Branch data Line data Source code
1 : : // Copyright (c) 2020-2021 The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #include <txrequest.h>
6 : :
7 : : #include <crypto/siphash.h>
8 : : #include <net.h>
9 : : #include <primitives/transaction.h>
10 : : #include <random.h>
11 : : #include <uint256.h>
12 : :
13 : : #include <boost/multi_index/indexed_by.hpp>
14 : : #include <boost/multi_index/ordered_index.hpp>
15 : : #include <boost/multi_index/sequenced_index.hpp>
16 : : #include <boost/multi_index/tag.hpp>
17 [ + - ]: 2 : #include <boost/multi_index_container.hpp>
18 [ + - ]: 2 : #include <boost/tuple/tuple.hpp>
19 : :
20 : : #include <chrono>
21 : : #include <unordered_map>
22 : : #include <utility>
23 : :
24 : : #include <assert.h>
25 : :
26 : : namespace {
27 : :
28 : : /** The various states a (txhash,peer) pair can be in.
29 : : *
30 : : * Note that CANDIDATE is split up into 3 substates (DELAYED, BEST, READY), allowing more efficient implementation.
31 : : * Also note that the sorting order of ByTxHashView relies on the specific order of values in this enum.
32 : : *
33 : : * Expected behaviour is:
34 : : * - When first announced by a peer, the state is CANDIDATE_DELAYED until reqtime is reached.
35 : : * - Announcements that have reached their reqtime but not been requested will be either CANDIDATE_READY or
36 : : * CANDIDATE_BEST. Neither of those has an expiration time; they remain in that state until they're requested or
37 : : * no longer needed. CANDIDATE_READY announcements are promoted to CANDIDATE_BEST when they're the best one left.
38 : : * - When requested, an announcement will be in state REQUESTED until expiry is reached.
39 : : * - If expiry is reached, or the peer replies to the request (either with NOTFOUND or the tx), the state becomes
40 : : * COMPLETED.
41 : : */
42 : : enum class State : uint8_t {
43 : : /** A CANDIDATE announcement whose reqtime is in the future. */
44 : : CANDIDATE_DELAYED,
45 : : /** A CANDIDATE announcement that's not CANDIDATE_DELAYED or CANDIDATE_BEST. */
46 : : CANDIDATE_READY,
47 : : /** The best CANDIDATE for a given txhash; only if there is no REQUESTED announcement already for that txhash.
48 : : * The CANDIDATE_BEST is the highest-priority announcement among all CANDIDATE_READY (and _BEST) ones for that
49 : : * txhash. */
50 : : CANDIDATE_BEST,
51 : : /** A REQUESTED announcement. */
52 : : REQUESTED,
53 : : /** A COMPLETED announcement. */
54 : : COMPLETED,
55 : : };
56 : :
57 : : //! Type alias for sequence numbers.
58 : : using SequenceNumber = uint64_t;
59 : :
60 : : /** An announcement. This is the data we track for each txid or wtxid that is announced to us by each peer. */
61 : : struct Announcement {
62 : : /** Txid or wtxid that was announced. */
63 : : const uint256 m_txhash;
64 : : /** For CANDIDATE_{DELAYED,BEST,READY} the reqtime; for REQUESTED the expiry. */
65 : : std::chrono::microseconds m_time;
66 : : /** What peer the request was from. */
67 : : const NodeId m_peer;
68 : : /** What sequence number this announcement has. */
69 : : const SequenceNumber m_sequence : 59;
70 : : /** Whether the request is preferred. */
71 : : const bool m_preferred : 1;
72 : : /** Whether this is a wtxid request. */
73 : : const bool m_is_wtxid : 1;
74 : 2 :
75 : : /** What state this announcement is in.
76 : : * This is a uint8_t instead of a State to silence a GCC warning in versions prior to 9.3.
77 : : * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414 */
78 : : uint8_t m_state : 3;
79 : :
80 : : /** Convert m_state to a State enum. */
81 : 0 : State GetState() const { return static_cast<State>(m_state); }
82 : :
83 [ + - ]: 2 : /** Convert a State enum to a uint8_t and store it in m_state. */
84 : 0 : void SetState(State state) { m_state = static_cast<uint8_t>(state); }
85 : :
86 : : /** Whether this announcement is selected. There can be at most 1 selected peer per txhash. */
87 : 0 : bool IsSelected() const
88 : : {
89 [ # # ]: 0 : return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED;
90 : : }
91 : :
92 : : /** Whether this announcement is waiting for a certain time to pass. */
93 : 0 : bool IsWaiting() const
94 : : {
95 [ # # ]: 0 : return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED;
96 : : }
97 : :
98 : : /** Whether this announcement can feasibly be selected if the current IsSelected() one disappears. */
99 : 0 : bool IsSelectable() const
100 : : {
101 [ # # ]: 0 : return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST;
102 : : }
103 : :
104 : : /** Construct a new announcement from scratch, initially in CANDIDATE_DELAYED state. */
105 : 0 : Announcement(const GenTxid& gtxid, NodeId peer, bool preferred, std::chrono::microseconds reqtime,
106 : : SequenceNumber sequence) :
107 : 0 : m_txhash(gtxid.GetHash()), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred),
108 : 0 : m_is_wtxid(gtxid.IsWtxid()), m_state(static_cast<uint8_t>(State::CANDIDATE_DELAYED)) {}
109 : : };
110 : :
111 : : //! Type alias for priorities.
