Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <net_processing.h>
7 : :
8 : : #include <addrman.h>
9 : : #include <banman.h>
10 : : #include <blockencodings.h>
11 : : #include <blockfilter.h>
12 : : #include <chainparams.h>
13 : : #include <consensus/amount.h>
14 : : #include <consensus/validation.h>
15 : : #include <deploymentstatus.h>
16 : : #include <hash.h>
17 [ + - ]: 2 : #include <headerssync.h>
18 [ + - ]: 2 : #include <index/blockfilterindex.h>
19 : : #include <kernel/mempool_entry.h>
20 : : #include <logging.h>
21 : : #include <kernel/chain.h>
22 : : #include <merkleblock.h>
23 : : #include <netbase.h>
24 : : #include <netmessagemaker.h>
25 : : #include <node/blockstorage.h>
26 : : #include <node/txreconciliation.h>
27 : : #include <policy/fees.h>
28 : : #include <policy/policy.h>
29 : : #include <policy/settings.h>
30 : : #include <primitives/block.h>
31 : : #include <primitives/transaction.h>
32 : : #include <random.h>
33 : : #include <reverse_iterator.h>
34 : : #include <scheduler.h>
35 : : #include <streams.h>
36 : : #include <sync.h>
37 : : #include <timedata.h>
38 : : #include <tinyformat.h>
39 : : #include <txmempool.h>
40 : : #include <txorphanage.h>
41 : : #include <txrequest.h>
42 : : #include <util/check.h> // For NDEBUG compile time check
43 : : #include <util/strencodings.h>
44 : : #include <util/trace.h>
45 : : #include <validation.h>
46 : :
47 : : #include <algorithm>
48 : : #include <atomic>
49 : : #include <chrono>
50 : : #include <future>
51 : : #include <memory>
52 : : #include <optional>
53 : : #include <typeinfo>
54 : :
55 : : /** Headers download timeout.
56 : : * Timeout = base + per_header * (expected number of headers) */
57 : : static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
58 : : static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
59 : : /** How long to wait for a peer to respond to a getheaders request */
60 : : static constexpr auto HEADERS_RESPONSE_TIME{2min};
61 : : /** Protect at least this many outbound peers from disconnection due to slow/
62 : : * behind headers chain.
63 : : */
64 : : static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
65 : : /** Timeout for (unprotected) outbound peers to sync to our chainwork */
66 : : static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
67 : : /** How frequently to check for stale tips */
68 : : static constexpr auto STALE_CHECK_INTERVAL{10min};
69 : : /** How frequently to check for extra outbound peers and disconnect */
70 : : static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
71 : : /** Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict */
72 : : static constexpr auto MINIMUM_CONNECT_TIME{30s};
73 : : /** SHA256("main address relay")[0:8] */
74 : 2 : static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
75 : : /// Age after which a stale block will no longer be served if requested as
76 : : /// protection against fingerprinting. Set to one month, denominated in seconds.
77 : : static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
78 : : /// Age after which a block is considered historical for purposes of rate
79 : : /// limiting block relay. Set to one week, denominated in seconds.
80 : : static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
81 : : /** Time between pings automatically sent out for latency probing and keepalive */
82 : : static constexpr auto PING_INTERVAL{2min};
83 [ + - ]: 2 : /** The maximum number of entries in a locator */
84 : : static const unsigned int MAX_LOCATOR_SZ = 101;
85 : : /** The maximum number of entries in an 'inv' protocol message */
86 : : static const unsigned int MAX_INV_SZ = 50000;
87 : : /** Maximum number of in-flight transaction requests from a peer. It is not a hard limit, but the threshold at which
88 : : * point the OVERLOADED_PEER_TX_DELAY kicks in. */
89 : : static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100;
90 : : /** Maximum number of transactions to consider for requesting, per peer. It provides a reasonable DoS limit to
91 : : * per-peer memory usage spent on announcements, while covering peers continuously sending INVs at the maximum
92 : : * rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for several minutes, while not receiving
93 : : * the actual transaction (from any peer) in response to requests for them. */
94 : : static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000;
95 : : /** How long to delay requesting transactions via txids, if we have wtxid-relaying peers */
96 : : static constexpr auto TXID_RELAY_DELAY{2s};
97 : : /** How long to delay requesting transactions from non-preferred peers */
98 : : static constexpr auto NONPREF_PEER_TX_DELAY{2s};
99 : : /** How long to delay requesting transactions from overloaded peers (see MAX_PEER_TX_REQUEST_IN_FLIGHT). */
100 : : static constexpr auto OVERLOADED_PEER_TX_DELAY{2s};
101 : : /** How long to wait before downloading a transaction from an additional peer */
102 : : static constexpr auto GETDATA_TX_INTERVAL{60s};
103 : : /** Limit to avoid sending big packets. Not used in processing incoming GETDATA for compatibility */
104 : : static const unsigned int MAX_GETDATA_SZ = 1000;
105 : : /** Number of blocks that can be requested at any given time from a single peer. */
106 : : static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
107 : : /** Default time during which a peer must stall block download progress before being disconnected.
108 : : * the actual timeout is increased temporarily if peers are disconnected for hitting the timeout */
109 : : static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
110 : : /** Maximum timeout for stalling block download. */
111 : : static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
112 : : /** Number of headers sent in one getheaders result. We rely on the assumption that if a peer sends
113 : : * less than this number, we reached its tip. Changing this value is a protocol upgrade. */
114 : : static const unsigned int MAX_HEADERS_RESULTS = 2000;
115 : : /** Maximum depth of blocks we're willing to serve as compact blocks to peers
116 : : * when requested. For older blocks, a regular BLOCK response will be sent. */
117 : : static const int MAX_CMPCTBLOCK_DEPTH = 5;
118 : : /** Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for. */
119 : : static const int MAX_BLOCKTXN_DEPTH = 10;
120 : : /** Size of the "block download window": how far ahead of our current height do we fetch?
121 : : * Larger windows tolerate larger download speed differences between peer, but increase the potential
122 : : * degree of disordering of blocks on disk (which make reindexing and pruning harder). We'll probably
123 : : * want to make this a per-peer adaptive value at some point. */
124 : : static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
125 : : /** Block download timeout base, expressed in multiples of the block interval (i.e. 10 min) */
126 : : static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
127 : : /** Additional block download timeout per parallel downloading peer (i.e. 5 min) */
128 : : static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
129 : : /** Maximum number of headers to announce when relaying blocks with headers message.*/
130 : : static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
131 : : /** Maximum number of unconnecting headers announcements before DoS score */
132 : : static const int MAX_NUM_UNCONNECTING_HEADERS_MSGS = 10;
133 : : /** Minimum blocks required to signal NODE_NETWORK_LIMITED */
134 : : static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
135 : : /** Average delay between local address broadcasts */
136 : : static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
137 : : /** Average delay between peer address broadcasts */
138 : : static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
139 : : /** Delay between rotating the peers we relay a particular address to */
140 : : static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
141 : : /** Average delay between trickled inventory transmissions for inbound peers.
142 : : * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
143 : : static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
144 : : /** Average delay between trickled inventory transmissions for outbound peers.
145 : : * Use a smaller delay as there is less privacy concern for them.
146 : : * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
147 : : static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
148 : : /** Maximum rate of inventory items to send per second.
149 : : * Limits the impact of low-fee transaction floods. */
150 : : static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
151 : : /** Target number of tx inventory items to send per transmission. */
152 : : static constexpr unsigned int INVENTORY_BROADCAST_TARGET = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
153 : : /** Maximum number of inventory items to send per transmission. */
154 : : static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
155 : : static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
156 : : static_assert(INVENTORY_BROADCAST_MAX <= MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
157 : : /** Average delay between feefilter broadcasts in seconds. */
158 : : static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
159 : : /** Maximum feefilter broadcast delay after significant change. */
160 : : static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
161 : : /** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
162 : : static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
163 : : /** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
164 : : static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
165 : : /** the maximum percentage of addresses from our addrman to return in response to a getaddr message. */
166 : : static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
167 : : /** The maximum number of address records permitted in an ADDR message. */
168 : : static constexpr size_t MAX_ADDR_TO_SEND{1000};
169 : : /** The maximum rate of address records we're willing to process on average. Can be bypassed using
170 : : * the NetPermissionFlags::Addr permission. */
171 : : static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
172 : : /** The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND
173 : : * based increments won't go above this, but the MAX_ADDR_TO_SEND increment following GETADDR
174 : : * is exempt from this limit). */
175 : : static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND};
176 : : /** The compactblocks version we support. See BIP 152. */
177 : : static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
178 : :
179 : : // Internal stuff
180 : : namespace {
181 : : /** Blocks that are in flight, and that are in the queue to be downloaded. */
182 : : struct QueuedBlock {
183 : : /** BlockIndex. We must have this since we only request blocks when we've already validated the header. */
184 : : const CBlockIndex* pindex;
185 : : /** Optional, used for CMPCTBLOCK downloads */
186 : : std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
187 : : };
188 : :
189 : : /**
190 : : * Data structure for an individual peer. This struct is not protected by
191 : : * cs_main since it does not contain validation-critical data.
192 : : *
193 : : * Memory is owned by shared pointers and this object is destructed when
194 : : * the refcount drops to zero.
195 : : *
196 : : * Mutexes inside this struct must not be held when locking m_peer_mutex.
197 : : *
198 : : * TODO: move most members from CNodeState to this structure.
199 : : * TODO: move remaining application-layer data members from CNode to this structure.
200 : : */
201 : : struct Peer {
202 : : /** Same id as the CNode object for this peer */
203 : : const NodeId m_id{0};
204 : :
205 : : /** Services we offered to this peer.
206 : : *
207 : : * This is supplied by CConnman during peer initialization. It's const
208 : : * because there is no protocol defined for renegotiating services
209 : : * initially offered to a peer. The set of local services we offer should
210 : : * not change after initialization.
211 : : *
212 : : * An interesting example of this is NODE_NETWORK and initial block
213 : : * download: a node which starts up from scratch doesn't have any blocks
214 : : * to serve, but still advertises NODE_NETWORK because it will eventually
215 : : * fulfill this role after IBD completes. P2P code is written in such a
216 : : * way that it can gracefully handle peers who don't make good on their
217 : : * service advertisements. */
218 : : const ServiceFlags m_our_services;
219 : : /** Services this peer offered to us. */
220 : 6993 : std::atomic<ServiceFlags> m_their_services{NODE_NONE};
221 : :
222 : : /** Protects misbehavior data members */
223 : : Mutex m_misbehavior_mutex;
224 : : /** Accumulated misbehavior score for this peer */
225 : 6993 : int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
226 : : /** Whether this peer should be disconnected and marked as discouraged (unless it has NetPermissionFlags::NoBan permission). */
227 : 6993 : bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
228 : :
229 : : /** Protects block inventory data members */
230 : : Mutex m_block_inv_mutex;
231 : : /** List of blocks that we'll announce via an `inv` message.
232 : : * There is no final sorting before sending, as they are always sent
233 : : * immediately and in the order requested. */
234 : : std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
235 : : /** Unfiltered list of blocks that we'd like to announce via a `headers`
236 : : * message. If we can't announce via a `headers` message, we'll fall back to
237 : : * announcing via `inv`. */
238 : : std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
239 : : /** The final block hash that we sent in an `inv` message to this peer.
240 : : * When the peer requests this block, we send an `inv` message to trigger
241 : : * the peer to request the next sequence of block hashes.
242 : : * Most peers use headers-first syncing, which doesn't use this mechanism */
243 [ + - ]: 6993 : uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
244 : :
245 : : /** This peer's reported block height when we connected */
246 : 6993 : std::atomic<int> m_starting_height{-1};
247 : :
248 : : /** The pong reply we're expecting, or 0 if no pong expected. */
249 : 6993 : std::atomic<uint64_t> m_ping_nonce_sent{0};
250 : : /** When the last ping was sent, or 0 if no ping was ever sent */
251 [ + - ]: 6993 : std::atomic<std::chrono::microseconds> m_ping_start{0us};
252 : : /** Whether a ping has been requested by the user */
253 : 6993 : std::atomic<bool> m_ping_queued{false};
254 : :
255 : : /** Whether this peer relays txs via wtxid */
256 : 6993 : std::atomic<bool> m_wtxid_relay{false};
257 : : /** The feerate in the most recent BIP133 `feefilter` message sent to the peer.
258 : : * It is *not* a p2p protocol violation for the peer to send us
259 : : * transactions with a lower fee rate than this. See BIP133. */
260 : 6993 : CAmount m_fee_filter_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
261 : : /** Timestamp after which we will send the next BIP133 `feefilter` message
262 : : * to the peer. */
263 [ + - ]: 6993 : std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
264 : :
265 : 0 : struct TxRelay {
266 : : mutable RecursiveMutex m_bloom_filter_mutex;
267 : : /** Whether we relay transactions to this peer. */
268 : 0 : bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
269 : : /** A bloom filter for which transactions to announce to the peer. See BIP37. */
270 : 0 : std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
271 : :
272 : : mutable RecursiveMutex m_tx_inventory_mutex;
273 : : /** A filter of all the (w)txids that the peer has announced to
274 : : * us or we have announced to the peer. We use this to avoid announcing
275 : : * the same (w)txid to a peer that already has the transaction. */
276 [ # # ]: 0 : CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
277 : : /** Set of transaction ids we still have to announce (txid for
278 : : * non-wtxid-relay peers, wtxid for wtxid-relay peers). We use the
279 : : * mempool to sort transactions in dependency order before relay, so
280 : : * this does not have to be sorted. */
281 : : std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
282 : : /** Whether the peer has requested us to send our complete mempool. Only
283 : : * permitted if the peer has NetPermissionFlags::Mempool or we advertise
284 : : * NODE_BLOOM. See BIP35. */
285 : 0 : bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
286 : : /** The next time after which we will send an `inv` message containing
287 : : * transaction announcements to this peer. */
288 [ # # ]: 0 : std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
289 : : /** The mempool sequence num at which we sent the last `inv` message to this peer.
290 : : * Can relay txs with lower sequence numbers than this (see CTxMempool::info_for_relay). */
291 : 0 : uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
292 : :
293 : : /** Minimum fee rate with which to filter transaction announcements to this node. See BIP133. */
294 : 0 : std::atomic<CAmount> m_fee_filter_received{0};
295 : : };
296 : :
297 : : /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
298 : 0 : TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
299 : : {
300 : 0 : LOCK(m_tx_relay_mutex);
301 : 0 : Assume(!m_tx_relay);
302 [ # # ]: 0 : m_tx_relay = std::make_unique<Peer::TxRelay>();
303 : 0 : return m_tx_relay.get();
304 : 0 : };
305 : :
306 : 0 : TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
307 : : {
308 : 0 : return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
309 : : };
310 : :
311 : : /** A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */
312 : : std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
313 : : /** Probabilistic filter to track recent addr messages relayed with this
314 : : * peer. Used to avoid relaying redundant addresses to this peer.
315 : : *
316 : : * We initialize this filter for outbound peers (other than
317 : : * block-relay-only connections) or when an inbound peer sends us an
318 : : * address related message (ADDR, ADDRV2, GETADDR).
319 : : *
320 : : * Presence of this filter must correlate with m_addr_relay_enabled.
321 : : **/
322 : : std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
323 : : /** Whether we are participating in address relay with this connection.
324 : : *
325 : : * We set this bool to true for outbound peers (other than
326 : : * block-relay-only connections), or when an inbound peer sends us an
327 : : * address related message (ADDR, ADDRV2, GETADDR).
328 : : *
329 : : * We use this bool to decide whether a peer is eligible for gossiping
330 : : * addr messages. This avoids relaying to peers that are unlikely to
331 : : * forward them, effectively blackholing self announcements. Reasons
332 : : * peers might support addr relay on the link include that they connected
333 : : * to us as a block-relay-only peer or they are a light client.
334 : : *
335 : : * This field must correlate with whether m_addr_known has been
336 : : * initialized.*/
337 : 6993 : std::atomic_bool m_addr_relay_enabled{false};
338 : : /** Whether a getaddr request to this peer is outstanding. */
339 : 6993 : bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
340 : : /** Guards address sending timers. */
341 : : mutable Mutex m_addr_send_times_mutex;
342 : : /** Time point to send the next ADDR message to this peer. */
343 [ + - ]: 6993 : std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
344 : : /** Time point to possibly re-announce our local address to this peer. */
345 [ + - ]: 6993 : std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
346 : : /** Whether the peer has signaled support for receiving ADDRv2 (BIP155)
347 : : * messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */
348 : 6993 : std::atomic_bool m_wants_addrv2{false};
349 : : /** Whether this peer has already sent us a getaddr message. */
350 : 6993 : bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
351 : : /** Number of addresses that can be processed from this peer. Start at 1 to
352 : : * permit self-announcement. */
353 : 6993 : double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
354 : : /** When m_addr_token_bucket was last updated */
355 [ + - ]: 6993 : std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
356 : : /** Total number of addresses that were dropped due to rate limiting. */
357 : 6993 : std::atomic<uint64_t> m_addr_rate_limited{0};
358 : : /** Total number of addresses that were processed (excludes rate-limited ones). */
359 : 6993 : std::atomic<uint64_t> m_addr_processed{0};
360 : :
361 : : /** Whether we've sent this peer a getheaders in response to an inv prior to initial-headers-sync completing */
362 : 6993 : bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
363 : :
364 : : /** Protects m_getdata_requests **/
365 : : Mutex m_getdata_requests_mutex;
366 : : /** Work queue of items requested by this peer **/
367 : : std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
368 : :
369 : : /** Time of the last getheaders message to this peer */
370 [ + - ]: 6993 : NodeClock::time_point m_last_getheaders_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){};
371 : :
372 : : /** Protects m_headers_sync **/
373 : : Mutex m_headers_sync_mutex;
374 : : /** Headers-sync state for this peer (eg for initial sync, or syncing large
375 : : * reorgs) **/
376 : 6993 : std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
377 : :
378 : : /** Whether we've sent our peer a sendheaders message. **/
379 : 6993 : std::atomic<bool> m_sent_sendheaders{false};
380 : :
381 : : /** Length of current-streak of unconnecting headers announcements */
382 : 6993 : int m_num_unconnecting_headers_msgs GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
383 : :
384 : : /** When to potentially disconnect peer for stalling headers download */
385 [ - + ]: 6993 : std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
386 : :
387 : : /** Whether this peer wants invs or headers (when possible) for block announcements */
388 : 6993 : bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
389 : :
390 [ + - ]: 48951 : explicit Peer(NodeId id, ServiceFlags our_services)
391 : 6993 : : m_id{id}
392 : 6993 : , m_our_services{our_services}
393 : 6993 : {}
394 : :
395 : : private:
396 : : mutable Mutex m_tx_relay_mutex;
397 : :
398 : : /** Transaction relay data. May be a nullptr. */
399 : : std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
400 : : };
401 : :
402 : : using PeerRef = std::shared_ptr<Peer>;
403 : :
404 : : /**
405 : : * Maintain validation-specific state about nodes, protected by cs_main, instead
406 : : * by CNode's own locks. This simplifies asynchronous operation, where
407 : : * processing of incoming data is done after the ProcessMessage call returns,
408 : : * and we're no longer holding the node's locks.
