 : : // sending actually succeeded to make sure progress is always made; otherwise a
2102 : : // deadlock would be possible when both sides have data to send, but neither is
2103 : : // receiving.
2104 [ # # ]: 0 : if (data_left) recvSet = false;
2105 : 0 : }
2106 : 0 : }
2107 : :
2108 [ # # ][ # # ]: 0 : if (recvSet || errorSet)
2109 : : {
2110 : : // typical socket buffer is 8K-64K
2111 : : uint8_t pchBuf[0x10000];
2112 : 0 : int nBytes = 0;
2113 : : {
2114 : 0 : LOCK(pnode->m_sock_mutex);
2115 [ # # ]: 0 : if (!pnode->m_sock) {
2116 : 0 : continue;
2117 : : }
2118 [ # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2119 [ # # ]: 0 : }
2120 [ # # ]: 0 : if (nBytes > 0)
2121 : : {
2122 : 0 : bool notify = false;
2123 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2124 : 0 : pnode->CloseSocketDisconnect();
2125 : 0 : }
2126 : 0 : RecordBytesRecv(nBytes);
2127 [ # # ]: 0 : if (notify) {
2128 : 0 : pnode->MarkReceivedMsgsForProcessing();
2129 : 0 : WakeMessageHandler();
2130 : 0 : }
2131 : 0 : }
2132 [ # # ]: 0 : else if (nBytes == 0)
2133 : : {
2134 : : // socket closed gracefully
2135 [ # # ]: 0 : if (!pnode->fDisconnect) {
2136 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
[ # # ][ # # ]
[ # # ]
2137 : 0 : }
2138 : 0 : pnode->CloseSocketDisconnect();
2139 : 0 : }
2140 [ # # ]: 0 : else if (nBytes < 0)
2141 : : {
2142 : : // error
2143 : 0 : int nErr = WSAGetLastError();
2144 [ # # ][ # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
[ # # ][ # # ]
2145 : : {
2146 [ # # ]: 0 : if (!pnode->fDisconnect) {
2147 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
[ # # ][ # # ]
[ # # ][ # # ]
2148 : 0 : }
2149 : 0 : pnode->CloseSocketDisconnect();
2150 : 0 : }
2151 : 0 : }
2152 : 0 : }
2153 : :
2154 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2155 : : }
2156 : 0 : }
2157 : :
2158 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2159 : : {
2160 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2161 [ # # ]: 0 : if (interruptNet) {
2162 : 0 : return;
2163 : : }
2164 [ # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2165 [ # # ][ # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2166 : 0 : AcceptConnection(listen_socket);
2167 : 0 : }
2168 : : }
2169 : 0 : }
2170 : :
2171 : 0 : void CConnman::ThreadSocketHandler()
2172 : : {
2173 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2174 : :
2175 [ # # ]: 0 : while (!interruptNet)
2176 : : {
2177 : 0 : DisconnectNodes();
2178 : 0 : NotifyNumConnectionsChanged();
2179 : 0 : SocketHandler();
2180 : : }
2181 : 0 : }
2182 : :
2183 : 0 : void CConnman::WakeMessageHandler()
2184 : : {
2185 : : {
2186 : 0 : LOCK(mutexMsgProc);
2187 : 0 : fMsgProcWake = true;
2188 : 0 : }
2189 : 0 : condMsgProc.notify_one();
2190 : 0 : }
2191 : :
2192 : 0 : void CConnman::ThreadDNSAddressSeed()
2193 : : {
2194 : 0 : FastRandomContext rng;
2195 [ # # ][ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2196 [ # # ]: 0 : Shuffle(seeds.begin(), seeds.end(), rng);
2197 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2198 : 0 : int found = 0;
2199 : :
2200 [ # # ][ # # ]: 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
[ # # ]
2201 : : // When -forcednsseed is provided, query all.
2202 : 0 : seeds_right_now = seeds.size();
2203 [ # # ][ # # ]: 0 : } else if (addrman.Size() == 0) {
2204 : : // If we have no known peers, query all.
2205 : : // This will occur on the first run, or if peers.dat has been
2206 : : // deleted.
2207 : 0 : seeds_right_now = seeds.size();
2208 : 0 : }
2209 : :
2210 : : // goal: only query DNS seed if address need is acute
2211 : : // * If we have a reasonable number of peers in addrman, spend
2212 : : // some time trying them first. This improves user privacy by
2213 : : // creating fewer identifying DNS requests, reduces trust by
2214 : : // giving seeds less influence on the network topology, and
2215 : : // reduces traffic to the seeds.
2216 : : // * When querying DNS seeds query a few at once, this ensures
2217 : : // that we don't give DNS seeds the ability to eclipse nodes
2218 : : // that query them.
2219 : : // * If we continue having problems, eventually query all the
2220 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2221 : : // (done in ThreadOpenConnections)
2222 [ # # ][ # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
[ # # ]
2223 : :
2224 [ # # ]: 0 : for (const std::string& seed : seeds) {
2225 [ # # ]: 0 : if (seeds_right_now == 0) {
2226 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2227 : :
2228 [ # # ][ # # ]: 0 : if (addrman.Size() > 0) {
2229 [ # # ][ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
[ # # ][ # # ]
2230 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2231 [ # # ][ # # ]: 0 : while (to_wait.count() > 0) {
2232 : : // if sleeping for the MANY_PEERS interval, wake up
2233 : : // early to see if we have enough peers and can stop
2234 : : // this thread entirely freeing up its resources
2235 [ # # ]: 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2236 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
[ # # ]
2237 [ # # ]: 0 : to_wait -= w;
2238 : :
2239 : 0 : int nRelevant = 0;
2240 : : {
2241 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
2242 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2243 [ # # ][ # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
[ # # ]
2244 : : }
2245 : 0 : }
2246 [ # # ]: 0 : if (nRelevant >= 2) {
2247 [ # # ]: 0 : if (found > 0) {
2248 [ # # ][ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
[ # # ]
2249 [ # # ][ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
[ # # ]
2250 : 0 : } else {
2251 [ # # ][ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
[ # # ]
2252 : : }
2253 : 0 : return;
2254 : : }
2255 : : }
2256 : 0 : }
2257 : 0 : }
2258 : :
2259 [ # # ][ # # ]: 0 : if (interruptNet) return;
2260 : :
2261 : : // hold off on querying seeds if P2P network deactivated
2262 [ # # ]: 0 : if (!fNetworkActive) {
2263 [ # # ][ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
[ # # ]
2264 : 0 : do {
2265 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
[ # # ][ # # ]
2266 [ # # ]: 0 : } while (!fNetworkActive);
2267 : 0 : }
2268 : :
2269 [ # # ][ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
[ # # ]
2270 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2271 : : // for the base dns seed domain in chainparams
2272 [ # # ][ # # ]: 0 : if (HaveNameProxy()) {
2273 [ # # ]: 0 : AddAddrFetch(seed);
2274 : 0 : } else {
2275 : 0 : std::vector<CAddress> vAdd;
2276 [ # # ]: 0 : ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
2277 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2278 [ # # ]: 0 : CNetAddr resolveSource;
2279 [ # # ][ # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2280 : 0 : continue;
2281 : : }
2282 : 0 : unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
2283 [ # # ][ # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2284 [ # # ]: 0 : if (!addresses.empty()) {
2285 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2286 [ # # ][ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
[ # # ]
2287 [ # # ][ # # ]: 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
2288 [ # # ]: 0 : vAdd.push_back(addr);
2289 : 0 : found++;
2290 : 0 : }
2291 [ # # ][ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2292 : 0 : } else {
2293 : : // If the seed does not support a subdomain with our desired service bits,
2294 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2295 : : // base dns seed domain in chainparams
2296 [ # # ]: 0 : AddAddrFetch(seed);
2297 : : }
2298 [ # # ]: 0 : }
2299 : 0 : --seeds_right_now;
2300 : : }
2301 [ # # ][ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
[ # # ]
2302 : 0 : }
2303 : :
2304 : 0 : void CConnman::DumpAddresses()
2305 : : {
2306 : 0 : const auto start{SteadyClock::now()};
2307 : :
2308 : 0 : DumpPeerAddresses(::gArgs, addrman);
2309 : :
2310 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2311 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2312 : 0 : }
2313 : :
2314 : 0 : void CConnman::ProcessAddrFetch()
2315 : : {
2316 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2317 : 0 : std::string strDest;
2318 : : {
2319 [ # # ][ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2320 [ # # ]: 0 : if (m_addr_fetches.empty())
2321 : 0 : return;
2322 [ # # ]: 0 : strDest = m_addr_fetches.front();
2323 : 0 : m_addr_fetches.pop_front();
2324 [ # # ]: 0 : }
2325 [ # # ]: 0 : CAddress addr;
2326 : 0 : CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2327 [ # # ]: 0 : if (grant) {
2328 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, /*use_v2transport=*/false);