112 : : using Priority = uint64_t;
113 : :
114 : : /** A functor with embedded salt that computes priority of an announcement.
115 : : *
116 : : * Higher priorities are selected first.
117 : : */
118 : : class PriorityComputer {
119 : : const uint64_t m_k0, m_k1;
120 : : public:
121 : 1 : explicit PriorityComputer(bool deterministic) :
122 [ - + ]: 1 : m_k0{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)},
123 [ - + ]: 1 : m_k1{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)} {}
124 : :
125 : 0 : Priority operator()(const uint256& txhash, NodeId peer, bool preferred) const
126 : : {
127 : 0 : uint64_t low_bits = CSipHasher(m_k0, m_k1).Write(txhash).Write(peer).Finalize() >> 1;
128 : 0 : return low_bits | uint64_t{preferred} << 63;
129 : : }
130 : :
131 : 0 : Priority operator()(const Announcement& ann) const
132 : : {
133 : 0 : return operator()(ann.m_txhash, ann.m_peer, ann.m_preferred);
134 : : }
135 : : };
136 : :
137 : : // Definitions for the 3 indexes used in the main data structure.
138 : : //
139 : : // Each index has a By* type to identify it, a By*View data type to represent the view of announcement it is sorted
140 : : // by, and an By*ViewExtractor type to convert an announcement into the By*View type.
141 : : // See https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors
142 : : // for more information about the key extraction concept.
143 : :
144 : : // The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, txhash)
145 : : //
146 : : // Uses:
147 : : // * Looking up existing announcements by peer/txhash, by checking both (peer, false, txhash) and
148 : : // (peer, true, txhash).
149 : : // * Finding all CANDIDATE_BEST announcements for a given peer in GetRequestable.
150 : : struct ByPeer {};
151 : : using ByPeerView = std::tuple<NodeId, bool, const uint256&>;
152 : : struct ByPeerViewExtractor
153 : : {
154 : : using result_type = ByPeerView;
155 : 0 : result_type operator()(const Announcement& ann) const
156 : : {
157 : 0 : return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_txhash};
158 : : }
159 : : };
160 : :
161 : : // The ByTxHash index is sorted by (txhash, state, priority).
162 : : //
163 : : // Note: priority == 0 whenever state != CANDIDATE_READY.
164 : : //
165 : : // Uses:
166 : : // * Deleting all announcements with a given txhash in ForgetTxHash.
167 : : // * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no other CANDIDATE_READY or REQUESTED
168 : : // announcement exists for that txhash.
169 : : // * Determining when no more non-COMPLETED announcements for a given txhash exist, so the COMPLETED ones can be
170 : : // deleted.
171 : : struct ByTxHash {};
172 : : using ByTxHashView = std::tuple<const uint256&, State, Priority>;
173 : : class ByTxHashViewExtractor {
174 : : const PriorityComputer& m_computer;
175 : : public:
176 : 1 : explicit ByTxHashViewExtractor(const PriorityComputer& computer) : m_computer(computer) {}
177 : : using result_type = ByTxHashView;
178 : 0 : result_type operator()(const Announcement& ann) const
179 : : {
180 [ # # ]: 0 : const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0;
181 : 0 : return ByTxHashView{ann.m_txhash, ann.GetState(), prio};
182 : : }
183 : : };
184 : :
185 : : enum class WaitState {
186 : : //! Used for announcements that need efficient testing of "is their timestamp in the future?".
187 : : FUTURE_EVENT,
188 : : //! Used for announcements whose timestamp is not relevant.
189 : : NO_EVENT,
190 : : //! Used for announcements that need efficient testing of "is their timestamp in the past?".
191 : : PAST_EVENT,
192 : : };
193 : :
194 : 0 : WaitState GetWaitState(const Announcement& ann)
195 : : {
196 [ # # ]: 0 : if (ann.IsWaiting()) return WaitState::FUTURE_EVENT;
197 [ # # ]: 0 : if (ann.IsSelectable()) return WaitState::PAST_EVENT;
198 : 0 : return WaitState::NO_EVENT;
199 : 0 : }
200 : :
201 : : // The ByTime index is sorted by (wait_state, time).
202 : : //
203 : : // All announcements with a timestamp in the future can be found by iterating the index forward from the beginning.
204 : : // All announcements with a timestamp in the past can be found by iterating the index backwards from the end.
205 : : //
206 : : // Uses:
207 : : // * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and REQUESTED announcements whose expiry has
208 : : // passed.
209 : : // * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future (when the clock time went backwards).