409 : : */
410 : : struct CNodeState {
411 : : //! The best known block we know this peer has announced.
412 : 6993 : const CBlockIndex* pindexBestKnownBlock{nullptr};
413 : : //! The hash of the last unknown block this peer has announced.
414 : 6993 : uint256 hashLastUnknownBlock{};
415 : : //! The last full block we both have.
416 : 6993 : const CBlockIndex* pindexLastCommonBlock{nullptr};
417 : : //! The best header we have sent our peer.
418 : 6993 : const CBlockIndex* pindexBestHeaderSent{nullptr};
419 : : //! Whether we've started headers synchronization with this peer.
420 : 6993 : bool fSyncStarted{false};
421 : : //! Since when we're stalling block download progress (in microseconds), or 0.
422 : 6993 : std::chrono::microseconds m_stalling_since{0us};
423 : : std::list<QueuedBlock> vBlocksInFlight;
424 : : //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
425 [ + - ]: 6993 : std::chrono::microseconds m_downloading_since{0us};
426 : : //! Whether we consider this a preferred download peer.
427 : 6993 : bool fPreferredDownload{false};
428 : : /** Whether this peer wants invs or cmpctblocks (when possible) for block announcements. */
429 : 6993 : bool m_requested_hb_cmpctblocks{false};
430 : : /** Whether this peer will send us cmpctblocks if we request them. */
431 : 6993 : bool m_provides_cmpctblocks{false};
432 : :
433 : : /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic.
434 : : *
435 : : * Both are only in effect for outbound, non-manual, non-protected connections.
436 : : * Any peer protected (m_protect = true) is not chosen for eviction. A peer is
437 : : * marked as protected if all of these are true:
438 : : * - its connection type is IsBlockOnlyConn() == false
439 : : * - it gave us a valid connecting header
440 : : * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet
441 : : * - its chain tip has at least as much work as ours
442 : : *
443 : : * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip,
444 : : * set a timeout CHAIN_SYNC_TIMEOUT in the future:
445 : : * - If at timeout their best known block now has more work than our tip
446 : : * when the timeout was set, then either reset the timeout or clear it
447 : : * (after comparing against our current tip's work)
448 : : * - If at timeout their best known block still has less work than our
449 : : * tip did when the timeout was set, then send a getheaders message,
450 : : * and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future.
451 : : * If their best known block is still behind when that new timeout is
452 : : * reached, disconnect.
453 : : *
454 : : * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers,
455 : : * drop the outbound one that least recently announced us a new block.
456 : : */
457 : 6993 : struct ChainSyncTimeoutState {
458 : : //! A timeout used for checking whether our peer has sufficiently synced
459 : 6993 : std::chrono::seconds m_timeout{0s};
460 : : //! A header with the work we require on our peer's chain
461 : 6993 : const CBlockIndex* m_work_header{nullptr};
462 : : //! After timeout is reached, set to true after sending getheaders
463 : 6993 : bool m_sent_getheaders{false};
464 : : //! Whether this peer is protected from disconnection due to a bad/slow chain
465 : 6993 : bool m_protect{false};
466 : : };
467 : :
468 : : ChainSyncTimeoutState m_chain_sync;
469 : :
470 : : //! Time of last new block announcement
471 : 6993 : int64_t m_last_block_announcement{0};
472 : :
473 : : //! Whether this peer is an inbound connection
474 : : const bool m_is_inbound;
475 : :
476 [ + - ]: 13986 : CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {}
477 : : };
478 : :
479 : : class PeerManagerImpl final : public PeerManager
480 : : {
481 : : public:
482 : : PeerManagerImpl(CConnman& connman, AddrMan& addrman,
483 : : BanMan* banman, ChainstateManager& chainman,
484 : : CTxMemPool& pool, Options opts);
485 : :
486 : : /** Overridden from CValidationInterface. */
487 : : void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
488 : : EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
489 : : void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
490 : : EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
491 : : void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
492 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
493 : : void BlockChecked(const CBlock& block, const BlockValidationState& state) override
494 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
495 : : void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
496 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
497 : :
498 : : /** Implement NetEventsInterface */
499 : : void InitializeNode(CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
500 : : void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex);
501 : : bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
502 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
503 : : bool SendMessages(CNode* pto) override
504 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, g_msgproc_mutex);
505 : :
506 : : /** Implement PeerManager */
507 : : void StartScheduledTasks(CScheduler& scheduler) override;
508 : : void CheckForStaleTipAndEvictPeers() override;
509 : : std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
510 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
511 : : bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
512 : 0 : bool IgnoresIncomingTxs() override { return m_opts.ignore_incoming_txs; }
513 : : void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
514 : : void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
515 : 0 : void SetBestHeight(int height) override { m_best_height = height; };
516 [ # # # # : 0 : void UnitTestMisbehaving(NodeId peer_id, int howmuch) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), howmuch, ""); };
# # ]
517 : : void ProcessMessage(CNode& pfrom, const std::string& msg_type, CDataStream& vRecv,
518 : : const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
519 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
520 : : void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
521 : :
522 : : private:
523 : : /** Consider evicting an outbound peer based on the amount of time they've been behind our tip */
524 : : void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
525 : :
526 : : /** If we have extra outbound peers, try to disconnect the one with the oldest block announcement */
527 : : void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
528 : :
529 : : /** Retrieve unbroadcast transactions from the mempool and reattempt sending to peers */
530 : : void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
531 : :
532 : : /** Get a shared pointer to the Peer object.
533 : : * May return an empty shared_ptr if the Peer object can't be found. */
534 : : PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535 : :
536 : : /** Get a shared pointer to the Peer object and remove it from m_peer_map.
537 : : * May return an empty shared_ptr if the Peer object can't be found. */
538 : : PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539 : :
540 : : /**
541 : : * Increment peer's misbehavior score. If the new value >= DISCOURAGEMENT_THRESHOLD, mark the node
542 : : * to be discouraged, meaning the peer might be disconnected and added to the discouragement filter.
543 : : */
544 : : void Misbehaving(Peer& peer, int howmuch, const std::string& message);
545 : :
546 : : /**
547 : : * Potentially mark a node discouraged based on the contents of a BlockValidationState object
548 : : *
549 : : * @param[in] via_compact_block this bool is passed in because net_processing should
550 : : * punish peers differently depending on whether the data was provided in a compact
551 : : * block message or not. If the compact block had a valid header, but contained invalid
552 : : * txs, the peer should not be punished. See BIP 152.
553 : : *
554 : : * @return Returns true if the peer was punished (probably disconnected)
555 : : */
556 : : bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
557 : : bool via_compact_block, const std::string& message = "")
558 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
559 : :
560 : : /**
561 : : * Potentially disconnect and discourage a node based on the contents of a TxValidationState object
562 : : *
563 : : * @return Returns true if the peer was punished (probably disconnected)
564 : : */
565 : : bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
566 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
567 : :
568 : : /** Maybe disconnect a peer and discourage future connections from its address.
569 : : *
570 : : * @param[in] pnode The node to check.
571 : : * @param[in] peer The peer object to check.
572 : : * @return True if the peer was marked for disconnection in this function
573 : : */
574 : : bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
575 : :
576 : : /**
577 : : * Reconsider orphan transactions after a parent has been accepted to the mempool.
578 : : *
579 : : * @peer[in] peer The peer whose orphan transactions we will reconsider. Generally only
580 : : * one orphan will be reconsidered on each call of this function. If an
581 : : * accepted orphan has orphaned children, those will need to be
582 : : * reconsidered, creating more work, possibly for other peers.
583 : : * @return True if meaningful work was done (an orphan was accepted/rejected).
584 : : * If no meaningful work was done, then the work set for this peer
585 : : * will be empty.
586 : : */
587 : : bool ProcessOrphanTx(Peer& peer)
588 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
589 : :
590 : : /** Process a single headers message from a peer.
591 : : *
592 : : * @param[in] pfrom CNode of the peer
593 : : * @param[in] peer The peer sending us the headers
594 : : * @param[in] headers The headers received. Note that this may be modified within ProcessHeadersMessage.
595 : : * @param[in] via_compact_block Whether this header came in via compact block handling.
596 : : */
597 : : void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
598 : : std::vector<CBlockHeader>&& headers,
599 : : bool via_compact_block)
600 : : EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
601 : : /** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
602 : : /** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
603 : : bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
604 : : /** Calculate an anti-DoS work threshold for headers chains */
605 : : arith_uint256 GetAntiDoSWorkThreshold();
606 : : /** Deal with state tracking and headers sync for peers that send the
607 : : * occasional non-connecting header (this can happen due to BIP 130 headers
608 : : * announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
609 : : void HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
610 : : /** Return true if the headers connect to each other, false otherwise */
611 : : bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
612 : : /** Try to continue a low-work headers sync that has already begun.
613 : : * Assumes the caller has already verified the headers connect, and has
614 : : * checked that each header satisfies the proof-of-work target included in
615 : : * the header.
616 : : * @param[in] peer The peer we're syncing with.
617 : : * @param[in] pfrom CNode of the peer
618 : : * @param[in,out] headers The headers to be processed.
619 : : * @return True if the passed in headers were successfully processed
620 : : * as the continuation of a low-work headers sync in progress;
621 : : * false otherwise.
622 : : * If false, the passed in headers will be returned back to
623 : : * the caller.
624 : : * If true, the returned headers may be empty, indicating
625 : : * there is no more work for the caller to do; or the headers
626 : : * may be populated with entries that have passed anti-DoS
627 : : * checks (and therefore may be validated for block index
628 : : * acceptance by the caller).
629 : : */
630 : : bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
631 : : std::vector<CBlockHeader>& headers)
632 : : EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
633 : : /** Check work on a headers chain to be processed, and if insufficient,
634 : : * initiate our anti-DoS headers sync mechanism.
635 : : *
636 : : * @param[in] peer The peer whose headers we're processing.
637 : : * @param[in] pfrom CNode of the peer
638 : : * @param[in] chain_start_header Where these headers connect in our index.
639 : : * @param[in,out] headers The headers to be processed.
640 : : *
641 : : * @return True if chain was low work (headers will be empty after
642 : : * calling); false otherwise.
643 : : */
644 : : bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
645 : : const CBlockIndex* chain_start_header,
646 : : std::vector<CBlockHeader>& headers)
647 : : EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
648 : :
649 : : /** Return true if the given header is an ancestor of
650 : : * m_chainman.m_best_header or our current tip */
651 : : bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
652 : :
653 : : /** Request further headers from this peer with a given locator.
654 : : * We don't issue a getheaders message if we have a recent one outstanding.
655 : : * This returns true if a getheaders is actually sent, and false otherwise.
656 : : */
657 : : bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
658 : : /** Potentially fetch blocks from this peer upon receipt of a new headers tip */
659 : : void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
660 : : /** Update peer state based on received headers message */
661 : : void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
662 : : EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
663 : :
664 : : void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
665 : :
666 : : /** Register with TxRequestTracker that an INV has been received from a
667 : : * peer. The announcement parameters are decided in PeerManager and then
668 : : * passed to TxRequestTracker. */
669 : : void AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
670 : : EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
671 : :
672 : : /** Send a version message to a peer */
673 : : void PushNodeVersion(CNode& pnode, const Peer& peer);
674 : :
675 : : /** Send a ping message every PING_INTERVAL or if requested via RPC. May
676 : : * mark the peer to be disconnected if a ping has timed out.
677 : : * We use mockable time for ping timeouts, so setmocktime may cause pings
678 : : * to time out. */
679 : : void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
680 : :
681 : : /** Send `addr` messages on a regular schedule. */
682 : : void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
683 : :
684 : : /** Send a single `sendheaders` message, after we have completed headers sync with a peer. */
685 : : void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
686 : :
687 : : /** Relay (gossip) an address to a few randomly chosen nodes.
688 : : *
689 : : * @param[in] originator The id of the peer that sent us the address. We don't want to relay it back.
690 : : * @param[in] addr Address to relay.
691 : : * @param[in] fReachable Whether the address' network is reachable. We relay unreachable
692 : : * addresses less.
693 : : */
694 : : void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
695 : :
696 : : /** Send `feefilter` message. */
697 : : void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
698 : :
699 : : const CChainParams& m_chainparams;
700 : : CConnman& m_connman;
701 : : AddrMan& m_addrman;
702 : : /** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
703 : : BanMan* const m_banman;
704 : : ChainstateManager& m_chainman;
705 : : CTxMemPool& m_mempool;
706 : : TxRequestTracker m_txrequest GUARDED_BY(::cs_main);
707 : : std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
708 : :
709 : : /** The height of the best chain */
710 : 1 : std::atomic<int> m_best_height{-1};
711 : :
712 : : /** Next time to check for stale tip */
713 [ + - ]: 1 : std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
714 : :
715 : : const Options m_opts;
716 : :
717 : : bool RejectIncomingTxs(const CNode& peer) const;
718 : :
719 : : /** Whether we've completed initial sync yet, for determining when to turn
720 : : * on extra block-relay-only peers. */
721 : 1 : bool m_initial_sync_finished GUARDED_BY(cs_main){false};
722 : :
723 : : /** Protects m_peer_map. This mutex must not be locked while holding a lock
724 : : * on any of the mutexes inside a Peer object. */
725 : : mutable Mutex m_peer_mutex;
726 : : /**
727 : : * Map of all Peer objects, keyed by peer id. This map is protected
728 : : * by the m_peer_mutex. Once a shared pointer reference is
729 : : * taken, the lock may be released. Individual fields are protected by
730 : : * their own locks.
731 : : */
732 : : std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
733 : :
734 : : /** Map maintaining per-node state. */
735 : : std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
736 : :
737 : : /** Get a pointer to a const CNodeState, used when not mutating the CNodeState object. */
738 : : const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
739 : : /** Get a pointer to a mutable CNodeState. */
740 : : CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
741 : :
742 : : uint32_t GetFetchFlags(const Peer& peer) const;
743 : :
744 [ + - ]: 1 : std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
745 : :
746 : : /** Number of nodes with fSyncStarted. */
747 : 1 : int nSyncStarted GUARDED_BY(cs_main) = 0;
748 : :
749 : : /** Hash of the last block we received via INV */
750 [ + - ]: 1 : uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
751 : :
752 : : /**
753 : : * Sources of received blocks, saved to be able punish them when processing
754 : : * happens afterwards.
755 : : * Set mapBlockSource[hash].second to false if the node should not be
756 : : * punished if the block is invalid.
757 : : */
758 : : std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
759 : :
760 : : /** Number of peers with wtxid relay. */
761 : 1 : std::atomic<int> m_wtxid_relay_peers{0};
762 : :
763 : : /** Number of outbound peers with m_chain_sync.m_protect. */
764 : 1 : int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
765 : :
766 : : /** Number of preferable block download peers. */
767 : 1 : int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
768 : :
769 : : /** Stalling timeout for blocks in IBD */
770 : 1 : std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
771 : :
772 : : bool AlreadyHaveTx(const GenTxid& gtxid)
773 : : EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
774 : :
775 : : /**
776 : : * Filter for transactions that were recently rejected by the mempool.
777 : : * These are not rerequested until the chain tip changes, at which point
778 : : * the entire filter is reset.
779 : : *
780 : : * Without this filter we'd be re-requesting txs from each of our peers,
781 : : * increasing bandwidth consumption considerably. For instance, with 100
782 : : * peers, half of which relay a tx we don't accept, that might be a 50x
783 : : * bandwidth increase. A flooding attacker attempting to roll-over the
784 : : * filter using minimum-sized, 60byte, transactions might manage to send
785 : : * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
786 : : * two minute window to send invs to us.
787 : : *
788 : : * Decreasing the false positive rate is fairly cheap, so we pick one in a
789 : : * million to make it highly unlikely for users to have issues with this
790 : : * filter.
791 : : *
792 : : * We typically only add wtxids to this filter. For non-segwit
793 : : * transactions, the txid == wtxid, so this only prevents us from
794 : : * re-downloading non-segwit transactions when communicating with
795 : : * non-wtxidrelay peers -- which is important for avoiding malleation
796 : : * attacks that could otherwise interfere with transaction relay from
797 : : * non-wtxidrelay peers. For communicating with wtxidrelay peers, having
798 : : * the reject filter store wtxids is exactly what we want to avoid
799 : : * redownload of a rejected transaction.
800 : : *
801 : : * In cases where we can tell that a segwit transaction will fail
802 : : * validation no matter the witness, we may add the txid of such
803 : : * transaction to the filter as well. This can be helpful when
804 : : * communicating with txid-relay peers or if we were to otherwise fetch a
805 : : * transaction via txid (eg in our orphan handling).
806 : : *
807 : : * Memory used: 1.3 MB
808 : : */
809 [ + - ]: 1 : CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001};
810 : : uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
811 : :
812 : : /*
813 : : * Filter for transactions that have been recently confirmed.
814 : : * We use this to avoid requesting transactions that have already been
815 : : * confirnmed.
816 : : *
817 : : * Blocks don't typically have more than 4000 transactions, so this should
818 : : * be at least six blocks (~1 hr) worth of transactions that we can store,
819 : : * inserting both a txid and wtxid for every observed transaction.
820 : : * If the number of transactions appearing in a block goes up, or if we are
821 : : * seeing getdata requests more than an hour after initial announcement, we
822 : : * can increase this number.
823 : : * The false positive rate of 1/1M should come out to less than 1
824 : : * transaction per day that would be inadvertently ignored (which is the
825 : : * same probability that we have in the reject filter).
826 : : */
827 : : Mutex m_recent_confirmed_transactions_mutex;
828 [ + - ]: 1 : CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){48'000, 0.000'001};
829 : :
830 : : /**
831 : : * For sending `inv`s to inbound peers, we use a single (exponentially
832 : : * distributed) timer for all peers. If we used a separate timer for each
833 : : * peer, a spy node could make multiple inbound connections to us to
834 : : * accurately determine when we received the transaction (and potentially
835 : : * determine the transaction's origin). */
836 : : std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
837 : : std::chrono::seconds average_interval);
838 : :
839 : :
840 : : // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
841 : : Mutex m_most_recent_block_mutex;
842 : : std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
843 : : std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
844 : : uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
845 : : std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
846 : :
847 : : // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
848 : : /** Mutex guarding the other m_headers_presync_* variables. */
849 : : Mutex m_headers_presync_mutex;
850 : : /** A type to represent statistics about a peer's low-work headers sync.