2329 : 0 : }
2330 [ # # ]: 0 : }
2331 : :
2332 : 0 : bool CConnman::GetTryNewOutboundPeer() const
2333 : : {
2334 : 0 : return m_try_another_outbound_peer;
2335 : : }
2336 : :
2337 : 1 : void CConnman::SetTryNewOutboundPeer(bool flag)
2338 : : {
2339 : 1 : m_try_another_outbound_peer = flag;
2340 [ + - ][ # # ]: 1 : LogPrint(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
[ # # ][ # # ]
2341 : 1 : }
2342 : :
2343 : 0 : void CConnman::StartExtraBlockRelayPeers()
2344 : : {
2345 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "enabling extra block-relay-only peers\n");
[ # # ][ # # ]
2346 : 0 : m_start_extra_block_relay_peers = true;
2347 : 0 : }
2348 : :
2349 : : // Return the number of peers we have over our outbound connection limit
2350 : : // Exclude peers that are marked for disconnect, or are going to be
2351 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2352 : : // Also exclude peers that haven't finished initial connection handshake yet
2353 : : // (so that we don't decide we're over our desired connection limit, and then
2354 : : // evict some peer that has finished the handshake)
2355 : 0 : int CConnman::GetExtraFullOutboundCount() const
2356 : : {
2357 : 0 : int full_outbound_peers = 0;
2358 : : {
2359 : 0 : LOCK(m_nodes_mutex);
2360 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2361 [ # # ][ # # ]: 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
[ # # ][ # # ]
2362 : 0 : ++full_outbound_peers;
2363 : 0 : }
2364 : : }
2365 : 0 : }
2366 : 0 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2367 : 0 : }
2368 : :
2369 : 0 : int CConnman::GetExtraBlockRelayCount() const
2370 : : {
2371 : 0 : int block_relay_peers = 0;
2372 : : {
2373 : 0 : LOCK(m_nodes_mutex);
2374 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2375 [ # # ][ # # ]: 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
[ # # ][ # # ]
2376 : 0 : ++block_relay_peers;
2377 : 0 : }
2378 : : }
2379 : 0 : }
2380 : 0 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2381 : 0 : }
2382 : :
2383 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2384 : : {
2385 : 0 : std::unordered_set<Network> networks{};
2386 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2387 : 0 : enum Network net = (enum Network)n;
2388 [ # # ][ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2389 [ # # ][ # # ]: 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
[ # # ][ # # ]
2390 [ # # ]: 0 : networks.insert(net);
2391 : 0 : }
2392 : 0 : }
2393 : 0 : return networks;
2394 [ # # ]: 0 : }
2395 : :
2396 : 0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2397 : : {
2398 : 0 : AssertLockHeld(m_nodes_mutex);
2399 : 0 : return m_network_conn_counts[net] > 1;
2400 : : }
2401 : :
2402 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2403 : : {
2404 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2405 [ # # ]: 0 : Shuffle(nets.begin(), nets.end(), FastRandomContext());
2406 : :
2407 : 0 : LOCK(m_nodes_mutex);
2408 [ # # ]: 0 : for (const auto net : nets) {
2409 [ # # ][ # # ]: 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
[ # # ][ # # ]
[ # # ]
2410 : 0 : network = net;
2411 : 0 : return true;
2412 : : }
2413 : : }
2414 : :
2415 : 0 : return false;
2416 : 0 : }
2417 : :
2418 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
2419 : : {
2420 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2421 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2422 : 0 : FastRandomContext rng;
2423 : : // Connect to specific addresses
2424 [ # # ]: 0 : if (!connect.empty())
2425 : : {
2426 : 0 : for (int64_t nLoop = 0;; nLoop++)
2427 : : {
2428 [ # # ]: 0 : for (const std::string& strAddr : connect)
2429 : : {
2430 [ # # ][ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2431 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/false);
2432 [ # # ][ # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2433 : : {
2434 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
[ # # ][ # # ]
2435 : 0 : return;
2436 : 0 : }
2437 [ # # ]: 0 : }
2438 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
[ # # ][ # # ]
2439 : 0 : return;
2440 : 0 : }
2441 : : }
2442 : :
2443 : : // Initiate network connections
2444 [ # # ]: 0 : auto start = GetTime<std::chrono::microseconds>();
2445 : :
2446 : : // Minimum time before next feeler connection (in microseconds).
2447 [ # # ][ # # ]: 0 : auto next_feeler = GetExponentialRand(start, FEELER_INTERVAL);
2448 [ # # ][ # # ]: 0 : auto next_extra_block_relay = GetExponentialRand(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2449 [ # # ][ # # ]: 0 : auto next_extra_network_peer{GetExponentialRand(start, EXTRA_NETWORK_PEER_INTERVAL)};
2450 [ # # ][ # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2451 [ # # ][ # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2452 [ # # ][ # # ]: 0 : const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2453 : :
2454 [ # # ]: 0 : if (!add_fixed_seeds) {
2455 [ # # ][ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
[ # # ]
2456 : 0 : }
2457 : :
2458 [ # # ][ # # ]: 0 : while (!interruptNet)
2459 : : {
2460 [ # # ]: 0 : ProcessAddrFetch();
2461 : :
2462 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
[ # # ][ # # ]
2463 : 0 : return;
2464 : :
2465 [ # # ]: 0 : PerformReconnections();
2466 : :
2467 : 0 : CSemaphoreGrant grant(*semOutbound);
2468 [ # # ][ # # ]: 0 : if (interruptNet)
2469 : 0 : return;
2470 : :
2471 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2472 [ # # ][ # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2473 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2474 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2475 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2476 : : // 60 seconds for any of those sources to populate addrman.
2477 : 0 : bool add_fixed_seeds_now = false;
2478 : : // It is cheapest to check if enough time has passed first.
2479 [ # # ][ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
[ # # ][ # # ]
[ # # ]
2480 : 0 : add_fixed_seeds_now = true;
2481 [ # # ][ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
[ # # ]
2482 : 0 : }
2483 : :
2484 : : // Perform cheap checks before locking a mutex.
2485 [ # # ][ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2486 [ # # ][ # # ]: 0 : LOCK(m_added_nodes_mutex);
2487 [ # # ]: 0 : if (m_added_node_params.empty()) {
2488 : 0 : add_fixed_seeds_now = true;
2489 [ # # ][ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
[ # # ]
2490 : 0 : }
2491 : 0 : }
2492 : :
2493 [ # # ]: 0 : if (add_fixed_seeds_now) {
2494 [ # # ][ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2495 : : // We will not make outgoing connections to peers that are unreachable
2496 : : // (e.g. because of -onlynet configuration).
2497 : : // Therefore, we do not add them to addrman in the first place.
2498 : : // In case previously unreachable networks become reachable
2499 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2500 : : // be loaded only for networks for which we have no addresses.
2501 [ # # ][ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
[ # # ][ # # ]
2502 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2503 : 0 : seed_addrs.end());
2504 [ # # ]: 0 : CNetAddr local;
2505 [ # # ][ # # ]: 0 : local.SetInternal("fixedseeds");
2506 [ # # ][ # # ]: 0 : addrman.Add(seed_addrs, local);
2507 : 0 : add_fixed_seeds = false;
2508 [ # # ][ # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
[ # # ]
2509 : 0 : }
2510 : 0 : }
2511 : :
2512 : : //
2513 : : // Choose an address to connect to based on most recently seen
2514 : : //
2515 [ # # ]: 0 : CAddress addrConnect;
2516 : :
2517 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2518 : 0 : int nOutboundFullRelay = 0;
2519 : 0 : int nOutboundBlockRelay = 0;
2520 : 0 : int outbound_privacy_network_peers = 0;
2521 : 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2522 : :
2523 : : {
2524 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
2525 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2526 [ # # ][ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2527 [ # # ][ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2528 : :
2529 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2530 [ # # # ]: 0 : switch (pnode->m_conn_type) {
2531 : : // We currently don't take inbound connections into account. Since they are
2532 : : // free to make, an attacker could make them to prevent us from connecting to
2533 : : // certain peers.
2534 : : case ConnectionType::INBOUND:
2535 : : // Short-lived outbound connections should not affect how we select outbound
2536 : : // peers from addrman.