210 : : struct ByTime {};
211 : : using ByTimeView = std::pair<WaitState, std::chrono::microseconds>;
212 : : struct ByTimeViewExtractor
213 : : {
214 : : using result_type = ByTimeView;
215 : 0 : result_type operator()(const Announcement& ann) const
216 : : {
217 : 0 : return ByTimeView{GetWaitState(ann), ann.m_time};
218 : : }
219 : : };
220 : :
221 : : /** Data type for the main data structure (Announcement objects with ByPeer/ByTxHash/ByTime indexes). */
222 : : using Index = boost::multi_index_container<
223 : : Announcement,
224 : : boost::multi_index::indexed_by<
225 : : boost::multi_index::ordered_unique<boost::multi_index::tag<ByPeer>, ByPeerViewExtractor>,
226 : : boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTxHash>, ByTxHashViewExtractor>,
227 : : boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTime>, ByTimeViewExtractor>
228 : : >
229 : : >;
230 : :
231 : : /** Helper type to simplify syntax of iterator types. */
232 : : template<typename Tag>
233 : : using Iter = typename Index::index<Tag>::type::iterator;
234 : :
235 : : /** Per-peer statistics object. */
236 : 0 : struct PeerInfo {
237 : 0 : size_t m_total = 0; //!< Total number of announcements for this peer.
238 : 0 : size_t m_completed = 0; //!< Number of COMPLETED announcements for this peer.
239 : 0 : size_t m_requested = 0; //!< Number of REQUESTED announcements for this peer.
240 : : };
241 : :
242 : : /** Per-txhash statistics object. Only used for sanity checking. */
243 : 0 : struct TxHashInfo
244 : : {
245 : : //! Number of CANDIDATE_DELAYED announcements for this txhash.
246 : 0 : size_t m_candidate_delayed = 0;
247 : : //! Number of CANDIDATE_READY announcements for this txhash.
248 : 0 : size_t m_candidate_ready = 0;
249 : : //! Number of CANDIDATE_BEST announcements for this txhash (at most one).
250 : 0 : size_t m_candidate_best = 0;
251 : : //! Number of REQUESTED announcements for this txhash (at most one; mutually exclusive with CANDIDATE_BEST).
252 : 0 : size_t m_requested = 0;
253 : : //! The priority of the CANDIDATE_BEST announcement if one exists, or max() otherwise.
254 : 0 : Priority m_priority_candidate_best = std::numeric_limits<Priority>::max();
255 : : //! The highest priority of all CANDIDATE_READY announcements (or min() if none exist).
256 : 0 : Priority m_priority_best_candidate_ready = std::numeric_limits<Priority>::min();
257 : : //! All peers we have an announcement for this txhash for.
258 : : std::vector<NodeId> m_peers;
259 : : };
260 : :
261 : : /** Compare two PeerInfo objects. Only used for sanity checking. */
262 : 0 : bool operator==(const PeerInfo& a, const PeerInfo& b)
263 : : {
264 : 0 : return std::tie(a.m_total, a.m_completed, a.m_requested) ==
265 : 0 : std::tie(b.m_total, b.m_completed, b.m_requested);
266 : : };
267 : :
268 : : /** (Re)compute the PeerInfo map from the index. Only used for sanity checking. */
269 : 0 : std::unordered_map<NodeId, PeerInfo> RecomputePeerInfo(const Index& index)
270 : : {
271 : 0 : std::unordered_map<NodeId, PeerInfo> ret;
272 [ # # # # : 0 : for (const Announcement& ann : index) {
# # ]
273 [ # # ]: 0 : PeerInfo& info = ret[ann.m_peer];
274 : 0 : ++info.m_total;
275 : 0 : info.m_requested += (ann.GetState() == State::REQUESTED);
276 : 0 : info.m_completed += (ann.GetState() == State::COMPLETED);
277 : : }
278 : 0 : return ret;
279 [ # # ]: 0 : }
280 : :
281 : : /** Compute the TxHashInfo map. Only used for sanity checking. */
282 : 0 : std::map<uint256, TxHashInfo> ComputeTxHashInfo(const Index& index, const PriorityComputer& computer)
283 : : {
284 : 0 : std::map<uint256, TxHashInfo> ret;
285 [ # # # # : 0 : for (const Announcement& ann : index) {
# # ]
286 [ # # ]: 0 : TxHashInfo& info = ret[ann.m_txhash];
287 : : // Classify how many announcements of each state we have for this txhash.
288 : 0 : info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED);
289 : 0 : info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY);
290 : 0 : info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST);
291 : 0 : info.m_requested += (ann.GetState() == State::REQUESTED);
292 : : // And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST announcements.
293 [ # # ]: 0 : if (ann.GetState() == State::CANDIDATE_BEST) {
294 [ # # ]: 0 : info.m_priority_candidate_best = computer(ann);
295 : 0 : }
296 [ # # ]: 0 : if (ann.GetState() == State::CANDIDATE_READY) {
297 [ # # # # ]: 0 : info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann));
298 : 0 : }
299 : : // Also keep track of which peers this txhash has an announcement for (so we can detect duplicates).
300 [ # # ]: 0 : info.m_peers.push_back(ann.m_peer);
301 : : }
302 : 0 : return ret;
303 [ # # ]: 0 : }
304 : :
305 : 0 : GenTxid ToGenTxid(const Announcement& ann)
306 : : {
307 [ # # ]: 0 : return ann.m_is_wtxid ? GenTxid::Wtxid(ann.m_txhash) : GenTxid::Txid(ann.m_txhash);
308 : : }
309 : :
310 : : } // namespace
311 : :
312 : : /** Actual implementation for TxRequestTracker's data structure. */
313 : : class TxRequestTracker::Impl {
314 : : //! The current sequence number. Increases for every announcement. This is used to sort txhashes returned by
315 : : //! GetRequestable in announcement order.