851 : : *
852 : : * - The first field is the total verified amount of work in that synchronization.
853 : : * - The second is:
854 : : * - nullopt: the sync is in REDOWNLOAD phase (phase 2).
855 : : * - {height, timestamp}: the sync has the specified tip height and block timestamp (phase 1).
856 : : */
857 : : using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
858 : : /** Statistics for all peers in low-work headers sync. */
859 : 1 : std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
860 : : /** The peer with the most-work entry in m_headers_presync_stats. */
861 : 1 : NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
862 : : /** The m_headers_presync_stats improved, and needs signalling. */
863 : 1 : std::atomic_bool m_headers_presync_should_signal{false};
864 : :
865 : : /** Height of the highest block announced using BIP 152 high-bandwidth mode. */
866 : 1 : int m_highest_fast_announce GUARDED_BY(::cs_main){0};
867 : :
868 : : /** Have we requested this block from a peer */
869 : : bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
870 : :
871 : : /** Have we requested this block from an outbound peer */
872 : : bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
873 : :
874 : : /** Remove this block from our tracked requested blocks. Called if:
875 : : * - the block has been received from a peer
876 : : * - the request for the block has timed out
877 : : * If "from_peer" is specified, then only remove the block if it is in
878 : : * flight from that peer (to avoid one peer's network traffic from
879 : : * affecting another's state).
880 : : */
881 : : void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
882 : :
883 : : /* Mark a block as in flight
884 : : * Returns false, still setting pit, if the block was already in flight from the same peer
885 : : * pit will only be valid as long as the same cs_main lock is being held
886 : : */
887 : : bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
888 : :
889 : : bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
890 : :
891 : : /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
892 : : * at most count entries.
893 : : */
894 : : void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
895 : :
896 : : /** Request blocks for the background chainstate, if one is in use. */
897 : : void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
898 : :
899 : : /**
900 : : * \brief Find next blocks to download from a peer after a starting block.
901 : : *
902 : : * \param vBlocks Vector of blocks to download which will be appended to.
903 : : * \param peer Peer which blocks will be downloaded from.
904 : : * \param state Pointer to the state of the peer.
905 : : * \param pindexWalk Pointer to the starting block to add to vBlocks.
906 : : * \param count Maximum number of blocks to allow in vBlocks. No more
907 : : * blocks will be added if it reaches this size.
908 : : * \param nWindowEnd Maximum height of blocks to allow in vBlocks. No
909 : : * blocks will be added above this height.
910 : : * \param activeChain Optional pointer to a chain to compare against. If
911 : : * provided, any next blocks which are already contained
912 : : * in this chain will not be appended to vBlocks, but
913 : : * instead will be used to update the
914 : : * state->pindexLastCommonBlock pointer.
915 : : * \param nodeStaller Optional pointer to a NodeId variable that will receive
916 : : * the ID of another peer that might be causing this peer
917 : : * to stall. This is set to the ID of the peer which
918 : : * first requested the first in-flight block in the
919 : : * download window. It is only set if vBlocks is empty at
920 : : * the end of this function call and if increasing
921 : : * nWindowEnd by 1 would cause it to be non-empty (which
922 : : * indicates the download might be stalled because every
923 : : * block in the window is in flight and no other peer is
924 : : * trying to download the next block).
925 : : */
926 : : void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
927 : :
928 : : /* Multimap used to preserve insertion order */
929 : : typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
930 : : BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
931 : :
932 : : /** When our tip was last updated. */
933 [ + - ]: 1 : std::atomic<std::chrono::seconds> m_last_tip_update{0s};
934 : :
935 : : /** Determine whether or not a peer can request a transaction, and return it (or nullptr if not found or not allowed). */
936 : : CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
937 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, NetEventsInterface::g_msgproc_mutex);
938 : :
939 : : void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
940 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
941 : : LOCKS_EXCLUDED(::cs_main);
942 : :
943 : : /** Process a new block. Perform any post-processing housekeeping */
944 : : void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
945 : :
946 : : /** Process compact block txns */
947 : : void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
948 : : EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
949 : :
950 : : /**
951 : : * When a peer sends us a valid block, instruct it to announce blocks to us
952 : : * using CMPCTBLOCK if possible by adding its nodeid to the end of
953 : : * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
954 : : * removing the first element if necessary.
955 : : */
956 : : void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
957 : :
958 : : /** Stack of nodes which we have set to announce using compact blocks */
959 : : std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
960 : :
961 : : /** Number of peers from which we're downloading blocks. */
962 : 1 : int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
963 : :
964 : : /** Storage for orphan information */
965 : : TxOrphanage m_orphanage;
966 : :
967 : : void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
968 : :
969 : : /** Orphan/conflicted/etc transactions that are kept for compact block reconstruction.
970 : : * The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of
971 : : * these are kept in a ring buffer */
972 : : std::vector<std::pair<uint256, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
973 : : /** Offset into vExtraTxnForCompact to insert the next tx */
974 : 1 : size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
975 : :
976 : : /** Check whether the last unknown block a peer advertised is not yet known. */
977 : : void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
978 : : /** Update tracking information about which blocks a peer is assumed to have. */
979 : : void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
980 : : bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
981 : :
982 : : /**
983 : : * To prevent fingerprinting attacks, only send blocks/headers outside of
984 : : * the active chain if they are no more than a month older (both in time,
985 : : * and in best equivalent proof of work) than the best header chain we know
986 : : * about and we fully-validated them at some point.
987 : : */
988 : : bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
989 : : bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
990 : : void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
991 : : EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
992 : :
993 : : /**
994 : : * Validation logic for compact filters request handling.
995 : : *
996 : : * May disconnect from the peer in the case of a bad request.
997 : : *
998 : : * @param[in] node The node that we received the request from
999 : : * @param[in] peer The peer that we received the request from
1000 : : * @param[in] filter_type The filter type the request is for. Must be basic filters.
1001 : : * @param[in] start_height The start height for the request
1002 : : * @param[in] stop_hash The stop_hash for the request
1003 : : * @param[in] max_height_diff The maximum number of items permitted to request, as specified in BIP 157
1004 : : * @param[out] stop_index The CBlockIndex for the stop_hash block, if the request can be serviced.
1005 : : * @param[out] filter_index The filter index, if the request can be serviced.
1006 : : * @return True if the request can be serviced.
1007 : : */
1008 : : bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1009 : : BlockFilterType filter_type, uint32_t start_height,
1010 : : const uint256& stop_hash, uint32_t max_height_diff,
1011 : : const CBlockIndex*& stop_index,
1012 : : BlockFilterIndex*& filter_index);
1013 : :
1014 : : /**
1015 : : * Handle a cfilters request.
1016 : : *
1017 : : * May disconnect from the peer in the case of a bad request.
1018 : : *
1019 : : * @param[in] node The node that we received the request from
1020 : : * @param[in] peer The peer that we received the request from
1021 : : * @param[in] vRecv The raw message received
1022 : : */
1023 : : void ProcessGetCFilters(CNode& node, Peer& peer, CDataStream& vRecv);
1024 : :
1025 : : /**
1026 : : * Handle a cfheaders request.
1027 : : *
1028 : : * May disconnect from the peer in the case of a bad request.
1029 : : *
1030 : : * @param[in] node The node that we received the request from
1031 : : * @param[in] peer The peer that we received the request from
1032 : : * @param[in] vRecv The raw message received
1033 : : */
1034 : : void ProcessGetCFHeaders(CNode& node, Peer& peer, CDataStream& vRecv);
1035 : :
1036 : : /**
1037 : : * Handle a getcfcheckpt request.
1038 : : *
1039 : : * May disconnect from the peer in the case of a bad request.
1040 : : *
1041 : : * @param[in] node The node that we received the request from
1042 : : * @param[in] peer The peer that we received the request from
1043 : : * @param[in] vRecv The raw message received
1044 : : */
1045 : : void ProcessGetCFCheckPt(CNode& node, Peer& peer, CDataStream& vRecv);
1046 : :
1047 : : /** Checks if address relay is permitted with peer. If needed, initializes
1048 : : * the m_addr_known bloom filter and sets m_addr_relay_enabled to true.
1049 : : *
1050 : : * @return True if address relay is enabled with peer
1051 : : * False if address relay is disallowed
1052 : : */
1053 : : bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1054 : :
1055 : : void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1056 : : void PushAddress(Peer& peer, const CAddress& addr, FastRandomContext& insecure_rand) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1057 : : };
1058 : :
1059 : 0 : const CNodeState* PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1060 : : {
1061 : 0 : std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1062 [ # # ]: 0 : if (it == m_node_states.end())
1063 : 0 : return nullptr;
1064 : 0 : return &it->second;
1065 : 0 : }
1066 : :
1067 : 0 : CNodeState* PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1068 : : {
1069 : 0 : return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1070 : : }
1071 : :
1072 : : /**
1073 : : * Whether the peer supports the address. For example, a peer that does not
1074 : : * implement BIP155 cannot receive Tor v3 addresses because it requires
1075 : : * ADDRv2 (BIP155) encoding.
1076 : : */
1077 : 0 : static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1078 : : {
1079 [ # # ]: 0 : return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1080 : : }
1081 : :
1082 : 0 : void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1083 : : {
1084 [ # # ]: 0 : assert(peer.m_addr_known);
1085 [ # # # # ]: 0 : peer.m_addr_known->insert(addr.GetKey());
1086 : 0 : }
1087 : :
1088 : 0 : void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr, FastRandomContext& insecure_rand)
1089 : : {
1090 : : // Known checking here is only to save space from duplicates.
1091 : : // Before sending, we'll filter it again for known addresses that were
1092 : : // added after addresses were pushed.
1093 [ # # ]: 0 : assert(peer.m_addr_known);
1094 [ # # # # : 0 : if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
# # # # #
# # # # #
# # ]
1095 [ # # ]: 0 : if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1096 : 0 : peer.m_addrs_to_send[insecure_rand.randrange(peer.m_addrs_to_send.size())] = addr;
1097 : 0 : } else {
1098 : 0 : peer.m_addrs_to_send.push_back(addr);
1099 : : }
1100 : 0 : }
1101 : 0 : }
1102 : :
1103 : 0 : static void AddKnownTx(Peer& peer, const uint256& hash)
1104 : : {
1105 : 0 : auto tx_relay = peer.GetTxRelay();
1106 [ # # ]: 0 : if (!tx_relay) return;
1107 : :
1108 : 0 : LOCK(tx_relay->m_tx_inventory_mutex);
1109 [ # # # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(hash);
1110 : 0 : }
1111 : :
1112 : : /** Whether this peer can serve us blocks. */
1113 : 0 : static bool CanServeBlocks(const Peer& peer)
1114 : : {
1115 : 0 : return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1116 : : }
1117 : :
1118 : : /** Whether this peer can only serve limited recent blocks (e.g. because
1119 : : * it prunes old blocks) */
1120 : 0 : static bool IsLimitedPeer(const Peer& peer)
1121 : : {
1122 [ # # ]: 0 : return (!(peer.m_their_services & NODE_NETWORK) &&
1123 : 0 : (peer.m_their_services & NODE_NETWORK_LIMITED));
1124 : : }
1125 : :
1126 : : /** Whether this peer can serve us witness data */
1127 : 0 : static bool CanServeWitnesses(const Peer& peer)
1128 : : {
1129 : 0 : return peer.m_their_services & NODE_WITNESS;
1130 : : }
1131 : :
1132 : 0 : std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1133 : : std::chrono::seconds average_interval)
1134 : : {
1135 [ # # ]: 0 : if (m_next_inv_to_inbounds.load() < now) {
1136 : : // If this function were called from multiple threads simultaneously
1137 : : // it would possible that both update the next send variable, and return a different result to their caller.
1138 : : // This is not possible in practice as only the net processing thread invokes this function.
1139 : 0 : m_next_inv_to_inbounds = GetExponentialRand(now, average_interval);
1140 : 0 : }
1141 : 0 : return m_next_inv_to_inbounds;
1142 : : }
1143 : :
1144 : 0 : bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1145 : : {
1146 : 0 : return mapBlocksInFlight.count(hash);
1147 : : }
1148 : :
1149 : 0 : bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1150 : : {
1151 [ # # ]: 0 : for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1152 : 0 : auto [nodeid, block_it] = range.first->second;
1153 : 0 : CNodeState& nodestate = *Assert(State(nodeid));
1154 [ # # ]: 0 : if (!nodestate.m_is_inbound) return true;
1155 : 0 : }
1156 : :
1157 : 0 : return false;
1158 : 0 : }
1159 : :
1160 : 0 : void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1161 : : {
1162 : 0 : auto range = mapBlocksInFlight.equal_range(hash);
1163 [ # # ]: 0 : if (range.first == range.second) {
1164 : : // Block was not requested from any peer
1165 : 0 : return;
1166 : : }
1167 : :
1168 : : // We should not have requested too many of this block
1169 : 0 : Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1170 : :
1171 [ # # ]: 0 : while (range.first != range.second) {
1172 : 0 : auto [node_id, list_it] = range.first->second;
1173 : :
1174 [ # # # # : 0 : if (from_peer && *from_peer != node_id) {
# # ]
1175 : 0 : range.first++;
1176 : 0 : continue;
1177 : : }
1178 : :
1179 : 0 : CNodeState& state = *Assert(State(node_id));
1180 : :
1181 [ # # # # ]: 0 : if (state.vBlocksInFlight.begin() == list_it) {
1182 : : // First block on the queue was received, update the start download time for the next one
1183 : 0 : state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1184 : 0 : }
1185 : 0 : state.vBlocksInFlight.erase(list_it);
1186 : :
1187 [ # # ]: 0 : if (state.vBlocksInFlight.empty()) {
1188 : : // Last validated block on the queue for this peer was received.
1189 : 0 : m_peers_downloading_from--;
1190 : 0 : }
1191 : 0 : state.m_stalling_since = 0us;
1192 : :
1193 : 0 : range.first = mapBlocksInFlight.erase(range.first);
1194 : : }
1195 : 0 : }
1196 : :
1197 : 0 : bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1198 : : {
1199 : 0 : const uint256& hash{block.GetBlockHash()};
1200 : :
1201 : 0 : CNodeState *state = State(nodeid);
1202 [ # # ]: 0 : assert(state != nullptr);
1203 : :
1204 : 0 : Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1205 : :
1206 : : // Short-circuit most stuff in case it is from the same node
1207 [ # # ]: 0 : for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1208 [ # # ]: 0 : if (range.first->second.first == nodeid) {
1209 [ # # ]: 0 : if (pit) {
1210 : 0 : *pit = &range.first->second.second;
1211 : 0 : }
1212 : 0 : return false;
1213 : : }
1214 : 0 : }
1215 : :
1216 : : // Make sure it's not being fetched already from same peer.
1217 : 0 : RemoveBlockRequest(hash, nodeid);
1218 : :
1219 [ # # ]: 0 : std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1220 [ # # # # : 0 : {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
# # ]
1221 [ # # ]: 0 : if (state->vBlocksInFlight.size() == 1) {
1222 : : // We're starting a block download (batch) from this peer.
1223 : 0 : state->m_downloading_since = GetTime<std::chrono::microseconds>();
1224 : 0 : m_peers_downloading_from++;
1225 : 0 : }
1226 : 0 : auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1227 [ # # ]: 0 : if (pit) {
1228 : 0 : *pit = &itInFlight->second.second;
1229 : 0 : }
1230 : 0 : return true;
1231 : 0 : }
1232 : :
1233 : 0 : void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1234 : : {
1235 : 0 : AssertLockHeld(cs_main);
1236 : :
1237 : : // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1238 : : // mempool will not contain the transactions necessary to reconstruct the
1239 : : // compact block.
1240 [ # # ]: 0 : if (m_opts.ignore_incoming_txs) return;
1241 : :
1242 : 0 : CNodeState* nodestate = State(nodeid);
1243 [ # # # # ]: 0 : if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1244 : : // Don't request compact blocks if the peer has not signalled support
1245 : 0 : return;
1246 : : }
1247 : :
1248 : 0 : int num_outbound_hb_peers = 0;
1249 [ # # ]: 0 : for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1250 [ # # ]: 0 : if (*it == nodeid) {
1251 : 0 : lNodesAnnouncingHeaderAndIDs.erase(it);
1252 : 0 : lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1253 : 0 : return;
1254 : : }
1255 : 0 : CNodeState *state = State(*it);
1256 [ # # # # ]: 0 : if (state != nullptr && !state->m_is_inbound) ++num_outbound_hb_peers;
1257 : 0 : }
1258 [ # # ]: 0 : if (nodestate->m_is_inbound) {
1259 : : // If we're adding an inbound HB peer, make sure we're not removing
1260 : : // our last outbound HB peer in the process.
1261 [ # # # # ]: 0 : if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1262 : 0 : CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front());
1263 [ # # # # ]: 0 : if (remove_node != nullptr && !remove_node->m_is_inbound) {
1264 : : // Put the HB outbound peer in the second slot, so that it
1265 : : // doesn't get removed.
1266 : 0 : std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1267 : 0 : }
1268 : 0 : }
1269 : 0 : }
1270 [ # # ]: 0 : m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1271 : 0 : AssertLockHeld(::cs_main);
1272 [ # # ]: 0 : if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1273 : : // As per BIP152, we only get 3 of our peers to announce
1274 : : // blocks using compact encodings.
1275 [ # # ]: 0 : m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1276 [ # # # # : 0 : m_connman.PushMessage(pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()).Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION));
# # ]
1277 : : // save BIP152 bandwidth state: we select peer to be low-bandwidth
1278 : 0 : pnodeStop->m_bip152_highbandwidth_to = false;
1279 : 0 : return true;
1280 : 0 : });
1281 : 0 : lNodesAnnouncingHeaderAndIDs.pop_front();
1282 : 0 : }
1283 [ # # # # : 0 : m_connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()).Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION));
# # ]
1284 : : // save BIP152 bandwidth state: we select peer to be high-bandwidth
1285 : 0 : pfrom->m_bip152_highbandwidth_to = true;
1286 : 0 : lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1287 : 0 : return true;
1288 : 0 : });
1289 : 0 : }
1290 : :
1291 : 0 : bool PeerManagerImpl::TipMayBeStale()
1292 : : {
1293 : 0 : AssertLockHeld(cs_main);
1294 : 0 : const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1295 [ # # ]: 0 : if (m_last_tip_update.load() == 0s) {
1296 : 0 : m_last_tip_update = GetTime<std::chrono::seconds>();
1297 : 0 : }
1298 [ # # ]: 0 : return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1299 : : }
1300 : :
1301 : 0 : bool PeerManagerImpl::CanDirectFetch()
1302 : : {
1303 : 0 : return m_chainman.ActiveChain().Tip()->Time() > GetAdjustedTime() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1304 : : }
1305 : :
1306 : 0 : static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1307 : : {
1308 [ # # # # ]: 0 : if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1309 : 0 : return true;
1310 [ # # # # ]: 0 : if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1311 : 0 : return true;
1312 : 0 : return false;
1313 : 0 : }
1314 : :
1315 : 0 : void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1316 : 0 : CNodeState *state = State(nodeid);
1317 [ # # ]: 0 : assert(state != nullptr);
1318 : :
1319 [ # # ]: 0 : if (!state->hashLastUnknownBlock.IsNull()) {
1320 : 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1321 [ # # # # ]: 0 : if (pindex && pindex->nChainWork > 0) {
1322 [ # # # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1323 : 0 : state->pindexBestKnownBlock = pindex;
1324 : 0 : }
1325 : 0 : state->hashLastUnknownBlock.SetNull();
1326 : 0 : }
1327 : 0 : }
1328 : 0 : }
1329 : :
1330 : 0 : void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1331 : 0 : CNodeState *state = State(nodeid);
1332 [ # # ]: 0 : assert(state != nullptr);
1333 : :
1334 : 0 : ProcessBlockAvailability(nodeid);
1335 : :
1336 : 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1337 [ # # # # ]: 0 : if (pindex && pindex->nChainWork > 0) {
1338 : : // An actually better block was announced.