2537 : : case ConnectionType::ADDR_FETCH:
2538 : : case ConnectionType::FEELER:
2539 : 0 : break;
2540 : : case ConnectionType::MANUAL:
2541 : : case ConnectionType::OUTBOUND_FULL_RELAY:
2542 : : case ConnectionType::BLOCK_RELAY:
2543 [ # # ]: 0 : const CAddress address{pnode->addr};
2544 [ # # ][ # # ]: 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
[ # # ][ # # ]
[ # # ][ # # ]
2545 : : // Since our addrman-groups for these networks are
2546 : : // random, without relation to the route we
2547 : : // take to connect to these peers or to the
2548 : : // difficulty in obtaining addresses with diverse
2549 : : // groups, we don't worry about diversity with
2550 : : // respect to our addrman groups when connecting to
2551 : : // these networks.
2552 : 0 : ++outbound_privacy_network_peers;
2553 : 0 : } else {
2554 [ # # ][ # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2555 : : }
2556 : 0 : } // no default case, so the compiler can warn about missing cases
2557 : : }
2558 : 0 : }
2559 : :
2560 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2561 [ # # ]: 0 : auto now = GetTime<std::chrono::microseconds>();
2562 : 0 : bool anchor = false;
2563 : 0 : bool fFeeler = false;
2564 : 0 : std::optional<Network> preferred_net;
2565 : :
2566 : : // Determine what type of connection to open. Opening
2567 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2568 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2569 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2570 : : // until we hit our block-relay-only peer limit.
2571 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2572 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2573 : : // these conditions are met, check to see if it's time to try an extra
2574 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2575 : : // timer to decide if we should open a FEELER.
2576 : :
2577 [ # # ][ # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2578 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2579 : 0 : anchor = true;
2580 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2581 : : // OUTBOUND_FULL_RELAY
2582 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2583 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2584 [ # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2585 : : // OUTBOUND_FULL_RELAY
2586 [ # # ][ # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
[ # # ]
2587 : : // Periodically connect to a peer (using regular outbound selection
2588 : : // methodology from addrman) and stay connected long enough to sync
2589 : : // headers, but not much else.
2590 : : //
2591 : : // Then disconnect the peer, if we haven't learned anything new.
2592 : : //
2593 : : // The idea is to make eclipse attacks very difficult to pull off,
2594 : : // because every few minutes we're finding a new peer to learn headers
2595 : : // from.
2596 : : //
2597 : : // This is similar to the logic for trying extra outbound (full-relay)
2598 : : // peers, except:
2599 : : // - we do this all the time on an exponential timer, rather than just when
2600 : : // our tip is stale
2601 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2602 : : // newest block-relay-only peer delivers a block more recently.
2603 : : // See the eviction logic in net_processing.cpp.
2604 : : //
2605 : : // Because we can promote these connections to block-relay-only
2606 : : // connections, they do not get their own ConnectionType enum
2607 : : // (similar to how we deal with extra outbound peers).
2608 [ # # ][ # # ]: 0 : next_extra_block_relay = GetExponentialRand(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2609 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2610 [ # # ][ # # ]: 0 : } else if (now > next_feeler) {
2611 [ # # ][ # # ]: 0 : next_feeler = GetExponentialRand(now, FEELER_INTERVAL);
2612 : 0 : conn_type = ConnectionType::FEELER;
2613 : 0 : fFeeler = true;
2614 [ # # ][ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2615 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2616 [ # # ][ # # ]: 0 : now > next_extra_network_peer &&
2617 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2618 : : // Full outbound connection management: Attempt to get at least one
2619 : : // outbound peer from each reachable network by making extra connections
2620 : : // and then protecting "only" peers from a network during outbound eviction.
2621 : : // This is not attempted if the user changed -maxconnections to a value
2622 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2623 : : // to prevent interactions with otherwise protected outbound peers.
2624 [ # # ][ # # ]: 0 : next_extra_network_peer = GetExponentialRand(now, EXTRA_NETWORK_PEER_INTERVAL);
2625 : 0 : } else {
2626 : : // skip to next iteration of while loop
2627 : 0 : continue;
2628 : : }
2629 : :
2630 [ # # ]: 0 : addrman.ResolveCollisions();
2631 : :
2632 : 0 : const auto current_time{NodeClock::now()};
2633 : 0 : int nTries = 0;
2634 [ # # ][ # # ]: 0 : while (!interruptNet)
2635 : : {
2636 [ # # ][ # # ]: 0 : if (anchor && !m_anchors.empty()) {
2637 [ # # ]: 0 : const CAddress addr = m_anchors.back();
2638 : 0 : m_anchors.pop_back();
2639 [ # # ][ # # ]: 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2640 [ # # ][ # # ]: 0 : !HasAllDesirableServiceFlags(addr.nServices) ||
2641 [ # # ][ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2642 [ # # ]: 0 : addrConnect = addr;
2643 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
[ # # ][ # # ]
[ # # ][ # # ]
2644 : 0 : break;
2645 : 0 : }
2646 : :
2647 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2648 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2649 : : // already-connected network ranges, ...) before trying new addrman addresses.
2650 : 0 : nTries++;
2651 [ # # ]: 0 : if (nTries > 100)
2652 : 0 : break;
2653 : :
2654 [ # # ]: 0 : CAddress addr;
2655 [ # # ][ # # ]: 0 : NodeSeconds addr_last_try{0s};
2656 : :
2657 [ # # ]: 0 : if (fFeeler) {
2658 : : // First, try to get a tried table collision address. This returns
2659 : : // an empty (invalid) address if there are no collisions to try.
2660 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2661 : :
2662 [ # # ][ # # ]: 0 : if (!addr.IsValid()) {
2663 : : // No tried table collisions. Select a new table address
2664 : : // for our feeler.
2665 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true);
2666 [ # # ][ # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2667 : : // If test-before-evict logic would have us connect to a
2668 : : // peer that we're already connected to, just mark that
2669 : : // address as Good(). We won't be able to initiate the
2670 : : // connection anyway, so this avoids inadvertently evicting
2671 : : // a currently-connected peer.
2672 [ # # ][ # # ]: 0 : addrman.Good(addr);
2673 : : // Select a new table address for our feeler instead.
2674 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true);
2675 : 0 : }
2676 : 0 : } else {
2677 : : // Not a feeler
2678 : : // If preferred_net has a value set, pick an extra outbound
2679 : : // peer from that network. The eviction logic in net_processing
2680 : : // ensures that a peer from another network will be evicted.
2681 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(false, preferred_net);
2682 : : }
2683 : :
2684 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2685 [ # # ][ # # ]: 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
[ # # ][ # # ]
[ # # ][ # # ]
2686 : 0 : continue;
2687 : : }
2688 : :
2689 : : // if we selected an invalid or local address, restart
2690 [ # # ][ # # ]: 0 : if (!addr.IsValid() || IsLocal(addr)) {
[ # # ][ # # ]
2691 : 0 : break;
2692 : : }
2693 : :
2694 [ # # ][ # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2695 : 0 : continue;
2696 : : }
2697 : :
2698 : : // only consider very recently tried nodes after 30 failed attempts
2699 [ # # ][ # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
[ # # ][ # # ]
[ # # ]
2700 : 0 : continue;
2701 : : }
2702 : :
2703 : : // for non-feelers, require all the services we'll want,
2704 : : // for feelers, only require they be a full node (only because most
2705 : : // SPV clients don't have a good address DB available)
2706 [ # # ][ # # ]: 0 : if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
[ # # ]
2707 : 0 : continue;
2708 [ # # ][ # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
[ # # ]
2709 : 0 : continue;
2710 : : }
2711 : :
2712 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2713 [ # # ][ # # ]: 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2714 : 0 : continue;
2715 : : }
2716 : :
2717 [ # # ]: 0 : addrConnect = addr;
2718 : 0 : break;
2719 : 0 : }
2720 : :
2721 [ # # ][ # # ]: 0 : if (addrConnect.IsValid()) {
2722 [ # # ]: 0 : if (fFeeler) {
2723 : : // Add small amount of random noise before connection to avoid synchronization.