316 : 1 : SequenceNumber m_current_sequence{0};
317 : :
318 : : //! This tracker's priority computer.
319 : : const PriorityComputer m_computer;
320 : :
321 : : //! This tracker's main data structure. See SanityCheck() for the invariants that apply to it.
322 : : Index m_index;
323 : :
324 : : //! Map with this tracker's per-peer statistics.
325 : : std::unordered_map<NodeId, PeerInfo> m_peerinfo;
326 : :
327 : : public:
328 : 0 : void SanityCheck() const
329 : : {
330 : : // Recompute m_peerdata from m_index. This verifies the data in it as it should just be caching statistics
331 : : // on m_index. It also verifies the invariant that no PeerInfo announcements with m_total==0 exist.
332 [ # # # # ]: 0 : assert(m_peerinfo == RecomputePeerInfo(m_index));
333 : :
334 : : // Calculate per-txhash statistics from m_index, and validate invariants.
335 [ # # ]: 0 : for (auto& item : ComputeTxHashInfo(m_index, m_computer)) {
336 : 0 : TxHashInfo& info = item.second;
337 : :
338 : : // Cannot have only COMPLETED peer (txhash should have been forgotten already)
339 [ # # ]: 0 : assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0);
340 : :
341 : : // Can have at most 1 CANDIDATE_BEST/REQUESTED peer
342 [ # # ]: 0 : assert(info.m_candidate_best + info.m_requested <= 1);
343 : :
344 : : // If there are any CANDIDATE_READY announcements, there must be exactly one CANDIDATE_BEST or REQUESTED
345 : : // announcement.
346 [ # # ]: 0 : if (info.m_candidate_ready > 0) {
347 [ # # ]: 0 : assert(info.m_candidate_best + info.m_requested == 1);
348 : 0 : }
349 : :
350 : : // If there is both a CANDIDATE_READY and a CANDIDATE_BEST announcement, the CANDIDATE_BEST one must be
351 : : // at least as good (equal or higher priority) as the best CANDIDATE_READY.
352 [ # # # # ]: 0 : if (info.m_candidate_ready && info.m_candidate_best) {
353 [ # # ]: 0 : assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready);
354 : 0 : }
355 : :
356 : : // No txhash can have been announced by the same peer twice.
357 [ # # ]: 0 : std::sort(info.m_peers.begin(), info.m_peers.end());
358 [ # # # # ]: 0 : assert(std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end());
359 : : }
360 : 0 : }
361 : :
362 : 0 : void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
363 : : {
364 [ # # ]: 0 : for (const Announcement& ann : m_index) {
365 [ # # ]: 0 : if (ann.IsWaiting()) {
366 : : // REQUESTED and CANDIDATE_DELAYED must have a time in the future (they should have been converted
367 : : // to COMPLETED/CANDIDATE_READY respectively).
368 [ # # ]: 0 : assert(ann.m_time > now);
369 [ # # ]: 0 : } else if (ann.IsSelectable()) {
370 : : // CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the future (they should have remained
371 : : // CANDIDATE_DELAYED, or should have been converted back to it if time went backwards).
372 [ # # ]: 0 : assert(ann.m_time <= now);
373 : 0 : }
374 : : }
375 : 0 : }
376 : :
377 : : private:
378 : : //! Wrapper around Index::...::erase that keeps m_peerinfo up to date.
379 : : template<typename Tag>
380 : 0 : Iter<Tag> Erase(Iter<Tag> it)
381 : : {
382 : 0 : auto peerit = m_peerinfo.find(it->m_peer);
383 : 0 : peerit->second.m_completed -= it->GetState() == State::COMPLETED;
384 : 0 : peerit->second.m_requested -= it->GetState() == State::REQUESTED;
385 [ # # # # ]: 0 : if (--peerit->second.m_total == 0) m_peerinfo.erase(peerit);
386 : 0 : return m_index.get<Tag>().erase(it);
387 : : }
388 : :
389 : : //! Wrapper around Index::...::modify that keeps m_peerinfo up to date.
390 : : template<typename Tag, typename Modifier>
391 : 0 : void Modify(Iter<Tag> it, Modifier modifier)
392 : : {
393 : 0 : auto peerit = m_peerinfo.find(it->m_peer);
394 : 0 : peerit->second.m_completed -= it->GetState() == State::COMPLETED;
395 : 0 : peerit->second.m_requested -= it->GetState() == State::REQUESTED;
396 : 0 : m_index.get<Tag>().modify(it, std::move(modifier));
397 : 0 : peerit->second.m_completed += it->GetState() == State::COMPLETED;
398 : 0 : peerit->second.m_requested += it->GetState() == State::REQUESTED;
399 : 0 : }
400 : :
401 : : //! Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY. If this makes it the new best
402 : : //! CANDIDATE_READY (and no REQUESTED exists) and better than the CANDIDATE_BEST (if any), it becomes the new
403 : : //! CANDIDATE_BEST.
404 : 0 : void PromoteCandidateReady(Iter<ByTxHash> it)
405 : : {
406 [ # # ]: 0 : assert(it != m_index.get<ByTxHash>().end());
407 [ # # ]: 0 : assert(it->GetState() == State::CANDIDATE_DELAYED);
408 : : // Convert CANDIDATE_DELAYED to CANDIDATE_READY first.