1339 [ # # # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1340 : 0 : state->pindexBestKnownBlock = pindex;
1341 : 0 : }
1342 : 0 : } else {
1343 : : // An unknown block was announced; just assume that the latest one is the best one.
1344 : 0 : state->hashLastUnknownBlock = hash;
1345 : : }
1346 : 0 : }
1347 : :
1348 : : // Logic for calculating which blocks to download from a given peer, given our current tip.
1349 : 0 : void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1350 : : {
1351 [ # # ]: 0 : if (count == 0)
1352 : 0 : return;
1353 : :
1354 : 0 : vBlocks.reserve(vBlocks.size() + count);
1355 : 0 : CNodeState *state = State(peer.m_id);
1356 [ # # ]: 0 : assert(state != nullptr);
1357 : :
1358 : : // Make sure pindexBestKnownBlock is up to date, we'll need it.
1359 : 0 : ProcessBlockAvailability(peer.m_id);
1360 : :
1361 [ # # # # : 0 : if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
# # ]
1362 : : // This peer has nothing interesting.
1363 : 0 : return;
1364 : : }
1365 : :
1366 [ # # ]: 0 : if (state->pindexLastCommonBlock == nullptr) {
1367 : : // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1368 : : // Guessing wrong in either direction is not a problem.
1369 : 0 : state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1370 : 0 : }
1371 : :
1372 : : // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1373 : : // of its current tip anymore. Go back enough to fix that.
1374 : 0 : state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1375 [ # # ]: 0 : if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1376 : 0 : return;
1377 : :
1378 : 0 : const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1379 : : // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1380 : : // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1381 : : // download that next block if the window were 1 larger.
1382 : 0 : int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1383 : :
1384 : 0 : FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1385 : 0 : }
1386 : :
1387 : 0 : void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1388 : : {
1389 : 0 : Assert(from_tip);
1390 : 0 : Assert(target_block);
1391 : :
1392 [ # # ]: 0 : if (vBlocks.size() >= count) {
1393 : 0 : return;
1394 : : }
1395 : :
1396 : 0 : vBlocks.reserve(count);
1397 : 0 : CNodeState *state = Assert(State(peer.m_id));
1398 : :
1399 [ # # # # ]: 0 : if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1400 : : // This peer can't provide us the complete series of blocks leading up to the
1401 : : // assumeutxo snapshot base.
1402 : : //
1403 : : // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1404 : : // will eventually crash when we try to reorg to it. Let other logic
1405 : : // deal with whether we disconnect this peer.
1406 : : //
1407 : : // TODO at some point in the future, we might choose to request what blocks
1408 : : // this peer does have from the historical chain, despite it not having a
1409 : : // complete history beneath the snapshot base.
1410 : 0 : return;
1411 : : }
1412 : :
1413 : 0 : FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1414 : 0 : }
1415 : :
1416 : 0 : void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1417 : : {
1418 : 0 : std::vector<const CBlockIndex*> vToFetch;
1419 : 0 : int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1420 : 0 : NodeId waitingfor = -1;
1421 [ # # ]: 0 : while (pindexWalk->nHeight < nMaxHeight) {
1422 : : // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1423 : : // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1424 : : // as iterating over ~100 CBlockIndex* entries anyway.
1425 [ # # ]: 0 : int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1426 [ # # ]: 0 : vToFetch.resize(nToFetch);
1427 [ # # ]: 0 : pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1428 : 0 : vToFetch[nToFetch - 1] = pindexWalk;
1429 [ # # ]: 0 : for (unsigned int i = nToFetch - 1; i > 0; i--) {
1430 : 0 : vToFetch[i - 1] = vToFetch[i]->pprev;
1431 : 0 : }
1432 : :
1433 : : // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1434 : : // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1435 : : // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1436 : : // already part of our chain (and therefore don't need it even if pruned).
1437 [ # # ]: 0 : for (const CBlockIndex* pindex : vToFetch) {
1438 [ # # ]: 0 : if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1439 : : // We consider the chain that this peer is on invalid.
1440 : 0 : return;
1441 : : }
1442 [ # # # # : 0 : if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
# # ]
1443 : : // We wouldn't download this block or its descendants from this peer.
1444 : 0 : return;
1445 : : }
1446 [ # # # # : 0 : if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
# # # # ]
1447 [ # # # # ]: 0 : if (activeChain && pindex->HaveTxsDownloaded())
1448 : 0 : state->pindexLastCommonBlock = pindex;
1449 [ # # # # ]: 0 : } else if (!IsBlockRequested(pindex->GetBlockHash())) {
1450 : : // The block is not already downloaded, and not yet in flight.
1451 [ # # ]: 0 : if (pindex->nHeight > nWindowEnd) {
1452 : : // We reached the end of the window.
1453 [ # # # # ]: 0 : if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1454 : : // We aren't able to fetch anything, but we would be if the download window was one larger.
1455 [ # # ]: 0 : if (nodeStaller) *nodeStaller = waitingfor;
1456 : 0 : }
1457 : 0 : return;
1458 : : }
1459 [ # # ]: 0 : vBlocks.push_back(pindex);
1460 [ # # ]: 0 : if (vBlocks.size() == count) {
1461 : 0 : return;
1462 : : }
1463 [ # # ]: 0 : } else if (waitingfor == -1) {
1464 : : // This is the first already-in-flight block.
1465 [ # # ]: 0 : waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1466 : 0 : }
1467 : : }
1468 : : }
1469 [ # # ]: 0 : }
1470 : :
1471 : : } // namespace
1472 : :
1473 : 6993 : void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1474 : : {
1475 : 6993 : uint64_t my_services{peer.m_our_services};
1476 : 6993 : const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1477 : 6993 : uint64_t nonce = pnode.GetLocalNonce();
1478 : 6993 : const int nNodeStartingHeight{m_best_height};
1479 : 6993 : NodeId nodeid = pnode.GetId();
1480 : 6993 : CAddress addr = pnode.addr;
1481 : :
1482 [ + - + + : 6993 : CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
+ - + - +
- + + + -
+ - ]
1483 : 6993 : uint64_t your_services{addr.nServices};
1484 : :
1485 [ + - ]: 6993 : const bool tx_relay{!RejectIncomingTxs(pnode)};
1486 [ + - + - : 13986 : m_connman.PushMessage(&pnode, CNetMsgMaker(INIT_PROTO_VERSION).Make(NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
+ - + - ]
1487 [ + - ]: 6993 : your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1488 [ + - + - ]: 6993 : my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1489 : : nonce, strSubVersion, nNodeStartingHeight, tx_relay));
1490 : :
1491 [ - + ]: 6993 : if (fLogIPs) {
1492 [ # # # # : 0 : LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
# # # # #
# # # ]
1493 : 0 : } else {
1494 [ + - + - : 6993 : LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
# # # # #
# ]
1495 : : }
1496 : 6993 : }
1497 : :
1498 : 0 : void PeerManagerImpl::AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
1499 : : {
1500 : 0 : AssertLockHeld(::cs_main); // For m_txrequest
1501 : 0 : NodeId nodeid = node.GetId();
1502 [ # # # # ]: 0 : if (!node.HasPermission(NetPermissionFlags::Relay) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) {
1503 : : // Too many queued announcements from this peer
1504 : 0 : return;
1505 : : }
1506 : 0 : const CNodeState* state = State(nodeid);
1507 : :
1508 : : // Decide the TxRequestTracker parameters for this announcement:
1509 : : // - "preferred": if fPreferredDownload is set (= outbound, or NetPermissionFlags::NoBan permission)
1510 : : // - "reqtime": current time plus delays for:
1511 : : // - NONPREF_PEER_TX_DELAY for announcements from non-preferred connections
1512 : : // - TXID_RELAY_DELAY for txid announcements while wtxid peers are available
1513 : : // - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at least
1514 : : // MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't have NetPermissionFlags::Relay).
1515 : 0 : auto delay{0us};
1516 : 0 : const bool preferred = state->fPreferredDownload;
1517 [ # # ]: 0 : if (!preferred) delay += NONPREF_PEER_TX_DELAY;
1518 [ # # # # ]: 0 : if (!gtxid.IsWtxid() && m_wtxid_relay_peers > 0) delay += TXID_RELAY_DELAY;
1519 [ # # ]: 0 : const bool overloaded = !node.HasPermission(NetPermissionFlags::Relay) &&
1520 : 0 : m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT;
1521 [ # # ]: 0 : if (overloaded) delay += OVERLOADED_PEER_TX_DELAY;
1522 : 0 : m_txrequest.ReceivedInv(nodeid, gtxid, preferred, current_time + delay);
1523 : 0 : }
1524 : :
1525 : 0 : void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1526 : : {
1527 : 0 : LOCK(cs_main);
1528 [ # # ]: 0 : CNodeState *state = State(node);
1529 [ # # ]: 0 : if (state) state->m_last_block_announcement = time_in_seconds;
1530 : 0 : }
1531 : :
1532 : 6993 : void PeerManagerImpl::InitializeNode(CNode& node, ServiceFlags our_services)
1533 : : {
1534 : 6993 : NodeId nodeid = node.GetId();
1535 : : {
1536 : 6993 : LOCK(cs_main);
1537 [ + - ]: 6993 : m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn()));
1538 [ + - + - ]: 6993 : assert(m_txrequest.Count(nodeid) == 0);
1539 : 6993 : }
1540 : 6993 : PeerRef peer = std::make_shared<Peer>(nodeid, our_services);
1541 : : {
1542 [ + - ]: 6993 : LOCK(m_peer_mutex);
1543 [ - + ]: 6993 : m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1544 : 6993 : }
1545 [ + - ]: 6993 : if (!node.IsInboundConn()) {
1546 [ + - ]: 6993 : PushNodeVersion(node, *peer);
1547 : 6993 : }
1548 : 6993 : }
1549 : :
1550 : 0 : void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1551 : : {
1552 : 0 : std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1553 : :
1554 [ # # ]: 0 : for (const auto& txid : unbroadcast_txids) {
1555 [ # # ]: 0 : CTransactionRef tx = m_mempool.get(txid);
1556 : :
1557 [ # # ]: 0 : if (tx != nullptr) {
1558 [ # # ]: 0 : RelayTransaction(txid, tx->GetWitnessHash());
1559 : 0 : } else {
1560 [ # # ]: 0 : m_mempool.RemoveUnbroadcastTx(txid, true);
1561 : : }
1562 : 0 : }
1563 : :
1564 : : // Schedule next run for 10-15 minutes in the future.
1565 : : // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1566 [ # # # # : 0 : const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
# # # # ]
1567 [ # # # # ]: 0 : scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1568 : 0 : }
1569 : :
1570 : 0 : void PeerManagerImpl::FinalizeNode(const CNode& node)
1571 : : {
1572 : 0 : NodeId nodeid = node.GetId();
1573 : 0 : int misbehavior{0};
1574 : : {
1575 : 0 : LOCK(cs_main);
1576 : : {
1577 : : // We remove the PeerRef from g_peer_map here, but we don't always
1578 : : // destruct the Peer. Sometimes another thread is still holding a
1579 : : // PeerRef, so the refcount is >= 1. Be careful not to do any
1580 : : // processing here that assumes Peer won't be changed before it's
1581 : : // destructed.
1582 [ # # ]: 0 : PeerRef peer = RemovePeer(nodeid);
1583 [ # # ]: 0 : assert(peer != nullptr);
1584 [ # # ]: 0 : misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
1585 : 0 : m_wtxid_relay_peers -= peer->m_wtxid_relay;
1586 [ # # ]: 0 : assert(m_wtxid_relay_peers >= 0);
1587 : 0 : }
1588 [ # # ]: 0 : CNodeState *state = State(nodeid);
1589 [ # # ]: 0 : assert(state != nullptr);
1590 : :
1591 [ # # ]: 0 : if (state->fSyncStarted)
1592 : 0 : nSyncStarted--;
1593 : :
1594 [ # # ]: 0 : for (const QueuedBlock& entry : state->vBlocksInFlight) {
1595 [ # # ]: 0 : auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1596 [ # # ]: 0 : while (range.first != range.second) {
1597 : 0 : auto [node_id, list_it] = range.first->second;
1598 [ # # ]: 0 : if (node_id != nodeid) {
1599 : 0 : range.first++;
1600 : 0 : } else {
1601 [ # # ]: 0 : range.first = mapBlocksInFlight.erase(range.first);
1602 : : }
1603 : : }
1604 : : }
1605 [ # # ]: 0 : m_orphanage.EraseForPeer(nodeid);
1606 [ # # ]: 0 : m_txrequest.DisconnectedPeer(nodeid);
1607 [ # # # # ]: 0 : if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1608 : 0 : m_num_preferred_download_peers -= state->fPreferredDownload;
1609 : 0 : m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1610 [ # # ]: 0 : assert(m_peers_downloading_from >= 0);
1611 : 0 : m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1612 [ # # ]: 0 : assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1613 : :
1614 [ # # ]: 0 : m_node_states.erase(nodeid);
1615 : :
1616 [ # # ]: 0 : if (m_node_states.empty()) {
1617 : : // Do a consistency check after the last peer is removed.
1618 [ # # ]: 0 : assert(mapBlocksInFlight.empty());
1619 [ # # ]: 0 : assert(m_num_preferred_download_peers == 0);
1620 [ # # ]: 0 : assert(m_peers_downloading_from == 0);
1621 [ # # ]: 0 : assert(m_outbound_peers_with_protect_from_disconnect == 0);
1622 [ # # ]: 0 : assert(m_wtxid_relay_peers == 0);
1623 [ # # # # ]: 0 : assert(m_txrequest.Size() == 0);
1624 [ # # # # ]: 0 : assert(m_orphanage.Size() == 0);
1625 : 0 : }
1626 : 0 : } // cs_main
1627 [ # # # # : 0 : if (node.fSuccessfullyConnected && misbehavior == 0 &&
# # ]
1628 [ # # ]: 0 : !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1629 : : // Only change visible addrman state for full outbound peers. We don't
1630 : : // call Connected() for feeler connections since they don't have
1631 : : // fSuccessfullyConnected set.
1632 : 0 : m_addrman.Connected(node.addr);
1633 : 0 : }
1634 : : {
1635 : 0 : LOCK(m_headers_presync_mutex);
1636 [ # # ]: 0 : m_headers_presync_stats.erase(nodeid);
1637 : 0 : }
1638 [ # # # # : 0 : LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
# # # # ]
1639 : 0 : }
1640 : :
1641 : 0 : PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1642 : : {
1643 : 0 : LOCK(m_peer_mutex);
1644 [ # # ]: 0 : auto it = m_peer_map.find(id);
1645 [ # # ]: 0 : return it != m_peer_map.end() ? it->second : nullptr;
1646 : 0 : }
1647 : :
1648 : 0 : PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1649 : : {
1650 : 0 : PeerRef ret;
1651 [ # # ]: 0 : LOCK(m_peer_mutex);
1652 [ # # ]: 0 : auto it = m_peer_map.find(id);
1653 [ # # ]: 0 : if (it != m_peer_map.end()) {
1654 : 0 : ret = std::move(it->second);
1655 [ # # ]: 0 : m_peer_map.erase(it);
1656 : 0 : }
1657 : 0 : return ret;
1658 [ # # ]: 0 : }
1659 : :
1660 : 0 : bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1661 : : {
1662 : : {
1663 : 0 : LOCK(cs_main);
1664 [ # # ]: 0 : const CNodeState* state = State(nodeid);
1665 [ # # ]: 0 : if (state == nullptr)
1666 : 0 : return false;
1667 [ # # ]: 0 : stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1668 [ # # ]: 0 : stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1669 [ # # ]: 0 : for (const QueuedBlock& queue : state->vBlocksInFlight) {
1670 [ # # ]: 0 : if (queue.pindex)
1671 [ # # ]: 0 : stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1672 : : }
1673 [ # # # ]: 0 : }
1674 : :
1675 : 0 : PeerRef peer = GetPeerRef(nodeid);
1676 [ # # ]: 0 : if (peer == nullptr) return false;
1677 : 0 : stats.their_services = peer->m_their_services;
1678 : 0 : stats.m_starting_height = peer->m_starting_height;
1679 : : // It is common for nodes with good ping times to suddenly become lagged,
1680 : : // due to a new block arriving or other large transfer.
1681 : : // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1682 : : // since pingtime does not update until the ping is complete, which might take a while.
1683 : : // So, if a ping is taking an unusually long time in flight,
1684 : : // the caller can immediately detect that this is happening.