2724 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
[ # # ]
2725 : 0 : return;
2726 : : }
2727 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
[ # # ][ # # ]
[ # # ][ # # ]
2728 : 0 : }
2729 : :
2730 [ # # ][ # # ]: 0 : if (preferred_net != std::nullopt) LogPrint(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
2731 : :
2732 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2733 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2734 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2735 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2736 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(nMaxConnections - 1, 2)};
2737 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2738 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2739 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2740 : 0 : }
2741 [ # # # ]: 0 : }
2742 : 0 : }
2743 : :
2744 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2745 : : {
2746 : 0 : std::vector<CAddress> ret;
2747 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
2748 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2749 [ # # ][ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2750 [ # # ]: 0 : ret.push_back(pnode->addr);
2751 : 0 : }
2752 : : }
2753 : :
2754 : 0 : return ret;
2755 [ # # ]: 0 : }
2756 : :
2757 : 0 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() const
2758 : : {
2759 : 0 : std::vector<AddedNodeInfo> ret;
2760 : :
2761 [ # # ]: 0 : std::list<AddedNodeParams> lAddresses(0);
2762 : : {
2763 [ # # ][ # # ]: 0 : LOCK(m_added_nodes_mutex);
2764 [ # # ]: 0 : ret.reserve(m_added_node_params.size());
2765 [ # # ][ # # ]: 0 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2766 : 0 : }
2767 : :
2768 : :
2769 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2770 : 0 : std::map<CService, bool> mapConnected;
2771 : 0 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2772 : : {
2773 [ # # ][ # # ]: 0 : LOCK(m_nodes_mutex);
2774 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2775 [ # # ][ # # ]: 0 : if (pnode->addr.IsValid()) {
2776 [ # # ][ # # ]: 0 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2777 : 0 : }
2778 [ # # ]: 0 : std::string addrName{pnode->m_addr_name};
2779 [ # # ]: 0 : if (!addrName.empty()) {
2780 [ # # ][ # # ]: 0 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
[ # # ]
2781 : 0 : }
2782 : 0 : }
2783 : 0 : }
2784 : :
2785 [ # # ]: 0 : for (const auto& addr : lAddresses) {
2786 [ # # ][ # # ]: 0 : CService service(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)));
[ # # ]
2787 [ # # ][ # # ]: 0 : AddedNodeInfo addedNode{addr, CService(), false, false};
2788 [ # # ][ # # ]: 0 : if (service.IsValid()) {
2789 : : // strAddNode is an IP:port
2790 [ # # ]: 0 : auto it = mapConnected.find(service);
2791 [ # # ]: 0 : if (it != mapConnected.end()) {
2792 [ # # ]: 0 : addedNode.resolvedAddress = service;
2793 : 0 : addedNode.fConnected = true;
2794 : 0 : addedNode.fInbound = it->second;
2795 : 0 : }
2796 : 0 : } else {
2797 : : // strAddNode is a name
2798 [ # # ]: 0 : auto it = mapConnectedByName.find(addr.m_added_node);
2799 [ # # ]: 0 : if (it != mapConnectedByName.end()) {
2800 [ # # ]: 0 : addedNode.resolvedAddress = it->second.second;
2801 : 0 : addedNode.fConnected = true;
2802 : 0 : addedNode.fInbound = it->second.first;
2803 : 0 : }
2804 : : }
2805 [ # # ]: 0 : ret.emplace_back(std::move(addedNode));
2806 : 0 : }
2807 : :
2808 : 0 : return ret;
2809 [ # # ]: 0 : }
2810 : :
2811 : 0 : void CConnman::ThreadOpenAddedConnections()
2812 : : {
2813 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2814 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2815 : 0 : while (true)
2816 : : {
2817 : 0 : CSemaphoreGrant grant(*semAddnode);
2818 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
2819 : 0 : bool tried = false;
2820 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2821 [ # # ]: 0 : if (!info.fConnected) {
2822 [ # # ]: 0 : if (!grant) {
2823 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2824 : : // the addednodeinfo state might change.
2825 : 0 : break;
2826 : : }
2827 : 0 : tried = true;
2828 [ # # ][ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2829 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2830 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
[ # # ][ # # ]
2831 : 0 : grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2832 [ # # ]: 0 : }
2833 : : }
2834 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2835 [ # # ][ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
[ # # ][ # # ]
2836 : 0 : return;
2837 : : // See if any reconnections are desired.
2838 [ # # ]: 0 : PerformReconnections();
2839 [ # # # ]: 0 : }
2840 : 0 : }
2841 : :
2842 : : // if successful, this moves the passed grant to the constructed node
2843 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2844 : : {
2845 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2846 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2847 : :
2848 : : //
2849 : : // Initiate outbound network connection
2850 : : //
2851 [ # # ]: 0 : if (interruptNet) {
2852 : 0 : return;
2853 : : }
2854 [ # # ]: 0 : if (!fNetworkActive) {
2855 : 0 : return;
2856 : : }
2857 [ # # ]: 0 : if (!pszDest) {
2858 [ # # ][ # # ]: 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
2859 [ # # ][ # # ]: 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
[ # # ]
2860 : 0 : return;
2861 : : }
2862 [ # # ][ # # ]: 0 : } else if (FindNode(std::string(pszDest)))
[ # # ]
2863 : 0 : return;
2864 : :
2865 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2866 : :
2867 [ # # ]: 0 : if (!pnode)
2868 : 0 : return;
2869 : 0 : pnode->grantOutbound = std::move(grant_outbound);
2870 : :
2871 : 0 : m_msgproc->InitializeNode(*pnode, nLocalServices);
2872 : : {
2873 : 0 : LOCK(m_nodes_mutex);
2874 [ # # ]: 0 : m_nodes.push_back(pnode);
2875 : :
2876 : : // update connection count by network
2877 [ # # ][ # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
[ # # ]
2878 : 0 : }
2879 : 0 : }
2880 : :
2881 : : Mutex NetEventsInterface::g_msgproc_mutex;
2882 : :
2883 : 0 : void CConnman::ThreadMessageHandler()
2884 : : {
2885 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
2886 : :
2887 [ # # ]: 0 : while (!flagInterruptMsgProc)
2888 : : {
2889 : 0 : bool fMoreWork = false;
2890 : :
2891 : : {
2892 : : // Randomize the order in which we process messages from/to our peers.
2893 : : // This prevents attacks in which an attacker exploits having multiple
2894 : : // consecutive connections in the m_nodes list.
2895 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
2896 : :
2897 [ # # ][ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
2898 [ # # ]: 0 : if (pnode->fDisconnect)
2899 : 0 : continue;
2900 : :
2901 : : // Receive messages
2902 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
2903 [ # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
2904 [ # # ]: 0 : if (flagInterruptMsgProc)
2905 : 0 : return;
2906 : : // Send messages
2907 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
2908 : :
2909 [ # # ]: 0 : if (flagInterruptMsgProc)
2910 : 0 : return;
2911 : : }
2912 [ # # ]: 0 : }
2913 : :
2914 [ # # ][ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
2915 [ # # ]: 0 : if (!fMoreWork) {
2916 [ # # ][ # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
[ # # ]
2917 : 0 : }
2918 : 0 : fMsgProcWake = false;
2919 : 0 : }
2920 [ # # ]: 0 : }
2921 : :
2922 : 0 : void CConnman::ThreadI2PAcceptIncoming()
2923 : : {
2924 : : static constexpr auto err_wait_begin = 1s;
2925 : : static constexpr auto err_wait_cap = 5min;
2926 : 0 : auto err_wait = err_wait_begin;
2927 : :
2928 : 0 : bool advertising_listen_addr = false;
2929 : 0 : i2p::Connection conn;
2930 : :
2931 : 0 : auto SleepOnFailure = [&]() {
2932 : 0 : interruptNet.sleep_for(err_wait);
2933 [ # # ]: 0 : if (err_wait < err_wait_cap) {
2934 : 0 : err_wait += 1s;
2935 : 0 : }
2936 : 0 : };
2937 : :
2938 [ # # ][ # # ]: 0 : while (!interruptNet) {
2939 : :
2940 [ # # ][ # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
2941 [ # # ][ # # ]: 0 : if (advertising_listen_addr && conn.me.IsValid()) {
[ # # ]
2942 [ # # ]: 0 : RemoveLocal(conn.me);
2943 : 0 : advertising_listen_addr = false;
2944 : 0 : }
2945 [ # # ]: 0 : SleepOnFailure();
2946 : 0 : continue;
2947 : : }
2948 : :
2949 [ # # ]: 0 : if (!advertising_listen_addr) {
2950 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
2951 : 0 : advertising_listen_addr = true;
2952 : 0 : }
2953 : :
2954 [ # # ][ # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
2955 [ # # ]: 0 : SleepOnFailure();
2956 : 0 : continue;
2957 : : }
2958 : :
2959 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
2960 [ # # ][ # # ]: 0 : CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
[ # # ][ # # ]
2961 : :
2962 : 0 : err_wait = err_wait_begin;
2963 : : }
2964 : 0 : }
2965 : :
2966 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
2967 : : {
2968 : 0 : int nOne = 1;
2969 : :
2970 : : // Create socket for listening for incoming connections
2971 : : struct sockaddr_storage sockaddr;
2972 : 0 : socklen_t len = sizeof(sockaddr);
2973 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
2974 : : {
2975 [ # # ][ # # ]: 0 : strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
[ # # ][ # # ]
2976 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
[ # # ][ # # ]
2977 : 0 : return false;
2978 : : }
2979 : :
2980 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind);
2981 [ # # ]: 0 : if (!sock) {
2982 [ # # ][ # # ]: 0 : strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
[ # # ][ # # ]
2983 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
[ # # ][ # # ]
[ # # ]
2984 : 0 : return false;
2985 : : }
2986 : :
2987 : : // Allow binding if the port is still in TIME_WAIT state after
2988 : : // the program was closed and restarted.