409 : 0 : Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
410 : : // The following code relies on the fact that the ByTxHash is sorted by txhash, and then by state (first
411 : : // _DELAYED, then _READY, then _BEST/REQUESTED). Within the _READY announcements, the best one (highest
412 : : // priority) comes last. Thus, if an existing _BEST exists for the same txhash that this announcement may
413 : : // be preferred over, it must immediately follow the newly created _READY.
414 : 0 : auto it_next = std::next(it);
415 [ # # # # : 0 : if (it_next == m_index.get<ByTxHash>().end() || it_next->m_txhash != it->m_txhash ||
# # ]
416 : 0 : it_next->GetState() == State::COMPLETED) {
417 : : // This is the new best CANDIDATE_READY, and there is no IsSelected() announcement for this txhash
418 : : // already.
419 : 0 : Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
420 [ # # ]: 0 : } else if (it_next->GetState() == State::CANDIDATE_BEST) {
421 : 0 : Priority priority_old = m_computer(*it_next);
422 : 0 : Priority priority_new = m_computer(*it);
423 [ # # ]: 0 : if (priority_new > priority_old) {
424 : : // There is a CANDIDATE_BEST announcement already, but this one is better.
425 : 0 : Modify<ByTxHash>(it_next, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
426 : 0 : Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
427 : 0 : }
428 : 0 : }
429 : 0 : }
430 : :
431 : : //! Change the state of an announcement to something non-IsSelected(). If it was IsSelected(), the next best
432 : : //! announcement will be marked CANDIDATE_BEST.
433 : 0 : void ChangeAndReselect(Iter<ByTxHash> it, State new_state)
434 : : {
435 [ # # # # ]: 0 : assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED);
436 [ # # ]: 0 : assert(it != m_index.get<ByTxHash>().end());
437 [ # # # # ]: 0 : if (it->IsSelected() && it != m_index.get<ByTxHash>().begin()) {
438 : 0 : auto it_prev = std::prev(it);
439 : : // The next best CANDIDATE_READY, if any, immediately precedes the REQUESTED or CANDIDATE_BEST
440 : : // announcement in the ByTxHash index.
441 [ # # # # ]: 0 : if (it_prev->m_txhash == it->m_txhash && it_prev->GetState() == State::CANDIDATE_READY) {
442 : : // If one such CANDIDATE_READY exists (for this txhash), convert it to CANDIDATE_BEST.
443 : 0 : Modify<ByTxHash>(it_prev, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
444 : 0 : }
445 : 0 : }
446 : 0 : Modify<ByTxHash>(it, [new_state](Announcement& ann){ ann.SetState(new_state); });
447 : 0 : }
448 : :
449 : : //! Check if 'it' is the only announcement for a given txhash that isn't COMPLETED.
450 : 0 : bool IsOnlyNonCompleted(Iter<ByTxHash> it)
451 : : {
452 [ # # ]: 0 : assert(it != m_index.get<ByTxHash>().end());
453 [ # # ]: 0 : assert(it->GetState() != State::COMPLETED); // Not allowed to call this on COMPLETED announcements.
454 : :
455 : : // This announcement has a predecessor that belongs to the same txhash. Due to ordering, and the
456 : : // fact that 'it' is not COMPLETED, its predecessor cannot be COMPLETED here.
457 [ # # # # ]: 0 : if (it != m_index.get<ByTxHash>().begin() && std::prev(it)->m_txhash == it->m_txhash) return false;
458 : :
459 : : // This announcement has a successor that belongs to the same txhash, and is not COMPLETED.
460 [ # # # # : 0 : if (std::next(it) != m_index.get<ByTxHash>().end() && std::next(it)->m_txhash == it->m_txhash &&
# # ]
461 : 0 : std::next(it)->GetState() != State::COMPLETED) return false;
462 : :
463 : 0 : return true;
464 : 0 : }
465 : :
466 : : /** Convert any announcement to a COMPLETED one. If there are no non-COMPLETED announcements left for this
467 : : * txhash, they are deleted. If this was a REQUESTED announcement, and there are other CANDIDATEs left, the
468 : : * best one is made CANDIDATE_BEST. Returns whether the announcement still exists. */
469 : 0 : bool MakeCompleted(Iter<ByTxHash> it)
470 : : {
471 [ # # ]: 0 : assert(it != m_index.get<ByTxHash>().end());
472 : :
473 : : // Nothing to be done if it's already COMPLETED.
474 [ # # ]: 0 : if (it->GetState() == State::COMPLETED) return true;
475 : :
476 [ # # ]: 0 : if (IsOnlyNonCompleted(it)) {
477 : : // This is the last non-COMPLETED announcement for this txhash. Delete all.
478 : 0 : uint256 txhash = it->m_txhash;
479 : 0 : do {
480 : 0 : it = Erase<ByTxHash>(it);
481 [ # # # # ]: 0 : } while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash);
482 : 0 : return false;
483 : : }
484 : :
485 : : // Mark the announcement COMPLETED, and select the next best announcement (the first CANDIDATE_READY) if
486 : : // needed.