1685 : 0 : auto ping_wait{0us};
1686 [ # # # # ]: 0 : if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1687 [ # # # # ]: 0 : ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1688 : 0 : }
1689 : :
1690 [ # # # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1691 [ # # ]: 0 : stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1692 : 0 : stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1693 : 0 : } else {
1694 : 0 : stats.m_relay_txs = false;
1695 : 0 : stats.m_fee_filter_received = 0;
1696 : : }
1697 : :
1698 : 0 : stats.m_ping_wait = ping_wait;
1699 : 0 : stats.m_addr_processed = peer->m_addr_processed.load();
1700 : 0 : stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1701 : 0 : stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1702 : : {
1703 [ # # ]: 0 : LOCK(peer->m_headers_sync_mutex);
1704 [ # # ]: 0 : if (peer->m_headers_sync) {
1705 [ # # ]: 0 : stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1706 : 0 : }
1707 : 0 : }
1708 : :
1709 : 0 : return true;
1710 : 0 : }
1711 : :
1712 : 0 : void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1713 : : {
1714 [ # # ]: 0 : if (m_opts.max_extra_txs <= 0)
1715 : 0 : return;
1716 [ # # ]: 0 : if (!vExtraTxnForCompact.size())
1717 : 0 : vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1718 : 0 : vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1719 : 0 : vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1720 : 0 : }
1721 : :
1722 : 0 : void PeerManagerImpl::Misbehaving(Peer& peer, int howmuch, const std::string& message)
1723 : : {
1724 [ # # ]: 0 : assert(howmuch > 0);
1725 : :
1726 : 0 : LOCK(peer.m_misbehavior_mutex);
1727 : 0 : const int score_before{peer.m_misbehavior_score};
1728 : 0 : peer.m_misbehavior_score += howmuch;
1729 : 0 : const int score_now{peer.m_misbehavior_score};
1730 : :
1731 [ # # # # : 0 : const std::string message_prefixed = message.empty() ? "" : (": " + message);
# # # # #
# ]
1732 : 0 : std::string warning;
1733 : :
1734 [ # # # # ]: 0 : if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) {
1735 [ # # ]: 0 : warning = " DISCOURAGE THRESHOLD EXCEEDED";
1736 : 0 : peer.m_should_discourage = true;
1737 : 0 : }
1738 : :
1739 [ # # # # : 0 : LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n",
# # # # #
# ]
1740 : : peer.m_id, score_before, score_now, warning, message_prefixed);
1741 : 0 : }
1742 : :
1743 : 0 : bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1744 : : bool via_compact_block, const std::string& message)
1745 : : {
1746 : 0 : PeerRef peer{GetPeerRef(nodeid)};
1747 [ # # # # : 0 : switch (state.GetResult()) {
# # # #
# ]
1748 : : case BlockValidationResult::BLOCK_RESULT_UNSET:
1749 : 0 : break;
1750 : : case BlockValidationResult::BLOCK_HEADER_LOW_WORK:
1751 : : // We didn't try to process the block because the header chain may have
1752 : : // too little work.
1753 : 0 : break;
1754 : : // The node is providing invalid data:
1755 : : case BlockValidationResult::BLOCK_CONSENSUS:
1756 : : case BlockValidationResult::BLOCK_MUTATED:
1757 [ # # ]: 0 : if (!via_compact_block) {
1758 [ # # # # : 0 : if (peer) Misbehaving(*peer, 100, message);
# # ]
1759 : 0 : return true;
1760 : : }
1761 : 0 : break;
1762 : : case BlockValidationResult::BLOCK_CACHED_INVALID:
1763 : : {
1764 [ # # ]: 0 : LOCK(cs_main);
1765 [ # # ]: 0 : CNodeState *node_state = State(nodeid);
1766 [ # # ]: 0 : if (node_state == nullptr) {
1767 : 0 : break;
1768 : : }
1769 : :
1770 : : // Discourage outbound (but not inbound) peers if on an invalid chain.
1771 : : // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1772 [ # # # # ]: 0 : if (!via_compact_block && !node_state->m_is_inbound) {
1773 [ # # # # : 0 : if (peer) Misbehaving(*peer, 100, message);
# # ]
1774 : 0 : return true;
1775 : : }
1776 : 0 : break;
1777 [ # # ]: 0 : }
1778 : : case BlockValidationResult::BLOCK_INVALID_HEADER:
1779 : : case BlockValidationResult::BLOCK_CHECKPOINT:
1780 : : case BlockValidationResult::BLOCK_INVALID_PREV:
1781 [ # # # # : 0 : if (peer) Misbehaving(*peer, 100, message);
# # ]
1782 : 0 : return true;
1783 : : // Conflicting (but not necessarily invalid) data or different policy:
1784 : : case BlockValidationResult::BLOCK_MISSING_PREV:
1785 : : // TODO: Handle this much more gracefully (10 DoS points is super arbitrary)
1786 [ # # # # : 0 : if (peer) Misbehaving(*peer, 10, message);
# # ]
1787 : 0 : return true;
1788 : : case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
1789 : : case BlockValidationResult::BLOCK_TIME_FUTURE:
1790 : 0 : break;
1791 : : }
1792 [ # # # # ]: 0 : if (message != "") {
1793 [ # # # # : 0 : LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
# # # # #
# ]
1794 : 0 : }
1795 : 0 : return false;
1796 : 0 : }
1797 : :
1798 : 0 : bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1799 : : {
1800 : 0 : PeerRef peer{GetPeerRef(nodeid)};
1801 [ # # # # ]: 0 : switch (state.GetResult()) {
1802 : : case TxValidationResult::TX_RESULT_UNSET:
1803 : 0 : break;
1804 : : // The node is providing invalid data:
1805 : : case TxValidationResult::TX_CONSENSUS:
1806 [ # # # # : 0 : if (peer) Misbehaving(*peer, 100, "");
# # ]
1807 : 0 : return true;
1808 : : // Conflicting (but not necessarily invalid) data or different policy:
1809 : : case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
1810 : : case TxValidationResult::TX_INPUTS_NOT_STANDARD:
1811 : : case TxValidationResult::TX_NOT_STANDARD:
1812 : : case TxValidationResult::TX_MISSING_INPUTS:
1813 : : case TxValidationResult::TX_PREMATURE_SPEND:
1814 : : case TxValidationResult::TX_WITNESS_MUTATED:
1815 : : case TxValidationResult::TX_WITNESS_STRIPPED:
1816 : : case TxValidationResult::TX_CONFLICT:
1817 : : case TxValidationResult::TX_MEMPOOL_POLICY:
1818 : : case TxValidationResult::TX_NO_MEMPOOL:
1819 : 0 : break;
1820 : : }
1821 : 0 : return false;
1822 : 0 : }
1823 : :
1824 : 0 : bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1825 : : {
1826 : 0 : AssertLockHeld(cs_main);
1827 [ # # ]: 0 : if (m_chainman.ActiveChain().Contains(pindex)) return true;
1828 [ # # # # ]: 0 : return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1829 [ # # ]: 0 : (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1830 : 0 : (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1831 : 0 : }
1832 : :
1833 : 0 : std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1834 : : {
1835 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1836 : :
1837 : : // Ensure this peer exists and hasn't been disconnected
1838 : 0 : PeerRef peer = GetPeerRef(peer_id);
1839 [ # # # # ]: 0 : if (peer == nullptr) return "Peer does not exist";
1840 : :
1841 : : // Ignore pre-segwit peers
1842 [ # # # # : 0 : if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
# # ]
1843 : :
1844 [ # # ]: 0 : LOCK(cs_main);
1845 : :
1846 : : // Forget about all prior requests
1847 [ # # ]: 0 : RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1848 : :
1849 : : // Mark block as in-flight
1850 [ # # # # : 0 : if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
# # ]
1851 : :
1852 : : // Construct message to request the block
1853 : 0 : const uint256& hash{block_index.GetBlockHash()};
1854 [ # # # # ]: 0 : std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1855 : :
1856 : : // Send block request message to the peer
1857 [ # # # # ]: 0 : bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1858 : 0 : const CNetMsgMaker msgMaker(node->GetCommonVersion());
1859 [ # # # # : 0 : this->m_connman.PushMessage(node, msgMaker.Make(NetMsgType::GETDATA, invs));
# # ]
1860 : 0 : return true;
1861 : 0 : });
1862 : :
1863 [ # # # # ]: 0 : if (!success) return "Peer not fully connected";
1864 : :
1865 [ # # # # : 0 : LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
# # # # #
# # # ]
1866 : : hash.ToString(), peer_id);
1867 : 0 : return std::nullopt;
1868 : 0 : }
1869 : :
1870 : 1 : std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1871 : : BanMan* banman, ChainstateManager& chainman,
1872 : : CTxMemPool& pool, Options opts)
1873 : : {
1874 : 1 : return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, opts);
1875 : : }
1876 : :
1877 [ + - + - : 2 : PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
+ - ]
1878 : : BanMan* banman, ChainstateManager& chainman,
1879 : : CTxMemPool& pool, Options opts)
1880 [ + - ]: 1 : : m_chainparams(chainman.GetParams()),
1881 : 1 : m_connman(connman),
1882 : 1 : m_addrman(addrman),
1883 : 1 : m_banman(banman),
1884 : 1 : m_chainman(chainman),
1885 : 1 : m_mempool(pool),
1886 : 1 : m_opts{opts}
1887 : 1 : {
1888 : : // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1889 : : // This argument can go away after Erlay support is complete.
1890 [ + - ]: 1 : if (opts.reconcile_txs) {
1891 [ # # ]: 0 : m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1892 : 0 : }
1893 : 1 : }
1894 : :
1895 : 0 : void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1896 : : {
1897 : : // Stale tip checking and peer eviction are on two different timers, but we
1898 : : // don't want them to get out of sync due to drift in the scheduler, so we
1899 : : // combine them in one function and schedule at the quicker (peer-eviction)
1900 : : // timer.
1901 : : static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1902 [ # # # # ]: 0 : scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1903 : :
1904 : : // schedule next run for 10-15 minutes in the future
1905 : 0 : const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
1906 [ # # ]: 0 : scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1907 : 0 : }
1908 : :
1909 : : /**
1910 : : * Evict orphan txn pool entries based on a newly connected
1911 : : * block, remember the recently confirmed transactions, and delete tracked
1912 : : * announcements for them. Also save the time of the last tip update and
1913 : : * possibly reduce dynamic block stalling timeout.
1914 : : */
1915 : 0 : void PeerManagerImpl::BlockConnected(
1916 : : ChainstateRole role,
1917 : : const std::shared_ptr<const CBlock>& pblock,
1918 : : const CBlockIndex* pindex)
1919 : : {
1920 : : // Update this for all chainstate roles so that we don't mistakenly see peers
1921 : : // helping us do background IBD as having a stale tip.
1922 : 0 : m_last_tip_update = GetTime<std::chrono::seconds>();
1923 : :
1924 : : // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1925 : 0 : auto stalling_timeout = m_block_stalling_timeout.load();
1926 : 0 : Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1927 [ # # ]: 0 : if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1928 : 0 : const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1929 [ # # ]: 0 : if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1930 [ # # # # : 0 : LogPrint(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
# # # # #
# ]
1931 : 0 : }
1932 : 0 : }
1933 : :
1934 [ # # ]: 0 : if (role == ChainstateRole::BACKGROUND) {
1935 : 0 : return;
1936 : : }
1937 : 0 : m_orphanage.EraseForBlock(*pblock);
1938 : :
1939 : : {
1940 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
1941 [ # # ]: 0 : for (const auto& ptx : pblock->vtx) {
1942 [ # # # # : 0 : m_recent_confirmed_transactions.insert(ptx->GetHash());
# # ]
1943 [ # # # # : 0 : if (ptx->GetHash() != ptx->GetWitnessHash()) {
# # # # ]
1944 [ # # # # : 0 : m_recent_confirmed_transactions.insert(ptx->GetWitnessHash());
# # ]
1945 : 0 : }
1946 : : }
1947 : 0 : }
1948 : : {
1949 : 0 : LOCK(cs_main);
1950 [ # # ]: 0 : for (const auto& ptx : pblock->vtx) {
1951 [ # # # # ]: 0 : m_txrequest.ForgetTxHash(ptx->GetHash());
1952 [ # # # # ]: 0 : m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
1953 : : }
1954 : 0 : }
1955 : 0 : }
1956 : :
1957 : 0 : void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1958 : : {
1959 : : // To avoid relay problems with transactions that were previously
1960 : : // confirmed, clear our filter of recently confirmed transactions whenever
1961 : : // there's a reorg.
1962 : : // This means that in a 1-block reorg (where 1 block is disconnected and
1963 : : // then another block reconnected), our filter will drop to having only one
1964 : : // block's worth of transactions in it, but that should be fine, since
1965 : : // presumably the most common case of relaying a confirmed transaction
1966 : : // should be just after a new block containing it is found.
1967 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
1968 [ # # ]: 0 : m_recent_confirmed_transactions.reset();
1969 : 0 : }
1970 : :
1971 : : /**
1972 : : * Maintain state about the best-seen block and fast-announce a compact block
1973 : : * to compatible peers.
1974 : : */
1975 : 0 : void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1976 : : {
1977 : 0 : auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
1978 [ # # ]: 0 : const CNetMsgMaker msgMaker(PROTOCOL_VERSION);
1979 : :
1980 [ # # ]: 0 : LOCK(cs_main);
1981 : :
1982 [ # # ]: 0 : if (pindex->nHeight <= m_highest_fast_announce)
1983 : 0 : return;
1984 : 0 : m_highest_fast_announce = pindex->nHeight;
1985 : :
1986 [ # # # # ]: 0 : if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1987 : :
1988 [ # # ]: 0 : uint256 hashBlock(pblock->GetHash());
1989 : 0 : const std::shared_future<CSerializedNetMsg> lazy_ser{
1990 [ # # # # : 0 : std::async(std::launch::deferred, [&] { return msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
# # ]
1991 : :
1992 : : {
1993 [ # # ]: 0 : auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
1994 [ # # ]: 0 : for (const auto& tx : pblock->vtx) {
1995 [ # # ]: 0 : most_recent_block_txs->emplace(tx->GetHash(), tx);
1996 [ # # ]: 0 : most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
1997 : : }
1998 : :
1999 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2000 : 0 : m_most_recent_block_hash = hashBlock;
2001 : 0 : m_most_recent_block = pblock;
2002 : 0 : m_most_recent_compact_block = pcmpctblock;
2003 : 0 : m_most_recent_block_txs = std::move(most_recent_block_txs);
2004 : 0 : }
2005 : :
2006 [ # # # # ]: 0 : m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2007 : 0 : AssertLockHeld(::cs_main);
2008 : :
2009 [ # # # # ]: 0 : if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
2010 : 0 : return;
2011 : 0 : ProcessBlockAvailability(pnode->GetId());
2012 : 0 : CNodeState &state = *State(pnode->GetId());
2013 : : // If the peer has, or we announced to them the previous block already,
2014 : : // but we don't think they have this one, go ahead and announce it
2015 [ # # # # : 0 : if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
# # ]
2016 : :
2017 [ # # # # : 0 : LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
# # # # #
# ]
2018 : : hashBlock.ToString(), pnode->GetId());
2019 : :
2020 : 0 : const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2021 [ # # ]: 0 : m_connman.PushMessage(pnode, ser_cmpctblock.Copy());
2022 : 0 : state.pindexBestHeaderSent = pindex;
2023 : 0 : }
2024 : 0 : });
2025 [ # # ]: 0 : }
2026 : :
2027 : : /**
2028 : : * Update our best height and announce any block hashes which weren't previously
2029 : : * in m_chainman.ActiveChain() to our peers.
2030 : : */
2031 : 0 : void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2032 : : {
2033 : 0 : SetBestHeight(pindexNew->nHeight);
2034 : 0 : SetServiceFlagsIBDCache(!fInitialDownload);
2035 : :
2036 : : // Don't relay inventory during initial block download.
2037 [ # # ]: 0 : if (fInitialDownload) return;
2038 : :
2039 : : // Find the hashes of all blocks that weren't previously in the best chain.
2040 : 0 : std::vector<uint256> vHashes;
2041 : 0 : const CBlockIndex *pindexToAnnounce = pindexNew;
2042 [ # # ]: 0 : while (pindexToAnnounce != pindexFork) {
2043 [ # # # # ]: 0 : vHashes.push_back(pindexToAnnounce->GetBlockHash());
2044 : 0 : pindexToAnnounce = pindexToAnnounce->pprev;
2045 [ # # ]: 0 : if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2046 : : // Limit announcements in case of a huge reorganization.
2047 : : // Rely on the peer's synchronization mechanism in that case.
2048 : 0 : break;
2049 : : }
2050 : : }
2051 : :
2052 : : {
2053 [ # # # # ]: 0 : LOCK(m_peer_mutex);
2054 [ # # ]: 0 : for (auto& it : m_peer_map) {
2055 : 0 : Peer& peer = *it.second;
2056 [ # # # # ]: 0 : LOCK(peer.m_block_inv_mutex);
2057 [ # # # # : 0 : for (const uint256& hash : reverse_iterate(vHashes)) {
# # # # #
# # # #
# ]
2058 [ # # ]: 0 : peer.m_blocks_for_headers_relay.push_back(hash);
2059 : : }
2060 : 0 : }
2061 : 0 : }
2062 : :
2063 [ # # ]: 0 : m_connman.WakeMessageHandler();
2064 : 0 : }
2065 : :
2066 : : /**
2067 : : * Handle invalid block rejection and consequent peer discouragement, maintain which
2068 : : * peers announce compact blocks.
2069 : : */
2070 : 0 : void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2071 : : {
2072 : 0 : LOCK(cs_main);
2073 : :
2074 [ # # ]: 0 : const uint256 hash(block.GetHash());
2075 [ # # ]: 0 : std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2076 : :
2077 : : // If the block failed validation, we know where it came from and we're still connected
2078 : : // to that peer, maybe punish.
2079 [ # # # # : 0 : if (state.IsInvalid() &&
# # ]
2080 [ # # ]: 0 : it != mapBlockSource.end() &&
2081 [ # # ]: 0 : State(it->second.first)) {
2082 [ # # # # ]: 0 : MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2083 : 0 : }
2084 : : // Check that:
2085 : : // 1. The block is valid
2086 : : // 2. We're not in initial block download
2087 : : // 3. This is currently the best block we're aware of. We haven't updated
2088 : : // the tip yet so we have no way to check this directly here. Instead we
2089 : : // just check that there are currently no other blocks in flight.
2090 [ # # # # : 0 : else if (state.IsValid() &&
# # ]
2091 [ # # # # ]: 0 : !m_chainman.IsInitialBlockDownload() &&
2092 [ # # ]: 0 : mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2093 [ # # ]: 0 : if (it != mapBlockSource.end()) {
2094 [ # # ]: 0 : MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2095 : 0 : }
2096 : 0 : }
2097 [ # # ]: 0 : if (it != mapBlockSource.end())
2098 [ # # ]: 0 : mapBlockSource.erase(it);
2099 : 0 : }
2100 : :
2101 : : //////////////////////////////////////////////////////////////////////////////
2102 : : //
2103 : : // Messages
2104 : : //
2105 : :
2106 : :
2107 : 0 : bool PeerManagerImpl::AlreadyHaveTx(const GenTxid& gtxid)
2108 : : {
2109 [ # # ]: 0 : if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
2110 : : // If the chain tip has changed previously rejected transactions
2111 : : // might be now valid, e.g. due to a nLockTime'd tx becoming valid,
2112 : : // or a double-spend. Reset the rejects filter and give those
2113 : : // txs a second chance.