2989 [ # # ][ # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
2990 [ # # ][ # # ]: 0 : strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
[ # # ][ # # ]
2991 [ # # ][ # # ]: 0 : LogPrintf("%s\n", strError.original);
[ # # ]
2992 : 0 : }
2993 : :
2994 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
2995 : : // and enable it by default or not. Try to enable it, if possible.
2996 [ # # ][ # # ]: 0 : if (addrBind.IsIPv6()) {
2997 : : #ifdef IPV6_V6ONLY
2998 [ # # ][ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
2999 [ # # ][ # # ]: 0 : strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
[ # # ][ # # ]
3000 [ # # ][ # # ]: 0 : LogPrintf("%s\n", strError.original);
[ # # ]
3001 : 0 : }
3002 : : #endif
3003 : : #ifdef WIN32
3004 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3005 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3006 : : strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3007 : : LogPrintf("%s\n", strError.original);
3008 : : }
3009 : : #endif
3010 : 0 : }
3011 : :
3012 [ # # ][ # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3013 : 0 : int nErr = WSAGetLastError();
3014 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3015 [ # # ][ # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), PACKAGE_NAME);
[ # # ]
3016 : : else
3017 [ # # ][ # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
[ # # ][ # # ]
3018 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
[ # # ][ # # ]
[ # # ]
3019 : 0 : return false;
3020 : : }
3021 [ # # ][ # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
[ # # ][ # # ]
3022 : :
3023 : : // Listen for incoming connections
3024 [ # # ][ # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3025 : : {
3026 [ # # ][ # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
[ # # ]
3027 [ # # ][ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
[ # # ][ # # ]
[ # # ]
3028 : 0 : return false;
3029 : : }
3030 : :
3031 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3032 : 0 : return true;
3033 : 0 : }
3034 : :
3035 : 0 : void Discover()
3036 : : {
3037 [ # # ]: 0 : if (!fDiscover)
3038 : 0 : return;
3039 : :
3040 : : #ifdef WIN32
3041 : : // Get local host IP
3042 : : char pszHostName[256] = "";
3043 : : if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
3044 : : {
3045 : : const std::vector<CNetAddr> addresses{LookupHost(pszHostName, 0, true)};
3046 : : for (const CNetAddr& addr : addresses)
3047 : : {
3048 : : if (AddLocal(addr, LOCAL_IF))
3049 : : LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToStringAddr());
3050 : : }
3051 : : }
3052 : : #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
3053 : : // Get local host ip
3054 : : struct ifaddrs* myaddrs;
3055 [ # # ]: 0 : if (getifaddrs(&myaddrs) == 0)
3056 : : {
3057 [ # # ]: 0 : for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
3058 : : {
3059 [ # # ]: 0 : if (ifa->ifa_addr == nullptr) continue;
3060 [ # # ]: 0 : if ((ifa->ifa_flags & IFF_UP) == 0) continue;
3061 [ # # ]: 0 : if (strcmp(ifa->ifa_name, "lo") == 0) continue;
3062 [ # # ]: 0 : if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
3063 [ # # ]: 0 : if (ifa->ifa_addr->sa_family == AF_INET)
3064 : : {
3065 : 0 : struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
3066 : 0 : CNetAddr addr(s4->sin_addr);
3067 [ # # ][ # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3068 [ # # ][ # # ]: 0 : LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
[ # # ][ # # ]
3069 : 0 : }
3070 [ # # ]: 0 : else if (ifa->ifa_addr->sa_family == AF_INET6)
3071 : : {
3072 : 0 : struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
3073 : 0 : CNetAddr addr(s6->sin6_addr);
3074 [ # # ][ # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3075 [ # # ][ # # ]: 0 : LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
[ # # ][ # # ]
3076 : 0 : }
3077 : 0 : }
3078 : 0 : freeifaddrs(myaddrs);
3079 : 0 : }
3080 : : #endif
3081 : 0 : }
3082 : :
3083 : 1 : void CConnman::SetNetworkActive(bool active)
3084 : : {
3085 [ + - ][ + - ]: 1 : LogPrintf("%s: %s\n", __func__, active);
[ - + ]
3086 : :
3087 [ - + ]: 1 : if (fNetworkActive == active) {
3088 : 1 : return;
3089 : : }
3090 : :
3091 : 0 : fNetworkActive = active;
3092 : :
3093 [ # # ]: 0 : if (m_client_interface) {
3094 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3095 : 0 : }
3096 : 1 : }
3097 : :
3098 [ + - ][ + - ]: 1 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ][ + - ]
[ + - ]
3099 : : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3100 : 1 : : addrman(addrman_in)
3101 : 1 : , m_netgroupman{netgroupman}
3102 : 1 : , nSeed0(nSeed0In)
3103 : 1 : , nSeed1(nSeed1In)
3104 : 1 : , m_params(params)
3105 : : {
3106 [ - + ]: 1 : SetTryNewOutboundPeer(false);
3107 : :
3108 : 1 : Options connOptions;
3109 [ + - ]: 1 : Init(connOptions);
3110 [ + - ]: 1 : SetNetworkActive(network_active);
3111 : 1 : }
3112 : :
3113 : 0 : NodeId CConnman::GetNewNodeId()
3114 : : {
3115 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3116 : : }
3117 : :
3118 : 0 : uint16_t CConnman::GetDefaultPort(Network net) const
3119 : : {
3120 [ # # ]: 0 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3121 : : }
3122 : :
3123 : 0 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3124 : : {
3125 : 0 : CNetAddr a;
3126 [ # # ][ # # ]: 0 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
[ # # ][ # # ]
[ # # ]
3127 : 0 : }
3128 : :
3129 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3130 : : {
3131 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3132 : :
3133 : 0 : bilingual_str strError;
3134 [ # # ][ # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3135 [ # # ][ # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3136 [ # # ][ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3137 : 0 : }
3138 : 0 : return false;
3139 : : }
3140 : :
3141 [ # # ][ # # ]: 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
[ # # ][ # # ]
[ # # ][ # # ]
3142 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3143 : 0 : }
3144 : :
3145 : 0 : return true;
3146 : 0 : }
3147 : :
3148 : 0 : bool CConnman::InitBinds(const Options& options)
3149 : : {
3150 : 0 : bool fBound = false;
3151 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3152 : 0 : fBound |= Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None);
3153 : : }
3154 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3155 : 0 : fBound |= Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags);
3156 : : }
3157 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3158 : 0 : fBound |= Bind(addr_bind, BF_DONT_ADVERTISE, NetPermissionFlags::None);
3159 : : }
3160 [ # # ]: 0 : if (options.bind_on_any) {
3161 : : struct in_addr inaddr_any;
3162 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3163 : 0 : struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
3164 [ # # ]: 0 : fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::None);
3165 [ # # ]: 0 : fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::None);
3166 : 0 : }
3167 : 0 : return fBound;
3168 : 0 : }
3169 : :
3170 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3171 : : {
3172 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3173 : 0 : Init(connOptions);
3174 : :
3175 [ # # ][ # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3176 [ # # ]: 0 : if (m_client_interface) {
3177 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3178 : 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3179 [ # # ]: 0 : "", CClientUIInterface::MSG_ERROR);
3180 : 0 : }
3181 : 0 : return false;
3182 : : }
3183 : :
3184 : 0 : Proxy i2p_sam;
3185 [ # # ][ # # ]: 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
[ # # ]
3186 [ # # ][ # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
[ # # ][ # # ]
3187 : 0 : i2p_sam.proxy, &interruptNet);
3188 : 0 : }
3189 : :
3190 [ # # ]: 0 : for (const auto& strDest : connOptions.vSeedNodes) {
3191 [ # # ]: 0 : AddAddrFetch(strDest);
3192 : : }
3193 : :
3194 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3195 : : // Load addresses from anchors.dat
3196 [ # # ][ # # ]: 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
[ # # ][ # # ]
3197 [ # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3198 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3199 : 0 : }