487 : 0 : ChangeAndReselect(it, State::COMPLETED);
488 : :
489 : 0 : return true;
490 : 0 : }
491 : :
492 : : //! Make the data structure consistent with a given point in time:
493 : : //! - REQUESTED announcements with expiry <= now are turned into COMPLETED.
494 : : //! - CANDIDATE_DELAYED announcements with reqtime <= now are turned into CANDIDATE_{READY,BEST}.
495 : : //! - CANDIDATE_{READY,BEST} announcements with reqtime > now are turned into CANDIDATE_DELAYED.
496 : 0 : void SetTimePoint(std::chrono::microseconds now, std::vector<std::pair<NodeId, GenTxid>>* expired)
497 : : {
498 [ # # ]: 0 : if (expired) expired->clear();
499 : :
500 : : // Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as long as they're in the past,
501 : : // and convert them to CANDIDATE_READY and COMPLETED respectively.
502 [ # # ]: 0 : while (!m_index.empty()) {
503 : 0 : auto it = m_index.get<ByTime>().begin();
504 [ # # # # ]: 0 : if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) {
505 : 0 : PromoteCandidateReady(m_index.project<ByTxHash>(it));
506 [ # # # # ]: 0 : } else if (it->GetState() == State::REQUESTED && it->m_time <= now) {
507 [ # # ]: 0 : if (expired) expired->emplace_back(it->m_peer, ToGenTxid(*it));
508 : 0 : MakeCompleted(m_index.project<ByTxHash>(it));
509 : 0 : } else {
510 : 0 : break;
511 : : }
512 : : }
513 : :
514 [ # # ]: 0 : while (!m_index.empty()) {
515 : : // If time went backwards, we may need to demote CANDIDATE_BEST and CANDIDATE_READY announcements back
516 : : // to CANDIDATE_DELAYED. This is an unusual edge case, and unlikely to matter in production. However,
517 : : // it makes it much easier to specify and test TxRequestTracker::Impl's behaviour.
518 : 0 : auto it = std::prev(m_index.get<ByTime>().end());
519 [ # # # # ]: 0 : if (it->IsSelectable() && it->m_time > now) {
520 : 0 : ChangeAndReselect(m_index.project<ByTxHash>(it), State::CANDIDATE_DELAYED);
521 : 0 : } else {
522 : 0 : break;
523 : : }
524 : : }
525 : 0 : }
526 : :
527 : : public:
528 : 1 : explicit Impl(bool deterministic) :
529 : 1 : m_computer(deterministic),
530 : : // Explicitly initialize m_index as we need to pass a reference to m_computer to ByTxHashViewExtractor.
531 [ + - + - ]: 2 : m_index(boost::make_tuple(
532 : 1 : boost::make_tuple(ByPeerViewExtractor(), std::less<ByPeerView>()),
533 : 1 : boost::make_tuple(ByTxHashViewExtractor(m_computer), std::less<ByTxHashView>()),
534 : 1 : boost::make_tuple(ByTimeViewExtractor(), std::less<ByTimeView>())
535 : 1 : )) {}
536 : :
537 : : // Disable copying and assigning (a default copy won't work due the stateful ByTxHashViewExtractor).
538 : : Impl(const Impl&) = delete;
539 : : Impl& operator=(const Impl&) = delete;
540 : :
541 : 0 : void DisconnectedPeer(NodeId peer)
542 : : {
543 : 0 : auto& index = m_index.get<ByPeer>();
544 : 0 : auto it = index.lower_bound(ByPeerView{peer, false, uint256::ZERO});
545 [ # # # # ]: 0 : while (it != index.end() && it->m_peer == peer) {
546 : : // Check what to continue with after this iteration. 'it' will be deleted in what follows, so we need to
547 : : // decide what to continue with afterwards. There are a number of cases to consider:
548 : : // - std::next(it) is end() or belongs to a different peer. In that case, this is the last iteration
549 : : // of the loop (denote this by setting it_next to end()).
550 : : // - 'it' is not the only non-COMPLETED announcement for its txhash. This means it will be deleted, but
551 : : // no other Announcement objects will be modified. Continue with std::next(it) if it belongs to the
552 : : // same peer, but decide this ahead of time (as 'it' may change position in what follows).
553 : : // - 'it' is the only non-COMPLETED announcement for its txhash. This means it will be deleted along
554 : : // with all other announcements for the same txhash - which may include std::next(it). However, other
555 : : // than 'it', no announcements for the same peer can be affected (due to (peer, txhash) uniqueness).
556 : : // In other words, the situation where std::next(it) is deleted can only occur if std::next(it)
557 : : // belongs to a different peer but the same txhash as 'it'. This is covered by the first bulletpoint
558 : : // already, and we'll have set it_next to end().
559 [ # # # # ]: 0 : auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() :
560 : 0 : std::next(it);
561 : : // If the announcement isn't already COMPLETED, first make it COMPLETED (which will mark other
562 : : // CANDIDATEs as CANDIDATE_BEST, or delete all of a txhash's announcements if no non-COMPLETED ones are
563 : : // left).
564 [ # # ]: 0 : if (MakeCompleted(m_index.project<ByTxHash>(it))) {
565 : : // Then actually delete the announcement (unless it was already deleted by MakeCompleted).