2114 : 0 : hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash();
2115 : 0 : m_recent_rejects.reset();
2116 : 0 : }
2117 : :
2118 : 0 : const uint256& hash = gtxid.GetHash();
2119 : :
2120 [ # # ]: 0 : if (m_orphanage.HaveTx(gtxid)) return true;
2121 : :
2122 : : {
2123 : 0 : LOCK(m_recent_confirmed_transactions_mutex);
2124 [ # # # # : 0 : if (m_recent_confirmed_transactions.contains(hash)) return true;
# # ]
2125 [ # # # ]: 0 : }
2126 : :
2127 [ # # ]: 0 : return m_recent_rejects.contains(hash) || m_mempool.exists(gtxid);
2128 : 0 : }
2129 : :
2130 : 0 : bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2131 : : {
2132 : 0 : return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2133 : : }
2134 : :
2135 : 0 : void PeerManagerImpl::SendPings()
2136 : : {
2137 : 0 : LOCK(m_peer_mutex);
2138 [ # # ]: 0 : for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2139 : 0 : }
2140 : :
2141 : 0 : void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2142 : : {
2143 : 0 : LOCK(m_peer_mutex);
2144 [ # # ]: 0 : for(auto& it : m_peer_map) {
2145 : 0 : Peer& peer = *it.second;
2146 [ # # ]: 0 : auto tx_relay = peer.GetTxRelay();
2147 [ # # ]: 0 : if (!tx_relay) continue;
2148 : :
2149 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
2150 : : // Only queue transactions for announcement once the version handshake
2151 : : // is completed. The time of arrival for these transactions is
2152 : : // otherwise at risk of leaking to a spy, if the spy is able to
2153 : : // distinguish transactions received during the handshake from the rest
2154 : : // in the announcement.
2155 [ # # # # : 0 : if (tx_relay->m_next_inv_send_time == 0s) continue;
# # ]
2156 : :
2157 [ # # ]: 0 : const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2158 [ # # # # : 0 : if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
# # ]
2159 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.insert(hash);
2160 : 0 : }
2161 [ # # # ]: 0 : };
2162 : 0 : }
2163 : :
2164 : 0 : void PeerManagerImpl::RelayAddress(NodeId originator,
2165 : : const CAddress& addr,
2166 : : bool fReachable)
2167 : : {
2168 : : // We choose the same nodes within a given 24h window (if the list of connected
2169 : : // nodes does not change) and we don't relay to nodes that already know an
2170 : : // address. So within 24h we will likely relay a given address once. This is to
2171 : : // prevent a peer from unjustly giving their address better propagation by sending
2172 : : // it to us repeatedly.
2173 : :
2174 [ # # # # ]: 0 : if (!fReachable && !addr.IsRelayable()) return;
2175 : :
2176 : : // Relay to a limited number of other nodes
2177 : : // Use deterministic randomness to send to the same nodes for 24 hours
2178 : : // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2179 : 0 : const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2180 : 0 : const auto current_time{GetTime<std::chrono::seconds>()};
2181 : : // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2182 : 0 : const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2183 : 0 : const CSipHasher hasher{m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
2184 : 0 : .Write(hash_addr)
2185 : 0 : .Write(time_addr)};
2186 : 0 : FastRandomContext insecure_rand;
2187 : :
2188 : : // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2189 [ # # # # ]: 0 : unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2190 : :
2191 [ # # # # ]: 0 : std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2192 [ # # ]: 0 : assert(nRelayNodes <= best.size());
2193 : :
2194 [ # # ]: 0 : LOCK(m_peer_mutex);
2195 : :
2196 [ # # ]: 0 : for (auto& [id, peer] : m_peer_map) {
2197 [ # # # # : 0 : if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
# # # # ]
2198 [ # # # # : 0 : uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
# # ]
2199 [ # # ]: 0 : for (unsigned int i = 0; i < nRelayNodes; i++) {
2200 [ # # ]: 0 : if (hashKey > best[i].first) {
2201 [ # # ]: 0 : std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2202 [ # # ]: 0 : best[i] = std::make_pair(hashKey, peer.get());
2203 : 0 : break;
2204 : : }
2205 : 0 : }
2206 : 0 : }
2207 : : };
2208 : :
2209 [ # # # # ]: 0 : for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2210 [ # # ]: 0 : PushAddress(*best[i].second, addr, insecure_rand);
2211 : 0 : }
2212 : 0 : }
2213 : :
2214 : 0 : void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2215 : : {
2216 : 0 : std::shared_ptr<const CBlock> a_recent_block;
2217 : 0 : std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2218 : : {
2219 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2220 : 0 : a_recent_block = m_most_recent_block;
2221 : 0 : a_recent_compact_block = m_most_recent_compact_block;
2222 : 0 : }
2223 : :
2224 : 0 : bool need_activate_chain = false;
2225 : : {
2226 [ # # ]: 0 : LOCK(cs_main);
2227 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2228 [ # # ]: 0 : if (pindex) {
2229 [ # # # # : 0 : if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
# # # # #
# ]
2230 [ # # ]: 0 : pindex->IsValid(BLOCK_VALID_TREE)) {
2231 : : // If we have the block and all of its parents, but have not yet validated it,
2232 : : // we might be in the middle of connecting it (ie in the unlock of cs_main
2233 : : // before ActivateBestChain but after AcceptBlock).
2234 : : // In this case, we need to run ActivateBestChain prior to checking the relay
2235 : : // conditions below.
2236 : 0 : need_activate_chain = true;
2237 : 0 : }
2238 : 0 : }
2239 : 0 : } // release cs_main before calling ActivateBestChain
2240 [ # # ]: 0 : if (need_activate_chain) {
2241 : 0 : BlockValidationState state;
2242 [ # # # # : 0 : if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
# # ]
2243 [ # # # # : 0 : LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
# # # # #
# # # ]
2244 : 0 : }
2245 : 0 : }
2246 : :
2247 [ # # ]: 0 : LOCK(cs_main);
2248 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2249 [ # # ]: 0 : if (!pindex) {
2250 : 0 : return;
2251 : : }
2252 [ # # # # ]: 0 : if (!BlockRequestAllowed(pindex)) {
2253 [ # # # # : 0 : LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
# # # # #
# ]
2254 : 0 : return;
2255 : : }
2256 [ # # ]: 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
2257 : : // disconnect node in case we have reached the outbound limit for serving historical blocks
2258 [ # # # # : 0 : if (m_connman.OutboundTargetReached(true) &&
# # ]
2259 [ # # # # : 0 : (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
# # # # ]
2260 [ # # ]: 0 : !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2261 : : ) {
2262 [ # # # # : 0 : LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
# # # # #
# ]
2263 : 0 : pfrom.fDisconnect = true;
2264 : 0 : return;
2265 : : }
2266 : : // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2267 [ # # # # : 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
# # ]
2268 [ # # # # : 0 : (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
# # ]
2269 : : )) {
2270 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
# # # # #
# ]
2271 : : //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2272 : 0 : pfrom.fDisconnect = true;
2273 : 0 : return;
2274 : : }
2275 : : // Pruned nodes may have deleted the block, so check whether
2276 : : // it's available before trying to send.
2277 [ # # ]: 0 : if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2278 : 0 : return;
2279 : : }
2280 : 0 : std::shared_ptr<const CBlock> pblock;
2281 [ # # # # : 0 : if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
# # # # #
# ]
2282 : 0 : pblock = a_recent_block;
2283 [ # # # # ]: 0 : } else if (inv.IsMsgWitnessBlk()) {
2284 : : // Fast-path: in this case it is possible to serve the block directly from disk,
2285 : : // as the network format matches the format on disk
2286 : 0 : std::vector<uint8_t> block_data;
2287 [ # # # # : 0 : if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, pindex->GetBlockPos())) {
# # ]
2288 : 0 : assert(!"cannot load block from disk");
2289 : : }
2290 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, Span{block_data}));
# # # # ]
2291 : : // Don't set pblock as we've sent the block
2292 : 0 : } else {
2293 : : // Send block from disk
2294 [ # # ]: 0 : std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2295 [ # # # # ]: 0 : if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, *pindex)) {
2296 : 0 : assert(!"cannot load block from disk");
2297 : : }
2298 : 0 : pblock = pblockRead;
2299 : 0 : }
2300 [ # # # # ]: 0 : if (pblock) {
2301 [ # # ]: 0 : if (inv.IsMsgBlk()) {
2302 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, *pblock));
# # ]
2303 [ # # # # ]: 0 : } else if (inv.IsMsgWitnessBlk()) {
2304 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock));
# # ]
2305 [ # # # # ]: 0 : } else if (inv.IsMsgFilteredBlk()) {
2306 : 0 : bool sendMerkleBlock = false;
2307 [ # # ]: 0 : CMerkleBlock merkleBlock;
2308 [ # # # # ]: 0 : if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2309 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
2310 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
2311 : 0 : sendMerkleBlock = true;
2312 [ # # # # ]: 0 : merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2313 : 0 : }
2314 : 0 : }
2315 [ # # ]: 0 : if (sendMerkleBlock) {
2316 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock));
# # ]
2317 : : // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2318 : : // This avoids hurting performance by pointlessly requiring a round-trip
2319 : : // Note that there is currently no way for a node to request any single transactions we didn't send here -
2320 : : // they must either disconnect and retry or request the full block.
2321 : : // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2322 : : // however we MUST always provide at least what the remote peer needs
2323 : : typedef std::pair<unsigned int, uint256> PairType;
2324 [ # # ]: 0 : for (PairType& pair : merkleBlock.vMatchedTxn)
2325 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::TX, *pblock->vtx[pair.first]));
# # ]
2326 : 0 : }
2327 : : // else
2328 : : // no response
2329 [ # # # # ]: 0 : } else if (inv.IsMsgCmpctBlk()) {
2330 : : // If a peer is asking for old blocks, we're almost guaranteed
2331 : : // they won't have a useful mempool to match against a compact block,
2332 : : // and we don't feel like constructing the object for them, so
2333 : : // instead we respond with the full, non-compact block.
2334 [ # # # # : 0 : if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) {
# # # # #
# ]
2335 [ # # # # : 0 : if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
# # # # #
# ]
2336 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::CMPCTBLOCK, *a_recent_compact_block));
# # ]
2337 : 0 : } else {
2338 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock{*pblock};
2339 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock));
# # ]
2340 : 0 : }
2341 : 0 : } else {
2342 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock));
# # ]
2343 : : }
2344 : 0 : }
2345 : 0 : }
2346 : :
2347 : : {
2348 [ # # ]: 0 : LOCK(peer.m_block_inv_mutex);
2349 : : // Trigger the peer node to send a getblocks request for the next batch of inventory
2350 [ # # # # ]: 0 : if (inv.hash == peer.m_continuation_block) {
2351 : : // Send immediately. This must send even if redundant,
2352 : : // and we want it right after the last block so they don't
2353 : : // wait for other stuff first.
2354 : 0 : std::vector<CInv> vInv;
2355 [ # # # # : 0 : vInv.push_back(CInv(MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash()));
# # ]
2356 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv));
# # ]
2357 [ # # ]: 0 : peer.m_continuation_block.SetNull();
2358 : 0 : }
2359 : 0 : }
2360 [ # # ]: 0 : }
2361 : :
2362 : 0 : CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2363 : : {
2364 : : // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2365 : 0 : auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2366 [ # # ]: 0 : if (txinfo.tx) {
2367 : 0 : return std::move(txinfo.tx);
2368 : : }
2369 : :
2370 : : // Or it might be from the most recent block
2371 : : {
2372 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
2373 [ # # ]: 0 : if (m_most_recent_block_txs != nullptr) {
2374 [ # # ]: 0 : auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2375 [ # # ]: 0 : if (it != m_most_recent_block_txs->end()) return it->second;
2376 : 0 : }
2377 [ # # ]: 0 : }
2378 : :
2379 : 0 : return {};
2380 : 0 : }
2381 : :
2382 : 0 : void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2383 : : {
2384 : 0 : AssertLockNotHeld(cs_main);
2385 : :
2386 : 0 : auto tx_relay = peer.GetTxRelay();
2387 : :
2388 : 0 : std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2389 : 0 : std::vector<CInv> vNotFound;
2390 [ # # ]: 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
2391 : :
2392 : : // Process as many TX items from the front of the getdata queue as
2393 : : // possible, since they're common and it's efficient to batch process
2394 : : // them.
2395 [ # # # # ]: 0 : while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2396 [ # # ]: 0 : if (interruptMsgProc) return;
2397 : : // The send buffer provides backpressure. If there's no space in
2398 : : // the buffer, pause processing until the next call.
2399 [ # # ]: 0 : if (pfrom.fPauseSend) break;
2400 : :
2401 : 0 : const CInv &inv = *it++;
2402 : :
2403 [ # # ]: 0 : if (tx_relay == nullptr) {
2404 : : // Ignore GETDATA requests for transactions from block-relay-only
2405 : : // peers and peers that asked us not to announce transactions.
2406 : 0 : continue;
2407 : : }
2408 : :
2409 [ # # # # ]: 0 : CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2410 [ # # ]: 0 : if (tx) {
2411 : : // WTX and WITNESS_TX imply we serialize with witness
2412 : 0 : int nSendFlags = (inv.IsMsgTx() ? SERIALIZE_TRANSACTION_NO_WITNESS : 0);
2413 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx));
# # ]
2414 [ # # ]: 0 : m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2415 : 0 : } else {
2416 [ # # ]: 0 : vNotFound.push_back(inv);
2417 : : }
2418 : 0 : }
2419 : :
2420 : : // Only process one BLOCK item per call, since they're uncommon and can be
2421 : : // expensive to process.
2422 [ # # # # ]: 0 : if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2423 : 0 : const CInv &inv = *it++;
2424 [ # # # # ]: 0 : if (inv.IsGenBlkMsg()) {
2425 [ # # ]: 0 : ProcessGetBlockData(pfrom, peer, inv);
2426 : 0 : }
2427 : : // else: If the first item on the queue is an unknown type, we erase it
2428 : : // and continue processing the queue on the next call.
2429 : 0 : }
2430 : :
2431 [ # # ]: 0 : peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2432 : :
2433 [ # # ]: 0 : if (!vNotFound.empty()) {
2434 : : // Let the peer know that we didn't find what it asked for, so it doesn't
2435 : : // have to wait around forever.
2436 : : // SPV clients care about this message: it's needed when they are
2437 : : // recursively walking the dependencies of relevant unconfirmed
2438 : : // transactions. SPV clients want to do that because they want to know
2439 : : // about (and store and rebroadcast and risk analyze) the dependencies
2440 : : // of transactions relevant to them, without having to download the
2441 : : // entire memory pool.
2442 : : // Also, other nodes can use these messages to automatically request a
2443 : : // transaction from some other peer that annnounced it, and stop
2444 : : // waiting for us to respond.
2445 : : // In normal operation, we often send NOTFOUND messages for parents of
2446 : : // transactions that we relay; if a peer is missing a parent, they may
2447 : : // assume we have them and request the parents from us.
2448 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound));
# # ]
2449 : 0 : }
2450 [ # # ]: 0 : }
2451 : :
2452 : 0 : uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2453 : : {
2454 : 0 : uint32_t nFetchFlags = 0;
2455 [ # # ]: 0 : if (CanServeWitnesses(peer)) {
2456 : 0 : nFetchFlags |= MSG_WITNESS_FLAG;
2457 : 0 : }
2458 : 0 : return nFetchFlags;
2459 : : }
2460 : :
2461 : 0 : void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2462 : : {
2463 : 0 : BlockTransactions resp(req);
2464 [ # # ]: 0 : for (size_t i = 0; i < req.indexes.size(); i++) {
2465 [ # # ]: 0 : if (req.indexes[i] >= block.vtx.size()) {
2466 [ # # # # ]: 0 : Misbehaving(peer, 100, "getblocktxn with out-of-bounds tx indices");
2467 : 0 : return;
2468 : : }
2469 : 0 : resp.txn[i] = block.vtx[req.indexes[i]];
2470 : 0 : }
2471 : :
2472 [ # # ]: 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
2473 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCKTXN, resp));
# # ]
2474 [ # # ]: 0 : }
2475 : :
2476 : 0 : bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2477 : : {
2478 : : // Do these headers have proof-of-work matching what's claimed?
2479 [ # # ]: 0 : if (!HasValidProofOfWork(headers, consensusParams)) {
2480 [ # # # # ]: 0 : Misbehaving(peer, 100, "header with invalid proof of work");
2481 : 0 : return false;
2482 : : }
2483 : :
2484 : : // Are these headers connected to each other?
2485 [ # # ]: 0 : if (!CheckHeadersAreContinuous(headers)) {
2486 [ # # # # ]: 0 : Misbehaving(peer, 20, "non-continuous headers sequence");
2487 : 0 : return false;
2488 : : }
2489 : 0 : return true;
2490 : 0 : }
2491 : :
2492 : 0 : arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2493 : : {
2494 : 0 : arith_uint256 near_chaintip_work = 0;
2495 : 0 : LOCK(cs_main);
2496 [ # # # # ]: 0 : if (m_chainman.ActiveChain().Tip() != nullptr) {
2497 [ # # ]: 0 : const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2498 : : // Use a 144 block buffer, so that we'll accept headers that fork from
2499 : : // near our tip.
2500 [ # # # # : 0 : near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
# # # # #
# # # # #
# # ]
2501 : 0 : }
2502 [ # # # # : 0 : return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
# # ]
2503 : 0 : }
2504 : :
2505 : : /**
2506 : : * Special handling for unconnecting headers that might be part of a block
2507 : : * announcement.
2508 : : *
2509 : : * We'll send a getheaders message in response to try to connect the chain.
2510 : : *
2511 : : * The peer can send up to MAX_NUM_UNCONNECTING_HEADERS_MSGS in a row that
2512 : : * don't connect before given DoS points.
2513 : : *
2514 : : * Once a headers message is received that is valid and does connect,
2515 : : * m_num_unconnecting_headers_msgs gets reset back to 0.
2516 : : */
2517 : 0 : void PeerManagerImpl::HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer,
2518 : : const std::vector<CBlockHeader>& headers)
2519 : : {
2520 : 0 : peer.m_num_unconnecting_headers_msgs++;
2521 : : // Try to fill in the missing headers.
2522 : 0 : const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2523 [ # # # # ]: 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2524 [ # # # # : 0 : LogPrint(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, m_num_unconnecting_headers_msgs=%d)\n",
# # # # #
# # # #
# ]
2525 : : headers[0].GetHash().ToString(),
2526 : : headers[0].hashPrevBlock.ToString(),
2527 : : best_header->nHeight,
2528 : : pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
2529 : 0 : }
2530 : :
2531 : : // Set hashLastUnknownBlock for this peer, so that if we
2532 : : // eventually get the headers - even from a different peer -
2533 : : // we can use this peer to download.
2534 [ # # # # ]: 0 : WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2535 : :
2536 : : // The peer may just be broken, so periodically assign DoS points if this
2537 : : // condition persists.