3200 [ # # ][ # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
[ # # ]
3201 : 0 : }
3202 : :
3203 [ # # ]: 0 : if (m_client_interface) {
3204 [ # # ][ # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…").translated);
3205 : 0 : }
3206 : :
3207 : 0 : fAddressesInitialized = true;
3208 : :
3209 [ # # ]: 0 : if (semOutbound == nullptr) {
3210 : : // initialize semaphore
3211 [ # # ][ # # ]: 0 : semOutbound = std::make_unique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
3212 : 0 : }
3213 [ # # ]: 0 : if (semAddnode == nullptr) {
3214 : : // initialize semaphore
3215 [ # # ]: 0 : semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
3216 : 0 : }
3217 : :
3218 : : //
3219 : : // Start threads
3220 : : //
3221 [ # # ]: 0 : assert(m_msgproc);
3222 [ # # ]: 0 : InterruptSocks5(false);
3223 [ # # ]: 0 : interruptNet.reset();
3224 : 0 : flagInterruptMsgProc = false;
3225 : :
3226 : : {
3227 [ # # ][ # # ]: 0 : LOCK(mutexMsgProc);
3228 : 0 : fMsgProcWake = false;
3229 : 0 : }
3230 : :
3231 : : // Send and receive from sockets, accept connections
3232 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3233 : :
3234 [ # # ][ # # ]: 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
[ # # ]
3235 [ # # ][ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
[ # # ]
3236 : : else
3237 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3238 : :
3239 : : // Initiate manual connections
3240 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3241 : :
3242 [ # # ][ # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3243 [ # # ]: 0 : if (m_client_interface) {
3244 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3245 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3246 [ # # ]: 0 : "", CClientUIInterface::MSG_ERROR);
3247 : 0 : }
3248 : 0 : return false;
3249 : : }
3250 [ # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3251 [ # # ]: 0 : threadOpenConnections = std::thread(
3252 : 0 : &util::TraceThread, "opencon",
3253 [ # # ][ # # ]: 0 : [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect); });
3254 : 0 : }
3255 : :
3256 : : // Process messages
3257 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3258 : :
3259 [ # # ]: 0 : if (m_i2p_sam_session) {
3260 : 0 : threadI2PAcceptIncoming =
3261 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3262 : 0 : }
3263 : :
3264 : : // Dump network addresses
3265 [ # # ][ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3266 : :
3267 : 0 : return true;
3268 : 0 : }
3269 : :
3270 : : class CNetCleanup
3271 : : {
3272 : : public:
3273 : : CNetCleanup() = default;
3274 : :
3275 : 2 : ~CNetCleanup()
3276 : : {
3277 : : #ifdef WIN32
3278 : : // Shutdown Windows Sockets
3279 : : WSACleanup();
3280 : : #endif
3281 : 2 : }
3282 : : };
3283 : : static CNetCleanup instance_of_cnetcleanup;
3284 : :
3285 : 1 : void CConnman::Interrupt()
3286 : : {
3287 : : {
3288 : 1 : LOCK(mutexMsgProc);
3289 : 1 : flagInterruptMsgProc = true;
3290 : 1 : }
3291 : 1 : condMsgProc.notify_all();
3292 : :
3293 : 1 : interruptNet();
3294 : 1 : InterruptSocks5(true);
3295 : :
3296 [ + - ]: 1 : if (semOutbound) {
3297 [ # # ]: 0 : for (int i=0; i<m_max_outbound; i++) {
3298 : 0 : semOutbound->post();
3299 : 0 : }
3300 : 0 : }
3301 : :
3302 [ + - ]: 1 : if (semAddnode) {
3303 [ # # ]: 0 : for (int i=0; i<nMaxAddnode; i++) {
3304 : 0 : semAddnode->post();
3305 : 0 : }
3306 : 0 : }
3307 : 1 : }
3308 : :
3309 : 1 : void CConnman::StopThreads()
3310 : : {
3311 [ + - ]: 1 : if (threadI2PAcceptIncoming.joinable()) {
3312 : 0 : threadI2PAcceptIncoming.join();
3313 : 0 : }
3314 [ + - ]: 1 : if (threadMessageHandler.joinable())
3315 : 0 : threadMessageHandler.join();
3316 [ + - ]: 1 : if (threadOpenConnections.joinable())
3317 : 0 : threadOpenConnections.join();
3318 [ + - ]: 1 : if (threadOpenAddedConnections.joinable())
3319 : 0 : threadOpenAddedConnections.join();
3320 [ + - ]: 1 : if (threadDNSAddressSeed.joinable())
3321 : 0 : threadDNSAddressSeed.join();
3322 [ + - ]: 1 : if (threadSocketHandler.joinable())
3323 : 0 : threadSocketHandler.join();
3324 : 1 : }
3325 : :
3326 : 1 : void CConnman::StopNodes()
3327 : : {
3328 [ + - ]: 1 : if (fAddressesInitialized) {
3329 : 0 : DumpAddresses();
3330 : 0 : fAddressesInitialized = false;
3331 : :
3332 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3333 : : // Anchor connections are only dumped during clean shutdown.
3334 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3335 [ # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3336 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3337 : 0 : }
3338 [ # # ][ # # ]: 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
[ # # ][ # # ]
3339 : 0 : }
3340 : 0 : }
3341 : :
3342 : : // Delete peer connections.
3343 : 1 : std::vector<CNode*> nodes;
3344 [ + - ][ + - ]: 2 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3345 [ - + ]: 1 : for (CNode* pnode : nodes) {
3346 [ # # ]: 0 : pnode->CloseSocketDisconnect();
3347 [ # # ]: 0 : DeleteNode(pnode);
3348 : : }
3349 : :
3350 [ + - ]: 1 : for (CNode* pnode : m_nodes_disconnected) {
3351 [ # # ]: 0 : DeleteNode(pnode);
3352 : : }
3353 : 1 : m_nodes_disconnected.clear();
3354 : 1 : vhListenSocket.clear();
3355 : 1 : semOutbound.reset();
3356 : 1 : semAddnode.reset();
3357 : 1 : }
3358 : :
3359 : 0 : void CConnman::DeleteNode(CNode* pnode)
3360 : : {
3361 [ # # ]: 0 : assert(pnode);
3362 : 0 : m_msgproc->FinalizeNode(*pnode);
3363 [ # # ]: 0 : delete pnode;
3364 : 0 : }
3365 : :
3366 : 1 : CConnman::~CConnman()
3367 : : {
3368 [ + - ]: 1 : Interrupt();
3369 [ + - ]: 1 : Stop();
3370 : 1 : }
3371 : :
3372 : 0 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network) const
3373 : : {
3374 : 0 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network);
3375 [ # # ]: 0 : if (m_banman) {
3376 [ # # ][ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
[ # # ][ # # ]
3377 [ # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3378 : 0 : addresses.end());
3379 : 0 : }
3380 : 0 : return addresses;
3381 [ # # ]: 0 : }
3382 : :
3383 : 0 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3384 : : {
3385 : 0 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3386 [ # # ]: 0 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3387 [ # # ][ # # ]: 0 : .Write(requestor.ConnectedThroughNetwork())
3388 [ # # ][ # # ]: 0 : .Write(local_socket_bytes)
3389 : : // For outbound connections, the port of the bound address is randomly
3390 : : // assigned by the OS and would therefore not be useful for seeding.
3391 [ # # ][ # # ]: 0 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
[ # # ][ # # ]
3392 [ # # ]: 0 : .Finalize();
3393 [ # # ]: 0 : const auto current_time = GetTime<std::chrono::microseconds>();
3394 [ # # ]: 0 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3395 : 0 : CachedAddrResponse& cache_entry = r.first->second;
3396 [ # # ][ # # ]: 0 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3397 [ # # ]: 0 : cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3398 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3399 : : // and the usefulness of ADDR responses to honest users.
3400 : : //
3401 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3402 : : // enough AddrMan data to maliciously infer something useful.
3403 : : // By the time an attacker scraped enough AddrMan records, most of
3404 : : // the records should be old enough to not leak topology info by
3405 : : // e.g. analyzing real-time changes in timestamps.
3406 : : //
3407 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3408 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3409 : : // most of it could be scraped (considering that timestamps are updated via
3410 : : // ADDR self-announcements and when nodes communicate).
3411 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3412 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3413 : : //
3414 : : // On the other hand, longer cache lifetime makes ADDR responses
3415 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3416 : : // in the ADDR response are no longer active.
3417 : : //
3418 : : // However, the churn in the network is known to be rather low. Since we consider
3419 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3420 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3421 : : // in terms of the freshness of the response.