566 : 0 : Erase<ByPeer>(it);
567 : 0 : }
568 : 0 : it = it_next;
569 : : }
570 : 0 : }
571 : :
572 : 0 : void ForgetTxHash(const uint256& txhash)
573 : : {
574 : 0 : auto it = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_DELAYED, 0});
575 [ # # # # ]: 0 : while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash) {
576 : 0 : it = Erase<ByTxHash>(it);
577 : : }
578 : 0 : }
579 : :
580 : 0 : void ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
581 : : std::chrono::microseconds reqtime)
582 : : {
583 : : // Bail out if we already have a CANDIDATE_BEST announcement for this (txhash, peer) combination. The case
584 : : // where there is a non-CANDIDATE_BEST announcement already will be caught by the uniqueness property of the
585 : : // ByPeer index when we try to emplace the new object below.
586 [ # # ]: 0 : if (m_index.get<ByPeer>().count(ByPeerView{peer, true, gtxid.GetHash()})) return;
587 : :
588 : : // Try creating the announcement with CANDIDATE_DELAYED state (which will fail due to the uniqueness
589 : : // of the ByPeer index if a non-CANDIDATE_BEST announcement already exists with the same txhash and peer).
590 : : // Bail out in that case.
591 : 0 : auto ret = m_index.get<ByPeer>().emplace(gtxid, peer, preferred, reqtime, m_current_sequence);
592 [ # # ]: 0 : if (!ret.second) return;
593 : :
594 : : // Update accounting metadata.
595 : 0 : ++m_peerinfo[peer].m_total;
596 : 0 : ++m_current_sequence;
597 : 0 : }
598 : :
599 : : //! Find the GenTxids to request now from peer.
600 : 0 : std::vector<GenTxid> GetRequestable(NodeId peer, std::chrono::microseconds now,
601 : : std::vector<std::pair<NodeId, GenTxid>>* expired)
602 : : {
603 : : // Move time.
604 : 0 : SetTimePoint(now, expired);
605 : :
606 : : // Find all CANDIDATE_BEST announcements for this peer.
607 : 0 : std::vector<const Announcement*> selected;
608 [ # # ]: 0 : auto it_peer = m_index.get<ByPeer>().lower_bound(ByPeerView{peer, true, uint256::ZERO});
609 [ # # # # : 0 : while (it_peer != m_index.get<ByPeer>().end() && it_peer->m_peer == peer &&
# # # # #
# ]
610 [ # # ]: 0 : it_peer->GetState() == State::CANDIDATE_BEST) {
611 [ # # ]: 0 : selected.emplace_back(&*it_peer);
612 [ # # ]: 0 : ++it_peer;
613 : : }
614 : :
615 : : // Sort by sequence number.
616 [ # # ]: 0 : std::sort(selected.begin(), selected.end(), [](const Announcement* a, const Announcement* b) {
617 : 0 : return a->m_sequence < b->m_sequence;
618 : : });
619 : :
620 : : // Convert to GenTxid and return.
621 : 0 : std::vector<GenTxid> ret;
622 [ # # ]: 0 : ret.reserve(selected.size());
623 [ # # # # ]: 0 : std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement* ann) {
624 : 0 : return ToGenTxid(*ann);
625 : : });
626 : 0 : return ret;
627 [ # # ]: 0 : }
628 : :
629 : 0 : void RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
630 : : {
631 : 0 : auto it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
632 [ # # ]: 0 : if (it == m_index.get<ByPeer>().end()) {
633 : : // There is no CANDIDATE_BEST announcement, look for a _READY or _DELAYED instead. If the caller only
634 : : // ever invokes RequestedTx with the values returned by GetRequestable, and no other non-const functions
635 : : // other than ForgetTxHash and GetRequestable in between, this branch will never execute (as txhashes
636 : : // returned by GetRequestable always correspond to CANDIDATE_BEST announcements).
637 : :
638 : 0 : it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
639 [ # # # # : 0 : if (it == m_index.get<ByPeer>().end() || (it->GetState() != State::CANDIDATE_DELAYED &&
# # ]
640 : 0 : it->GetState() != State::CANDIDATE_READY)) {
641 : : // There is no CANDIDATE announcement tracked for this peer, so we have nothing to do. Either this
642 : : // txhash wasn't tracked at all (and the caller should have called ReceivedInv), or it was already
643 : : // requested and/or completed for other reasons and this is just a superfluous RequestedTx call.
644 : 0 : return;
645 : : }
646 : :
647 : : // Look for an existing CANDIDATE_BEST or REQUESTED with the same txhash. We only need to do this if the
648 : : // found announcement had a different state than CANDIDATE_BEST. If it did, invariants guarantee that no
649 : : // other CANDIDATE_BEST or REQUESTED can exist.
650 : 0 : auto it_old = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_BEST, 0});
651 [ # # # # ]: 0 : if (it_old != m_index.get<ByTxHash>().end() && it_old->m_txhash == txhash) {
652 [ # # ]: 0 : if (it_old->GetState() == State::CANDIDATE_BEST) {
653 : : // The data structure's invariants require that there can be at most one CANDIDATE_BEST or one
654 : : // REQUESTED announcement per txhash (but not both simultaneously), so we have to convert any
655 : : // existing CANDIDATE_BEST to another CANDIDATE_* when constructing another REQUESTED.