2538 [ # # ]: 0 : if (peer.m_num_unconnecting_headers_msgs % MAX_NUM_UNCONNECTING_HEADERS_MSGS == 0) {
2539 [ # # ]: 0 : Misbehaving(peer, 20, strprintf("%d non-connecting headers", peer.m_num_unconnecting_headers_msgs));
2540 : 0 : }
2541 : 0 : }
2542 : :
2543 : 0 : bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2544 : : {
2545 : 0 : uint256 hashLastBlock;
2546 [ # # ]: 0 : for (const CBlockHeader& header : headers) {
2547 [ # # # # ]: 0 : if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2548 : 0 : return false;
2549 : : }
2550 : 0 : hashLastBlock = header.GetHash();
2551 : : }
2552 : 0 : return true;
2553 : 0 : }
2554 : :
2555 : 0 : bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2556 : : {
2557 [ # # ]: 0 : if (peer.m_headers_sync) {
2558 : 0 : auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
2559 [ # # ]: 0 : if (result.request_more) {
2560 [ # # ]: 0 : auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2561 : : // If we were instructed to ask for a locator, it should not be empty.
2562 : 0 : Assume(!locator.vHave.empty());
2563 [ # # ]: 0 : if (!locator.vHave.empty()) {
2564 : : // It should be impossible for the getheaders request to fail,
2565 : : // because we should have cleared the last getheaders timestamp
2566 : : // when processing the headers that triggered this call. But
2567 : : // it may be possible to bypass this via compactblock
2568 : : // processing, so check the result before logging just to be
2569 : : // safe.
2570 [ # # ]: 0 : bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2571 [ # # ]: 0 : if (sent_getheaders) {
2572 [ # # # # : 0 : LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
# # # # #
# # # ]
2573 : : locator.vHave.front().ToString(), pfrom.GetId());
2574 : 0 : } else {
2575 [ # # # # : 0 : LogPrint(BCLog::NET, "error sending next getheaders (from %s) to continue sync with peer=%d\n",
# # # # #
# # # ]
2576 : : locator.vHave.front().ToString(), pfrom.GetId());
2577 : : }
2578 : 0 : }
2579 : 0 : }
2580 : :
2581 [ # # # # ]: 0 : if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2582 : 0 : peer.m_headers_sync.reset(nullptr);
2583 : :
2584 : : // Delete this peer's entry in m_headers_presync_stats.
2585 : : // If this is m_headers_presync_bestpeer, it will be replaced later
2586 : : // by the next peer that triggers the else{} branch below.
2587 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2588 [ # # ]: 0 : m_headers_presync_stats.erase(pfrom.GetId());
2589 : 0 : } else {
2590 : : // Build statistics for this peer's sync.
2591 [ # # ]: 0 : HeadersPresyncStats stats;
2592 [ # # # # ]: 0 : stats.first = peer.m_headers_sync->GetPresyncWork();
2593 [ # # # # ]: 0 : if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2594 [ # # # # ]: 0 : stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2595 [ # # ]: 0 : peer.m_headers_sync->GetPresyncTime()};
2596 : 0 : }
2597 : :
2598 : : // Update statistics in stats.
2599 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2600 [ # # # # ]: 0 : m_headers_presync_stats[pfrom.GetId()] = stats;
2601 [ # # ]: 0 : auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2602 : 0 : bool best_updated = false;
2603 [ # # ]: 0 : if (best_it == m_headers_presync_stats.end()) {
2604 : : // If the cached best peer is outdated, iterate over all remaining ones (including
2605 : : // newly updated one) to find the best one.
2606 : 0 : NodeId peer_best{-1};
2607 : 0 : const HeadersPresyncStats* stat_best{nullptr};
2608 [ # # ]: 0 : for (const auto& [peer, stat] : m_headers_presync_stats) {
2609 [ # # # # : 0 : if (!stat_best || stat > *stat_best) {
# # ]
2610 : 0 : peer_best = peer;
2611 : 0 : stat_best = &stat;
2612 : 0 : }
2613 : : }
2614 : 0 : m_headers_presync_bestpeer = peer_best;
2615 : 0 : best_updated = (peer_best == pfrom.GetId());
2616 [ # # # # : 0 : } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
# # ]
2617 : : // pfrom was and remains the best peer, or pfrom just became best.
2618 : 0 : m_headers_presync_bestpeer = pfrom.GetId();
2619 : 0 : best_updated = true;
2620 : 0 : }
2621 [ # # # # ]: 0 : if (best_updated && stats.second.has_value()) {
2622 : : // If the best peer updated, and it is in its first phase, signal.
2623 : 0 : m_headers_presync_should_signal = true;
2624 : 0 : }
2625 : 0 : }
2626 : :
2627 [ # # ]: 0 : if (result.success) {
2628 : : // We only overwrite the headers passed in if processing was
2629 : : // successful.
2630 : 0 : headers.swap(result.pow_validated_headers);
2631 : 0 : }
2632 : :
2633 : 0 : return result.success;
2634 : 0 : }
2635 : : // Either we didn't have a sync in progress, or something went wrong
2636 : : // processing these headers, or we are returning headers to the caller to
2637 : : // process.
2638 : 0 : return false;
2639 : 0 : }
2640 : :
2641 : 0 : bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2642 : : {
2643 : : // Calculate the total work on this chain.
2644 : 0 : arith_uint256 total_work = chain_start_header->nChainWork + CalculateHeadersWork(headers);
2645 : :
2646 : : // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2647 : : // before we'll store it)
2648 : 0 : arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2649 : :
2650 : : // Avoid DoS via low-difficulty-headers by only processing if the headers
2651 : : // are part of a chain with sufficient work.
2652 [ # # ]: 0 : if (total_work < minimum_chain_work) {
2653 : : // Only try to sync with this peer if their headers message was full;
2654 : : // otherwise they don't have more headers after this so no point in
2655 : : // trying to sync their too-little-work chain.
2656 [ # # ]: 0 : if (headers.size() == MAX_HEADERS_RESULTS) {
2657 : : // Note: we could advance to the last header in this set that is
2658 : : // known to us, rather than starting at the first header (which we
2659 : : // may already have); however this is unlikely to matter much since
2660 : : // ProcessHeadersMessage() already handles the case where all
2661 : : // headers in a received message are already known and are
2662 : : // ancestors of m_best_header or chainActive.Tip(), by skipping
2663 : : // this logic in that case. So even if the first header in this set
2664 : : // of headers is known, some header in this set must be new, so
2665 : : // advancing to the first unknown header would be a small effect.
2666 : 0 : LOCK(peer.m_headers_sync_mutex);
2667 [ # # # # : 0 : peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
# # ]
2668 : 0 : chain_start_header, minimum_chain_work));
2669 : :
2670 : : // Now a HeadersSyncState object for tracking this synchronization
2671 : : // is created, process the headers using it as normal. Failures are
2672 : : // handled inside of IsContinuationOfLowWorkHeadersSync.
2673 [ # # ]: 0 : (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2674 : 0 : } else {
2675 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
# # # # ]
2676 : : }
2677 : :
2678 : : // The peer has not yet given us a chain that meets our work threshold,
2679 : : // so we want to prevent further processing of the headers in any case.
2680 : 0 : headers = {};
2681 : 0 : return true;
2682 : : }
2683 : :
2684 : 0 : return false;
2685 : 0 : }
2686 : :
2687 : 0 : bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2688 : : {
2689 [ # # ]: 0 : if (header == nullptr) {
2690 : 0 : return false;
2691 [ # # # # ]: 0 : } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2692 : 0 : return true;
2693 [ # # ]: 0 : } else if (m_chainman.ActiveChain().Contains(header)) {
2694 : 0 : return true;
2695 : : }
2696 : 0 : return false;
2697 : 0 : }
2698 : :
2699 : 0 : bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2700 : : {
2701 : 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
2702 : :
2703 : 0 : const auto current_time = NodeClock::now();
2704 : :
2705 : : // Only allow a new getheaders message to go out if we don't have a recent
2706 : : // one already in-flight
2707 [ # # ]: 0 : if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2708 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETHEADERS, locator, uint256()));
# # # # ]
2709 : 0 : peer.m_last_getheaders_timestamp = current_time;
2710 : 0 : return true;
2711 : : }
2712 : 0 : return false;
2713 : 0 : }
2714 : :
2715 : : /*
2716 : : * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2717 : : * We require that the given tip have at least as much work as our tip, and for
2718 : : * our current tip to be "close to synced" (see CanDirectFetch()).
2719 : : */
2720 : 0 : void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2721 : : {
2722 : 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
2723 : :
2724 : 0 : LOCK(cs_main);
2725 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
2726 : :
2727 [ # # # # : 0 : if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
# # # # #
# # # #
# ]
2728 : 0 : std::vector<const CBlockIndex*> vToFetch;
2729 : 0 : const CBlockIndex* pindexWalk{&last_header};
2730 : : // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2731 [ # # # # : 0 : while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
# # # # #
# ]
2732 [ # # # # ]: 0 : if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2733 [ # # # # ]: 0 : !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2734 [ # # # # ]: 0 : (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2735 : : // We don't have this block, and it's not yet in flight.
2736 [ # # ]: 0 : vToFetch.push_back(pindexWalk);
2737 : 0 : }
2738 : 0 : pindexWalk = pindexWalk->pprev;
2739 : : }
2740 : : // If pindexWalk still isn't on our main chain, we're looking at a
2741 : : // very large reorg at a time we think we're close to caught up to
2742 : : // the main chain -- this shouldn't really happen. Bail out on the
2743 : : // direct fetch and rely on parallel download instead.
2744 [ # # # # : 0 : if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
# # ]
2745 [ # # # # : 0 : LogPrint(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
# # # # #
# # # ]
2746 : : last_header.GetBlockHash().ToString(),
2747 : : last_header.nHeight);
2748 : 0 : } else {
2749 : 0 : std::vector<CInv> vGetData;
2750 : : // Download as much as possible, from earliest to latest.
2751 [ # # # # : 0 : for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
# # # # #
# # # #
# ]
2752 [ # # ]: 0 : if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2753 : : // Can't download any more from this peer
2754 : 0 : break;
2755 : : }
2756 : 0 : uint32_t nFetchFlags = GetFetchFlags(peer);
2757 [ # # # # ]: 0 : vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
2758 [ # # ]: 0 : BlockRequested(pfrom.GetId(), *pindex);
2759 [ # # # # : 0 : LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
# # # # #
# # # ]
2760 : : pindex->GetBlockHash().ToString(), pfrom.GetId());
2761 : : }
2762 [ # # ]: 0 : if (vGetData.size() > 1) {
2763 [ # # # # : 0 : LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
# # # # #
# # # ]
2764 : : last_header.GetBlockHash().ToString(),
2765 : : last_header.nHeight);
2766 : 0 : }
2767 [ # # ]: 0 : if (vGetData.size() > 0) {
2768 [ # # # # ]: 0 : if (!m_opts.ignore_incoming_txs &&
2769 [ # # ]: 0 : nodestate->m_provides_cmpctblocks &&
2770 [ # # ]: 0 : vGetData.size() == 1 &&
2771 [ # # ]: 0 : mapBlocksInFlight.size() == 1 &&
2772 [ # # ]: 0 : last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2773 : : // In any case, we want to download using a compact block, not a regular one
2774 [ # # ]: 0 : vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2775 : 0 : }
2776 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData));
# # ]
2777 : 0 : }
2778 : 0 : }
2779 : 0 : }
2780 : 0 : }
2781 : :
2782 : : /**
2783 : : * Given receipt of headers from a peer ending in last_header, along with
2784 : : * whether that header was new and whether the headers message was full,
2785 : : * update the state we keep for the peer.
2786 : : */
2787 : 0 : void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2788 : : const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2789 : : {
2790 [ # # ]: 0 : if (peer.m_num_unconnecting_headers_msgs > 0) {
2791 [ # # # # : 0 : LogPrint(BCLog::NET, "peer=%d: resetting m_num_unconnecting_headers_msgs (%d -> 0)\n", pfrom.GetId(), peer.m_num_unconnecting_headers_msgs);
# # # # ]
2792 : 0 : }
2793 : 0 : peer.m_num_unconnecting_headers_msgs = 0;
2794 : :
2795 : 0 : LOCK(cs_main);
2796 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
2797 : :
2798 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2799 : :
2800 : : // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2801 : : // because it is set in UpdateBlockAvailability. Some nullptr checks
2802 : : // are still present, however, as belt-and-suspenders.
2803 : :
2804 [ # # # # : 0 : if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
# # # # ]
2805 [ # # ]: 0 : nodestate->m_last_block_announcement = GetTime();
2806 : 0 : }
2807 : :
2808 : : // If we're in IBD, we want outbound peers that will serve us a useful
2809 : : // chain. Disconnect peers that are on chains with insufficient work.
2810 [ # # # # : 0 : if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
# # ]
2811 : : // If the peer has no more headers to give us, then we know we have
2812 : : // their tip.
2813 [ # # # # : 0 : if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
# # # # ]
2814 : : // This peer has too little work on their headers chain to help
2815 : : // us sync -- disconnect if it is an outbound disconnection
2816 : : // candidate.
2817 : : // Note: We compare their tip to the minimum chain work (rather than
2818 : : // m_chainman.ActiveChain().Tip()) because we won't start block download
2819 : : // until we have a headers chain that has at least
2820 : : // the minimum chain work, even if a peer has a chain past our tip,
2821 : : // as an anti-DoS measure.
2822 [ # # # # ]: 0 : if (pfrom.IsOutboundOrBlockRelayConn()) {
2823 [ # # # # : 0 : LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
# # ]
2824 : 0 : pfrom.fDisconnect = true;
2825 : 0 : }
2826 : 0 : }
2827 : 0 : }
2828 : :
2829 : : // If this is an outbound full-relay peer, check to see if we should protect
2830 : : // it from the bad/lagging chain logic.
2831 : : // Note that outbound block-relay peers are excluded from this protection, and
2832 : : // thus always subject to eviction under the bad/lagging chain logic.
2833 : : // See ChainSyncTimeoutState.
2834 [ # # # # : 0 : if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
# # ]
2835 [ # # # # : 0 : if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
# # # # #
# ]
2836 [ # # # # : 0 : LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
# # # # #
# ]
2837 : 0 : nodestate->m_chain_sync.m_protect = true;
2838 : 0 : ++m_outbound_peers_with_protect_from_disconnect;
2839 : 0 : }
2840 : 0 : }
2841 : 0 : }
2842 : :
2843 : 0 : void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2844 : : std::vector<CBlockHeader>&& headers,
2845 : : bool via_compact_block)
2846 : : {
2847 : 0 : size_t nCount = headers.size();
2848 : :
2849 [ # # ]: 0 : if (nCount == 0) {
2850 : : // Nothing interesting. Stop asking this peers for more headers.
2851 : : // If we were in the middle of headers sync, receiving an empty headers
2852 : : // message suggests that the peer suddenly has nothing to give us
2853 : : // (perhaps it reorged to our chain). Clear download state for this peer.
2854 : 0 : LOCK(peer.m_headers_sync_mutex);
2855 [ # # ]: 0 : if (peer.m_headers_sync) {
2856 : 0 : peer.m_headers_sync.reset(nullptr);
2857 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
2858 [ # # ]: 0 : m_headers_presync_stats.erase(pfrom.GetId());
2859 : 0 : }
2860 : : return;
2861 : 0 : }
2862 : :
2863 : : // Before we do any processing, make sure these pass basic sanity checks.
2864 : : // We'll rely on headers having valid proof-of-work further down, as an
2865 : : // anti-DoS criteria (note: this check is required before passing any
2866 : : // headers into HeadersSyncState).
2867 [ # # ]: 0 : if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2868 : : // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2869 : : // just return. (Note that even if a header is announced via compact
2870 : : // block, the header itself should be valid, so this type of error can
2871 : : // always be punished.)
2872 : 0 : return;
2873 : : }
2874 : :
2875 : 0 : const CBlockIndex *pindexLast = nullptr;
2876 : :
2877 : : // We'll set already_validated_work to true if these headers are
2878 : : // successfully processed as part of a low-work headers sync in progress
2879 : : // (either in PRESYNC or REDOWNLOAD phase).
2880 : : // If true, this will mean that any headers returned to us (ie during
2881 : : // REDOWNLOAD) can be validated without further anti-DoS checks.
2882 : 0 : bool already_validated_work = false;
2883 : :
2884 : : // If we're in the middle of headers sync, let it do its magic.
2885 : 0 : bool have_headers_sync = false;
2886 : : {
2887 : 0 : LOCK(peer.m_headers_sync_mutex);
2888 : :
2889 [ # # ]: 0 : already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2890 : :
2891 : : // The headers we passed in may have been:
2892 : : // - untouched, perhaps if no headers-sync was in progress, or some
2893 : : // failure occurred
2894 : : // - erased, such as if the headers were successfully processed and no
2895 : : // additional headers processing needs to take place (such as if we
2896 : : // are still in PRESYNC)
2897 : : // - replaced with headers that are now ready for validation, such as
2898 : : // during the REDOWNLOAD phase of a low-work headers sync.
2899 : : // So just check whether we still have headers that we need to process,
2900 : : // or not.
2901 [ # # ]: 0 : if (headers.empty()) {
2902 : 0 : return;
2903 : : }
2904 : :
2905 : 0 : have_headers_sync = !!peer.m_headers_sync;
2906 [ # # # ]: 0 : }
2907 : :
2908 : : // Do these headers connect to something in our block index?
2909 [ # # ]: 0 : const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2910 : 0 : bool headers_connect_blockindex{chain_start_header != nullptr};
2911 : :
2912 [ # # ]: 0 : if (!headers_connect_blockindex) {
2913 [ # # ]: 0 : if (nCount <= MAX_BLOCKS_TO_ANNOUNCE) {
2914 : : // If this looks like it could be a BIP 130 block announcement, use
2915 : : // special logic for handling headers that don't connect, as this
2916 : : // could be benign.
2917 : 0 : HandleFewUnconnectingHeaders(pfrom, peer, headers);
2918 : 0 : } else {
2919 [ # # # # ]: 0 : Misbehaving(peer, 10, "invalid header received");
2920 : : }
2921 : 0 : return;
2922 : : }
2923 : :
2924 : : // If the headers we received are already in memory and an ancestor of
2925 : : // m_best_header or our tip, skip anti-DoS checks. These headers will not
2926 : : // use any more memory (and we are not leaking information that could be
2927 : : // used to fingerprint us).
2928 : 0 : const CBlockIndex *last_received_header{nullptr};
2929 : : {
2930 : 0 : LOCK(cs_main);
2931 [ # # # # ]: 0 : last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2932 [ # # # # ]: 0 : if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2933 : 0 : already_validated_work = true;
2934 : 0 : }
2935 : 0 : }
2936 : :
2937 : : // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2938 : : // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2939 : : // on startup).