3422 [ # # ][ # # ]: 0 : cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
[ # # ][ # # ]
[ # # ]
3423 : 0 : }
3424 [ # # ]: 0 : return cache_entry.m_addrs_response_cache;
3425 : 0 : }
3426 : :
3427 : 0 : bool CConnman::AddNode(const AddedNodeParams& add)
3428 : : {
3429 : 0 : LOCK(m_added_nodes_mutex);
3430 [ # # ]: 0 : for (const auto& it : m_added_node_params) {
3431 [ # # ]: 0 : if (add.m_added_node == it.m_added_node) return false;
3432 : : }
3433 : :
3434 [ # # ]: 0 : m_added_node_params.push_back(add);
3435 : 0 : return true;
3436 : 0 : }
3437 : :
3438 : 0 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3439 : : {
3440 : 0 : LOCK(m_added_nodes_mutex);
3441 [ # # ]: 0 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3442 [ # # ]: 0 : if (strNode == it->m_added_node) {
3443 [ # # ]: 0 : m_added_node_params.erase(it);
3444 : 0 : return true;
3445 : : }
3446 : 0 : }
3447 : 0 : return false;
3448 : 0 : }
3449 : :
3450 : 0 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3451 : : {
3452 : 0 : LOCK(m_nodes_mutex);
3453 [ # # ]: 0 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3454 : 0 : return m_nodes.size();
3455 : :
3456 : 0 : int nNum = 0;
3457 [ # # ]: 0 : for (const auto& pnode : m_nodes) {
3458 [ # # ][ # # ]: 0 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
[ # # ]
3459 : 0 : nNum++;
3460 : 0 : }
3461 : : }
3462 : :
3463 : 0 : return nNum;
3464 : 0 : }
3465 : :
3466 : 0 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3467 : : {
3468 : 0 : return m_netgroupman.GetMappedAS(addr);
3469 : : }
3470 : :
3471 : 0 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3472 : : {
3473 : 0 : vstats.clear();
3474 : 0 : LOCK(m_nodes_mutex);
3475 [ # # ]: 0 : vstats.reserve(m_nodes.size());
3476 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3477 [ # # ]: 0 : vstats.emplace_back();
3478 [ # # ]: 0 : pnode->CopyStats(vstats.back());
3479 [ # # ]: 0 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3480 : : }
3481 : 0 : }
3482 : :
3483 : 0 : bool CConnman::DisconnectNode(const std::string& strNode)
3484 : : {
3485 : 0 : LOCK(m_nodes_mutex);
3486 [ # # ][ # # ]: 0 : if (CNode* pnode = FindNode(strNode)) {
3487 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
3488 : 0 : pnode->fDisconnect = true;
3489 : 0 : return true;
3490 : : }
3491 : 0 : return false;
3492 : 0 : }
3493 : :
3494 : 0 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3495 : : {
3496 : 0 : bool disconnected = false;
3497 : 0 : LOCK(m_nodes_mutex);
3498 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3499 [ # # ][ # # ]: 0 : if (subnet.Match(pnode->addr)) {
3500 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
3501 : 0 : pnode->fDisconnect = true;
3502 : 0 : disconnected = true;
3503 : 0 : }
3504 : : }
3505 : 0 : return disconnected;
3506 : 0 : }
3507 : :
3508 : 0 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3509 : : {
3510 [ # # ]: 0 : return DisconnectNode(CSubNet(addr));
3511 : 0 : }
3512 : :
3513 : 0 : bool CConnman::DisconnectNode(NodeId id)
3514 : : {
3515 : 0 : LOCK(m_nodes_mutex);
3516 [ # # ]: 0 : for(CNode* pnode : m_nodes) {
3517 [ # # ][ # # ]: 0 : if (id == pnode->GetId()) {
3518 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
[ # # ][ # # ]
[ # # ][ # # ]
3519 : 0 : pnode->fDisconnect = true;
3520 : 0 : return true;
3521 : : }
3522 : : }
3523 : 0 : return false;
3524 : 0 : }
3525 : :
3526 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3527 : : {
3528 : 0 : nTotalBytesRecv += bytes;
3529 : 0 : }
3530 : :
3531 : 0 : void CConnman::RecordBytesSent(uint64_t bytes)
3532 : : {
3533 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3534 : 0 : LOCK(m_total_bytes_sent_mutex);
3535 : :
3536 : 0 : nTotalBytesSent += bytes;
3537 : :
3538 [ # # ]: 0 : const auto now = GetTime<std::chrono::seconds>();
3539 [ # # ][ # # ]: 0 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
[ # # ]
3540 : : {
3541 : : // timeframe expired, reset cycle
3542 : 0 : nMaxOutboundCycleStartTime = now;
3543 : 0 : nMaxOutboundTotalBytesSentInCycle = 0;
3544 : 0 : }
3545 : :
3546 : 0 : nMaxOutboundTotalBytesSentInCycle += bytes;
3547 : 0 : }
3548 : :
3549 : 0 : uint64_t CConnman::GetMaxOutboundTarget() const
3550 : : {
3551 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3552 : 0 : LOCK(m_total_bytes_sent_mutex);
3553 : 0 : return nMaxOutboundLimit;
3554 : 0 : }
3555 : :
3556 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3557 : : {
3558 : 0 : return MAX_UPLOAD_TIMEFRAME;
3559 : : }
3560 : :
3561 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3562 : : {
3563 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3564 : 0 : LOCK(m_total_bytes_sent_mutex);
3565 [ # # ]: 0 : return GetMaxOutboundTimeLeftInCycle_();
3566 : 0 : }
3567 : :
3568 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3569 : : {
3570 : 0 : AssertLockHeld(m_total_bytes_sent_mutex);
3571 : :
3572 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3573 : 0 : return 0s;
3574 : :
3575 [ # # ]: 0 : if (nMaxOutboundCycleStartTime.count() == 0)
3576 : 0 : return MAX_UPLOAD_TIMEFRAME;
3577 : :
3578 : 0 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3579 : 0 : const auto now = GetTime<std::chrono::seconds>();
3580 [ # # ]: 0 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3581 : 0 : }
3582 : :
3583 : 0 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3584 : : {
3585 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3586 : 0 : LOCK(m_total_bytes_sent_mutex);
3587 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3588 : 0 : return false;
3589 : :
3590 [ # # ]: 0 : if (historicalBlockServingLimit)
3591 : : {
3592 : : // keep a large enough buffer to at least relay each block once
3593 [ # # ]: 0 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3594 [ # # ][ # # ]: 0 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3595 [ # # ][ # # ]: 0 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3596 : 0 : return true;
3597 : 0 : }
3598 [ # # ]: 0 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3599 : 0 : return true;
3600 : :
3601 : 0 : return false;
3602 : 0 : }
3603 : :
3604 : 0 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3605 : : {
3606 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3607 : 0 : LOCK(m_total_bytes_sent_mutex);
3608 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3609 : 0 : return 0;
3610 : :
3611 [ # # ]: 0 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3612 : 0 : }
3613 : :
3614 : 0 : uint64_t CConnman::GetTotalBytesRecv() const
3615 : : {
3616 : 0 : return nTotalBytesRecv;
3617 : : }
3618 : :
3619 : 0 : uint64_t CConnman::GetTotalBytesSent() const
3620 : : {
3621 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3622 : 0 : LOCK(m_total_bytes_sent_mutex);
3623 : 0 : return nTotalBytesSent;
3624 : 0 : }
3625 : :
3626 : 0 : ServiceFlags CConnman::GetLocalServices() const
3627 : : {
3628 : 0 : return nLocalServices;
3629 : : }
3630 : :
3631 : 0 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3632 : : {
3633 [ # # ]: 0 : if (use_v2transport) {
3634 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound, SER_NETWORK, INIT_PROTO_VERSION);
3635 : : } else {
3636 [ # # ]: 0 : return std::make_unique<V1Transport>(id, SER_NETWORK, INIT_PROTO_VERSION);
3637 : : }
3638 : 0 : }
3639 : :
3640 [ # # ][ # # ]: 0 : CNode::CNode(NodeId idIn,
[ # # ][ # # ]
3641 : : std::shared_ptr<Sock> sock,
3642 : : const CAddress& addrIn,
3643 : : uint64_t nKeyedNetGroupIn,
3644 : : uint64_t nLocalHostNonceIn,
3645 : : const CAddress& addrBindIn,
3646 : : const std::string& addrNameIn,
3647 : : ConnectionType conn_type_in,
3648 : : bool inbound_onion,
3649 : : CNodeOptions&& node_opts)
3650 : 0 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3651 : 0 : m_permission_flags{node_opts.permission_flags},
3652 : 0 : m_sock{sock},
3653 [ # # ]: 0 : m_connected{GetTime<std::chrono::seconds>()},
3654 [ # # ]: 0 : addr{addrIn},
3655 [ # # ]: 0 : addrBind{addrBindIn},
3656 [ # # ][ # # ]: 0 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