656 : : // It doesn't matter whether we pick CANDIDATE_READY or _DELAYED here, as SetTimePoint()
657 : : // will correct it at GetRequestable() time. If time only goes forward, it will always be
658 : : // _READY, so pick that to avoid extra work in SetTimePoint().
659 : 0 : Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::CANDIDATE_READY); });
660 [ # # ]: 0 : } else if (it_old->GetState() == State::REQUESTED) {
661 : : // As we're no longer waiting for a response to the previous REQUESTED announcement, convert it
662 : : // to COMPLETED. This also helps guaranteeing progress.
663 : 0 : Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::COMPLETED); });
664 : 0 : }
665 : 0 : }
666 : 0 : }
667 : :
668 : 0 : Modify<ByPeer>(it, [expiry](Announcement& ann) {
669 : 0 : ann.SetState(State::REQUESTED);
670 : 0 : ann.m_time = expiry;
671 : 0 : });
672 : 0 : }
673 : :
674 : 0 : void ReceivedResponse(NodeId peer, const uint256& txhash)
675 : : {
676 : : // We need to search the ByPeer index for both (peer, false, txhash) and (peer, true, txhash).
677 : 0 : auto it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
678 [ # # ]: 0 : if (it == m_index.get<ByPeer>().end()) {
679 : 0 : it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
680 : 0 : }
681 [ # # ]: 0 : if (it != m_index.get<ByPeer>().end()) MakeCompleted(m_index.project<ByTxHash>(it));
682 : 0 : }
683 : :
684 : 0 : size_t CountInFlight(NodeId peer) const
685 : : {
686 : 0 : auto it = m_peerinfo.find(peer);
687 [ # # ]: 0 : if (it != m_peerinfo.end()) return it->second.m_requested;
688 : 0 : return 0;
689 : 0 : }
690 : :
691 : 0 : size_t CountCandidates(NodeId peer) const
692 : : {
693 : 0 : auto it = m_peerinfo.find(peer);
694 [ # # ]: 0 : if (it != m_peerinfo.end()) return it->second.m_total - it->second.m_requested - it->second.m_completed;
695 : 0 : return 0;
696 : 0 : }
697 : :
698 : 6993 : size_t Count(NodeId peer) const
699 : : {
700 : 6993 : auto it = m_peerinfo.find(peer);
701 [ - + ]: 6993 : if (it != m_peerinfo.end()) return it->second.m_total;
702 : 6993 : return 0;
703 : 6993 : }
704 : :
705 : : //! Count how many announcements are being tracked in total across all peers and transactions.
706 : 0 : size_t Size() const { return m_index.size(); }
707 : :
708 : 0 : uint64_t ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
709 : : {
710 : : // Return Priority as a uint64_t as Priority is internal.
711 : 0 : return uint64_t{m_computer(txhash, peer, preferred)};
712 : : }
713 : :
714 : : };
715 : :
716 : 1 : TxRequestTracker::TxRequestTracker(bool deterministic) :
717 : 1 : m_impl{std::make_unique<TxRequestTracker::Impl>(deterministic)} {}
718 : :
719 : 1 : TxRequestTracker::~TxRequestTracker() = default;
720 : :
721 : 0 : void TxRequestTracker::ForgetTxHash(const uint256& txhash) { m_impl->ForgetTxHash(txhash); }
722 : 0 : void TxRequestTracker::DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); }
723 : 0 : size_t TxRequestTracker::CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); }
724 : 0 : size_t TxRequestTracker::CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); }
725 : 6993 : size_t TxRequestTracker::Count(NodeId peer) const { return m_impl->Count(peer); }
726 : 0 : size_t TxRequestTracker::Size() const { return m_impl->Size(); }
727 : 0 : void TxRequestTracker::SanityCheck() const { m_impl->SanityCheck(); }
728 : :
729 : 0 : void TxRequestTracker::PostGetRequestableSanityCheck(std::chrono::microseconds now) const
730 : : {
731 : 0 : m_impl->PostGetRequestableSanityCheck(now);
732 : 0 : }
733 : :
734 : 0 : void TxRequestTracker::ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
735 : : std::chrono::microseconds reqtime)
736 : : {
737 : 0 : m_impl->ReceivedInv(peer, gtxid, preferred, reqtime);
738 : 0 : }
739 : :
740 : 0 : void TxRequestTracker::RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
741 : : {
742 : 0 : m_impl->RequestedTx(peer, txhash, expiry);
743 : 0 : }
744 : :
745 : 0 : void TxRequestTracker::ReceivedResponse(NodeId peer, const uint256& txhash)
746 : : {
747 : 0 : m_impl->ReceivedResponse(peer, txhash);
748 : 0 : }
749 : :
750 : 0 : std::vector<GenTxid> TxRequestTracker::GetRequestable(NodeId peer, std::chrono::microseconds now,
751 : : std::vector<std::pair<NodeId, GenTxid>>* expired)
752 : : {
753 : 0 : return m_impl->GetRequestable(peer, now, expired);
754 : : }
755 : :
756 : 0 : uint64_t TxRequestTracker::ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
757 : : {
758 : 0 : return m_impl->ComputePriority(txhash, peer, preferred);
759 : : }
|