[ # # ]
3657 [ # # ]: 0 : m_dest(addrNameIn),
3658 : 0 : m_inbound_onion{inbound_onion},
3659 : 0 : m_prefer_evict{node_opts.prefer_evict},
3660 : 0 : nKeyedNetGroup{nKeyedNetGroupIn},
3661 : 0 : m_conn_type{conn_type_in},
3662 : 0 : id{idIn},
3663 : 0 : nLocalHostNonce{nLocalHostNonceIn},
3664 : 0 : m_recv_flood_size{node_opts.recv_flood_size},
3665 : 0 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3666 : : {
3667 [ # # ][ # # ]: 0 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3668 : :
3669 [ # # ][ # # ]: 0 : for (const std::string &msg : getAllNetMessageTypes())
3670 [ # # ]: 0 : mapRecvBytesPerMsgType[msg] = 0;
3671 [ # # ]: 0 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3672 : :
3673 [ # # ]: 0 : if (fLogIPs) {
3674 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
[ # # ][ # # ]
[ # # ]
3675 : 0 : } else {
3676 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
[ # # ][ # # ]
[ # # ]
3677 : : }
3678 : 0 : }
3679 : :
3680 : 0 : void CNode::MarkReceivedMsgsForProcessing()
3681 : : {
3682 : 0 : AssertLockNotHeld(m_msg_process_queue_mutex);
3683 : :
3684 : 0 : size_t nSizeAdded = 0;
3685 [ # # ]: 0 : for (const auto& msg : vRecvMsg) {
3686 : : // vRecvMsg contains only completed CNetMessage
3687 : : // the single possible partially deserialized message are held by TransportDeserializer
3688 : 0 : nSizeAdded += msg.m_raw_message_size;
3689 : : }
3690 : :
3691 : 0 : LOCK(m_msg_process_queue_mutex);
3692 : 0 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3693 : 0 : m_msg_process_queue_size += nSizeAdded;
3694 : 0 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3695 : 0 : }
3696 : :
3697 : 0 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3698 : : {
3699 : 0 : LOCK(m_msg_process_queue_mutex);
3700 [ # # ]: 0 : if (m_msg_process_queue.empty()) return std::nullopt;
3701 : :
3702 : 0 : std::list<CNetMessage> msgs;
3703 : : // Just take one message
3704 : 0 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3705 : 0 : m_msg_process_queue_size -= msgs.front().m_raw_message_size;
3706 : 0 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3707 : :
3708 [ # # ]: 0 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3709 : 0 : }
3710 : :
3711 : 0 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3712 : : {
3713 [ # # ][ # # ]: 0 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3714 : : }
3715 : :
3716 : 0 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3717 : : {
3718 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3719 : 0 : size_t nMessageSize = msg.data.size();
3720 [ # # ][ # # ]: 0 : LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
[ # # ][ # # ]
[ # # ]
3721 [ # # ][ # # ]: 0 : if (gArgs.GetBoolArg("-capturemessages", false)) {
[ # # ]
3722 : 0 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3723 : 0 : }
3724 : :
3725 : : TRACE6(net, outbound_message,
3726 : : pnode->GetId(),
3727 : : pnode->m_addr_name.c_str(),
3728 : : pnode->ConnectionTypeAsString().c_str(),
3729 : : msg.m_type.c_str(),
3730 : : msg.data.size(),
3731 : : msg.data.data()
3732 : : );
3733 : :
3734 : 0 : size_t nBytesSent = 0;
3735 : : {
3736 : 0 : LOCK(pnode->cs_vSend);
3737 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3738 : : // give it a message to send.
3739 : 0 : const auto& [to_send, more, _msg_type] =
3740 : 0 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3741 [ # # ]: 0 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3742 : :
3743 : : // Update memory usage of send buffer.
3744 : 0 : pnode->m_send_memusage += msg.GetMemoryUsage();
3745 [ # # ]: 0 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3746 : : // Move message to vSendMsg queue.
3747 [ # # ]: 0 : pnode->vSendMsg.push_back(std::move(msg));
3748 : :
3749 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3750 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3751 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3752 : : // doing a send, try sending from the calling thread if the queue was empty before.
3753 : : // With a V1Transport, more will always be true here, because adding a message always
3754 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3755 : : // still be in the handshake).
3756 [ # # ][ # # ]: 0 : if (queue_was_empty && more) {
3757 [ # # ][ # # ]: 0 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3758 : 0 : }
3759 : 0 : }
3760 [ # # ]: 0 : if (nBytesSent) RecordBytesSent(nBytesSent);
3761 : 0 : }
3762 : :
3763 : 0 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3764 : : {
3765 : 0 : CNode* found = nullptr;
3766 : 0 : LOCK(m_nodes_mutex);
3767 [ # # ]: 0 : for (auto&& pnode : m_nodes) {
3768 [ # # ][ # # ]: 0 : if(pnode->GetId() == id) {
3769 : 0 : found = pnode;
3770 : 0 : break;
3771 : : }
3772 : : }
3773 [ # # ][ # # ]: 0 : return found != nullptr && NodeFullyConnected(found) && func(found);
[ # # ]
3774 : 0 : }
3775 : :
3776 : 0 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3777 : : {
3778 : 0 : return CSipHasher(nSeed0, nSeed1).Write(id);
3779 : : }
3780 : :
3781 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3782 : : {
3783 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3784 : :
3785 [ # # ][ # # ]: 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
[ # # ][ # # ]
3786 : 0 : }
3787 : :
3788 : 0 : void CConnman::PerformReconnections()
3789 : : {
3790 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3791 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3792 : 0 : while (true) {
3793 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3794 : 0 : decltype(m_reconnections) todo;
3795 : : {
3796 [ # # ][ # # ]: 0 : LOCK(m_reconnections_mutex);
3797 [ # # ]: 0 : if (m_reconnections.empty()) break;
3798 : 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3799 [ # # ]: 0 : }
3800 : :
3801 : 0 : auto& item = *todo.begin();
3802 [ # # ]: 0 : OpenNetworkConnection(item.addr_connect,
3803 : : // We only reconnect if the first attempt to connect succeeded at
3804 : : // connection time, but then failed after the CNode object was
3805 : : // created. Since we already know connecting is possible, do not
3806 : : // count failure to reconnect.
3807 : : /*fCountFailure=*/false,
3808 : 0 : std::move(item.grant),
3809 [ # # ]: 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3810 : 0 : item.conn_type,
3811 : 0 : item.use_v2transport);
3812 [ # # # ]: 0 : }
3813 : 0 : }
3814 : :
3815 : : // Dump binary message to file, with timestamp.
3816 : 0 : static void CaptureMessageToFile(const CAddress& addr,
3817 : : const std::string& msg_type,
3818 : : Span<const unsigned char> data,
3819 : : bool is_incoming)
3820 : : {
3821 : : // Note: This function captures the message at the time of processing,
3822 : : // not at socket receive/send time.
3823 : : // This ensures that the messages are always in order from an application
3824 : : // layer (processing) perspective.
3825 : 0 : auto now = GetTime<std::chrono::microseconds>();
3826 : :
3827 : : // Windows folder names cannot include a colon
3828 : 0 : std::string clean_addr = addr.ToStringAddrPort();
3829 [ # # ]: 0 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3830 : :
3831 [ # # ][ # # ]: 0 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
[ # # ][ # # ]
[ # # ]
3832 [ # # ]: 0 : fs::create_directories(base_path);
3833 : :
3834 [ # # ][ # # ]: 0 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
[ # # ]
3835 [ # # ][ # # ]: 0 : AutoFile f{fsbridge::fopen(path, "ab")};
3836 : :
3837 [ # # ]: 0 : ser_writedata64(f, now.count());
3838 [ # # ][ # # ]: 0 : f << Span{msg_type};
3839 [ # # ]: 0 : for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
3840 [ # # ]: 0 : f << uint8_t{'\0'};
3841 : 0 : }
3842 : 0 : uint32_t size = data.size();
3843 [ # # ]: 0 : ser_writedata32(f, size);
3844 [ # # ]: 0 : f << data;
3845 : 0 : }
3846 : :
3847 : : std::function<void(const CAddress& addr,
3848 : : const std::string& msg_type,
3849 : : Span<const unsigned char> data,
3850 : : bool is_incoming)>
3851 : 2 : CaptureMessage = CaptureMessageToFile;
|