2940 [ # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::NoBan)) {
2941 : 0 : already_validated_work = true;
2942 : 0 : }
2943 : :
2944 : : // At this point, the headers connect to something in our block index.
2945 : : // Do anti-DoS checks to determine if we should process or store for later
2946 : : // processing.
2947 [ # # # # : 0 : if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
# # ]
2948 : 0 : chain_start_header, headers)) {
2949 : : // If we successfully started a low-work headers sync, then there
2950 : : // should be no headers to process any further.
2951 : 0 : Assume(headers.empty());
2952 : 0 : return;
2953 : : }
2954 : :
2955 : : // At this point, we have a set of headers with sufficient work on them
2956 : : // which can be processed.
2957 : :
2958 : : // If we don't have the last header, then this peer will have given us
2959 : : // something new (if these headers are valid).
2960 : 0 : bool received_new_header{last_received_header == nullptr};
2961 : :
2962 : : // Now process all the headers.
2963 : 0 : BlockValidationState state;
2964 [ # # # # ]: 0 : if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2965 [ # # ]: 0 : if (state.IsInvalid()) {
2966 [ # # # # ]: 0 : MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2967 : 0 : return;
2968 : : }
2969 : 0 : }
2970 [ # # ]: 0 : assert(pindexLast);
2971 : :
2972 : : // Consider fetching more headers if we are not using our headers-sync mechanism.
2973 [ # # # # ]: 0 : if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
2974 : : // Headers message had its maximum size; the peer may have more headers.
2975 [ # # # # : 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
# # ]
2976 [ # # # # : 0 : LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
# # # # #
# ]
2977 : : pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2978 : 0 : }
2979 : 0 : }
2980 : :
2981 [ # # ]: 0 : UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == MAX_HEADERS_RESULTS);
2982 : :
2983 : : // Consider immediately downloading blocks.
2984 [ # # ]: 0 : HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2985 : :
2986 : 0 : return;
2987 : 0 : }
2988 : :
2989 : 0 : bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
2990 : : {
2991 : 0 : AssertLockHeld(g_msgproc_mutex);
2992 : 0 : LOCK(cs_main);
2993 : :
2994 : 0 : CTransactionRef porphanTx = nullptr;
2995 : :
2996 [ # # # # ]: 0 : while (CTransactionRef porphanTx = m_orphanage.GetTxToReconsider(peer.m_id)) {
2997 [ # # ]: 0 : const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
2998 : 0 : const TxValidationState& state = result.m_state;
2999 : 0 : const uint256& orphanHash = porphanTx->GetHash();
3000 : 0 : const uint256& orphan_wtxid = porphanTx->GetWitnessHash();
3001 : :
3002 [ # # ]: 0 : if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
3003 [ # # # # : 0 : LogPrint(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
# # # # #
# # # #
# ]
3004 [ # # # # : 0 : LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
# # # # #
# # # # #
# # # # ]
3005 : : peer.m_id,
3006 : : orphanHash.ToString(),
3007 : : orphan_wtxid.ToString(),
3008 : : m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3009 [ # # ]: 0 : RelayTransaction(orphanHash, porphanTx->GetWitnessHash());
3010 [ # # ]: 0 : m_orphanage.AddChildrenToWorkSet(*porphanTx);
3011 [ # # ]: 0 : m_orphanage.EraseTx(orphanHash);
3012 [ # # # # ]: 0 : for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
3013 [ # # ]: 0 : AddToCompactExtraTransactions(removedTx);
3014 : : }
3015 : 0 : return true;
3016 [ # # ]: 0 : } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3017 [ # # ]: 0 : if (state.IsInvalid()) {
3018 [ # # # # : 0 : LogPrint(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
# # # # #
# # # # #
# # ]
3019 : : orphanHash.ToString(),
3020 : : orphan_wtxid.ToString(),
3021 : : peer.m_id,
3022 : : state.ToString());
3023 [ # # # # : 0 : LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
# # # # #
# # # # #
# # ]
3024 : : orphanHash.ToString(),
3025 : : orphan_wtxid.ToString(),
3026 : : peer.m_id,
3027 : : state.ToString());
3028 : : // Maybe punish peer that gave us an invalid orphan tx
3029 [ # # ]: 0 : MaybePunishNodeForTx(peer.m_id, state);
3030 : 0 : }
3031 : : // Has inputs but not accepted to mempool
3032 : : // Probably non-standard or insufficient fee
3033 [ # # # # : 0 : LogPrint(BCLog::TXPACKAGES, " removed orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
# # # # #
# # # #
# ]
3034 [ # # ]: 0 : if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
3035 : : // We can add the wtxid of this transaction to our reject filter.
3036 : : // Do not add txids of witness transactions or witness-stripped
3037 : : // transactions to the filter, as they can have been malleated;
3038 : : // adding such txids to the reject filter would potentially
3039 : : // interfere with relay of valid transactions from peers that
3040 : : // do not support wtxid-based relay. See
3041 : : // https://github.com/bitcoin/bitcoin/issues/8279 for details.
3042 : : // We can remove this restriction (and always add wtxids to
3043 : : // the filter even for witness stripped transactions) once
3044 : : // wtxid-based relay is broadly deployed.
3045 : : // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
3046 : : // for concerns around weakening security of unupgraded nodes
3047 : : // if we start doing this too early.
3048 [ # # # # ]: 0 : m_recent_rejects.insert(porphanTx->GetWitnessHash());
3049 : : // If the transaction failed for TX_INPUTS_NOT_STANDARD,
3050 : : // then we know that the witness was irrelevant to the policy
3051 : : // failure, since this check depends only on the txid
3052 : : // (the scriptPubKey being spent is covered by the txid).
3053 : : // Add the txid to the reject filter to prevent repeated
3054 : : // processing of this transaction in the event that child
3055 : : // transactions are later received (resulting in
3056 : : // parent-fetching by txid via the orphan-handling logic).
3057 [ # # # # : 0 : if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && porphanTx->GetWitnessHash() != porphanTx->GetHash()) {
# # ]
3058 : : // We only add the txid if it differs from the wtxid, to
3059 : : // avoid wasting entries in the rolling bloom filter.
3060 [ # # # # ]: 0 : m_recent_rejects.insert(porphanTx->GetHash());
3061 : 0 : }
3062 : 0 : }
3063 [ # # ]: 0 : m_orphanage.EraseTx(orphanHash);
3064 : 0 : return true;
3065 : : }
3066 [ # # # # : 0 : }
# ]
3067 : :
3068 : 0 : return false;
3069 : 0 : }
3070 : :
3071 : 0 : bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3072 : : BlockFilterType filter_type, uint32_t start_height,
3073 : : const uint256& stop_hash, uint32_t max_height_diff,
3074 : : const CBlockIndex*& stop_index,
3075 : : BlockFilterIndex*& filter_index)
3076 : : {
3077 : 0 : const bool supported_filter_type =
3078 [ # # ]: 0 : (filter_type == BlockFilterType::BASIC &&
3079 : 0 : (peer.m_our_services & NODE_COMPACT_FILTERS));
3080 [ # # ]: 0 : if (!supported_filter_type) {
3081 [ # # # # : 0 : LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
# # # # ]
3082 : : node.GetId(), static_cast<uint8_t>(filter_type));
3083 : 0 : node.fDisconnect = true;
3084 : 0 : return false;
3085 : : }
3086 : :
3087 : : {
3088 : 0 : LOCK(cs_main);
3089 [ # # ]: 0 : stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3090 : :
3091 : : // Check that the stop block exists and the peer would be allowed to fetch it.
3092 [ # # # # : 0 : if (!stop_index || !BlockRequestAllowed(stop_index)) {
# # ]
3093 [ # # # # : 0 : LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
# # # # #
# # # ]
3094 : : node.GetId(), stop_hash.ToString());
3095 : 0 : node.fDisconnect = true;
3096 : 0 : return false;
3097 : : }
3098 [ # # # ]: 0 : }
3099 : :
3100 : 0 : uint32_t stop_height = stop_index->nHeight;
3101 [ # # ]: 0 : if (start_height > stop_height) {
3102 [ # # # # : 0 : LogPrint(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
# # # # ]
3103 : : "start height %d and stop height %d\n",
3104 : : node.GetId(), start_height, stop_height);
3105 : 0 : node.fDisconnect = true;
3106 : 0 : return false;
3107 : : }
3108 [ # # ]: 0 : if (stop_height - start_height >= max_height_diff) {
3109 [ # # # # : 0 : LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
# # # # ]
3110 : : node.GetId(), stop_height - start_height + 1, max_height_diff);
3111 : 0 : node.fDisconnect = true;
3112 : 0 : return false;
3113 : : }
3114 : :
3115 : 0 : filter_index = GetBlockFilterIndex(filter_type);
3116 [ # # ]: 0 : if (!filter_index) {
3117 [ # # # # : 0 : LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
# # # # #
# ]
3118 : 0 : return false;
3119 : : }
3120 : :
3121 : 0 : return true;
3122 : 0 : }
3123 : :
3124 : 0 : void PeerManagerImpl::ProcessGetCFilters(CNode& node,Peer& peer, CDataStream& vRecv)
3125 : : {
3126 : : uint8_t filter_type_ser;
3127 : : uint32_t start_height;
3128 : 0 : uint256 stop_hash;
3129 : :
3130 : 0 : vRecv >> filter_type_ser >> start_height >> stop_hash;
3131 : :
3132 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3133 : :
3134 : : const CBlockIndex* stop_index;
3135 : : BlockFilterIndex* filter_index;
3136 [ # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3137 : : MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3138 : 0 : return;
3139 : : }
3140 : :
3141 : 0 : std::vector<BlockFilter> filters;
3142 [ # # # # ]: 0 : if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3143 [ # # # # : 0 : LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
# # # # #
# # # #
# ]
3144 : : BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3145 : 0 : return;
3146 : : }
3147 : :
3148 [ # # ]: 0 : for (const auto& filter : filters) {
3149 [ # # ]: 0 : CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
3150 [ # # # # ]: 0 : .Make(NetMsgType::CFILTER, filter);
3151 [ # # ]: 0 : m_connman.PushMessage(&node, std::move(msg));
3152 : 0 : }
3153 [ # # ]: 0 : }
3154 : :
3155 : 0 : void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, CDataStream& vRecv)
3156 : : {
3157 : : uint8_t filter_type_ser;
3158 : : uint32_t start_height;
3159 : 0 : uint256 stop_hash;
3160 : :
3161 : 0 : vRecv >> filter_type_ser >> start_height >> stop_hash;
3162 : :
3163 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3164 : :
3165 : : const CBlockIndex* stop_index;
3166 : : BlockFilterIndex* filter_index;
3167 [ # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3168 : : MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3169 : 0 : return;
3170 : : }
3171 : :
3172 : 0 : uint256 prev_header;
3173 [ # # ]: 0 : if (start_height > 0) {
3174 : 0 : const CBlockIndex* const prev_block =
3175 : 0 : stop_index->GetAncestor(static_cast<int>(start_height - 1));
3176 [ # # ]: 0 : if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3177 [ # # # # : 0 : LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
# # # # #
# # # ]
3178 : : BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3179 : 0 : return;
3180 : : }
3181 : 0 : }
3182 : :
3183 : 0 : std::vector<uint256> filter_hashes;
3184 [ # # # # ]: 0 : if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3185 [ # # # # : 0 : LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
# # # # #
# # # #
# ]
3186 : : BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3187 : 0 : return;
3188 : : }
3189 : :
3190 [ # # ]: 0 : CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
3191 [ # # # # ]: 0 : .Make(NetMsgType::CFHEADERS,
3192 : : filter_type_ser,
3193 : 0 : stop_index->GetBlockHash(),
3194 : : prev_header,
3195 : : filter_hashes);
3196 [ # # ]: 0 : m_connman.PushMessage(&node, std::move(msg));
3197 [ # # ]: 0 : }
3198 : :
3199 : 0 : void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, CDataStream& vRecv)
3200 : : {
3201 : : uint8_t filter_type_ser;
3202 : 0 : uint256 stop_hash;
3203 : :
3204 : 0 : vRecv >> filter_type_ser >> stop_hash;
3205 : :
3206 : 0 : const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3207 : :
3208 : : const CBlockIndex* stop_index;
3209 : : BlockFilterIndex* filter_index;
3210 [ # # # # ]: 0 : if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3211 : 0 : /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3212 : : stop_index, filter_index)) {
3213 : 0 : return;
3214 : : }
3215 : :
3216 [ # # ]: 0 : std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3217 : :
3218 : : // Populate headers.
3219 : 0 : const CBlockIndex* block_index = stop_index;
3220 [ # # ]: 0 : for (int i = headers.size() - 1; i >= 0; i--) {
3221 : 0 : int height = (i + 1) * CFCHECKPT_INTERVAL;
3222 [ # # ]: 0 : block_index = block_index->GetAncestor(height);
3223 : :
3224 [ # # # # ]: 0 : if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3225 [ # # # # : 0 : LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
# # # # #
# # # #
# ]
3226 : : BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3227 : 0 : return;
3228 : : }
3229 : 0 : }
3230 : :
3231 [ # # ]: 0 : CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
3232 [ # # # # ]: 0 : .Make(NetMsgType::CFCHECKPT,
3233 : : filter_type_ser,
3234 : 0 : stop_index->GetBlockHash(),
3235 : : headers);
3236 [ # # ]: 0 : m_connman.PushMessage(&node, std::move(msg));
3237 [ # # ]: 0 : }
3238 : :
3239 : 0 : void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3240 : : {
3241 : 0 : bool new_block{false};
3242 : 0 : m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3243 [ # # ]: 0 : if (new_block) {
3244 : 0 : node.m_last_block_time = GetTime<std::chrono::seconds>();
3245 : : // In case this block came from a different peer than we requested
3246 : : // from, we can erase the block request now anyway (as we just stored
3247 : : // this block to disk).
3248 : 0 : LOCK(cs_main);
3249 [ # # # # ]: 0 : RemoveBlockRequest(block->GetHash(), std::nullopt);
3250 : 0 : } else {
3251 : 0 : LOCK(cs_main);
3252 [ # # # # ]: 0 : mapBlockSource.erase(block->GetHash());
3253 : 0 : }
3254 : 0 : }
3255 : :
3256 : 0 : void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3257 : : {
3258 : 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3259 : 0 : bool fBlockRead{false};
3260 [ # # ]: 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
3261 : : {
3262 [ # # ]: 0 : LOCK(cs_main);
3263 : :
3264 [ # # ]: 0 : auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3265 [ # # ]: 0 : size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3266 : 0 : bool requested_block_from_this_peer{false};
3267 : :
3268 : : // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3269 [ # # ]: 0 : bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3270 : :
3271 [ # # ]: 0 : while (range_flight.first != range_flight.second) {
3272 : 0 : auto [node_id, block_it] = range_flight.first->second;
3273 [ # # # # ]: 0 : if (node_id == pfrom.GetId() && block_it->partialBlock) {
3274 : 0 : requested_block_from_this_peer = true;
3275 : 0 : break;
3276 : : }
3277 : 0 : range_flight.first++;
3278 : : }
3279 : :
3280 [ # # ]: 0 : if (!requested_block_from_this_peer) {
3281 [ # # # # : 0 : LogPrint(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
# # # # #
# ]
3282 : 0 : return;
3283 : : }
3284 : :
3285 : 0 : PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3286 [ # # ]: 0 : ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3287 [ # # ]: 0 : if (status == READ_STATUS_INVALID) {
3288 [ # # # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3289 [ # # # # ]: 0 : Misbehaving(peer, 100, "invalid compact block/non-matching block transactions");
3290 : 0 : return;
3291 [ # # ]: 0 : } else if (status == READ_STATUS_FAILED) {
3292 [ # # ]: 0 : if (first_in_flight) {
3293 : : // Might have collided, fall back to getdata now :(
3294 : 0 : std::vector<CInv> invs;
3295 [ # # # # ]: 0 : invs.push_back(CInv(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash));
3296 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs));
# # ]
3297 : 0 : } else {
3298 [ # # # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3299 [ # # # # : 0 : LogPrint(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
# # # # #
# ]
3300 : 0 : return;
3301 : : }
3302 : 0 : } else {
3303 : : // Block is either okay, or possibly we received
3304 : : // READ_STATUS_CHECKBLOCK_FAILED.
3305 : : // Note that CheckBlock can only fail for one of a few reasons:
3306 : : // 1. bad-proof-of-work (impossible here, because we've already
3307 : : // accepted the header)
3308 : : // 2. merkleroot doesn't match the transactions given (already
3309 : : // caught in FillBlock with READ_STATUS_FAILED, so
3310 : : // impossible here)
3311 : : // 3. the block is otherwise invalid (eg invalid coinbase,
3312 : : // block is too big, too many legacy sigops, etc).
3313 : : // So if CheckBlock failed, #3 is the only possibility.
3314 : : // Under BIP 152, we don't discourage the peer unless proof of work is
3315 : : // invalid (we don't require all the stateless checks to have
3316 : : // been run). This is handled below, so just treat this as
3317 : : // though the block was successfully read, and rely on the
3318 : : // handling in ProcessNewBlock to ensure the block index is
3319 : : // updated, etc.
3320 [ # # # # ]: 0 : RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3321 : 0 : fBlockRead = true;
3322 : : // mapBlockSource is used for potentially punishing peers and
3323 : : // updating which peers send us compact blocks, so the race
3324 : : // between here and cs_main in ProcessNewBlock is fine.
3325 : : // BIP 152 permits peers to relay compact blocks after validating
3326 : : // the header only; we should not punish peers if the block turns
3327 : : // out to be invalid.
3328 [ # # # # ]: 0 : mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3329 : : }
3330 [ # # ]: 0 : } // Don't hold cs_main when we call into ProcessNewBlock
3331 [ # # ]: 0 : if (fBlockRead) {
3332 : : // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3333 : : // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3334 : : // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3335 : : // disk-space attacks), but this should be safe due to the
3336 : : // protections in the compact block handler -- see related comment
3337 : : // in compact block optimistic reconstruction handling.
3338 [ # # ]: 0 : ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3339 : 0 : }
3340 : 0 : return;
3341 : 0 : }
3342 : :
3343 : 0 : void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, CDataStream& vRecv,
3344 : : const std::chrono::microseconds time_received,
3345 : : const std::atomic<bool>& interruptMsgProc)
3346 : : {
3347 : 0 : AssertLockHeld(g_msgproc_mutex);
3348 : :
3349 [ # # # # : 0 : LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
# # # # #
# # # ]
3350 : :
3351 : 0 : PeerRef peer = GetPeerRef(pfrom.GetId());
3352 [ # # ]: 0 : if (peer == nullptr) return;
3353 : :
3354 [ # # ]: 0 : if (msg_type == NetMsgType::VERSION) {
3355 [ # # ]: 0 : if (pfrom.nVersion != 0) {
3356 [ # # # # : 0 : LogPrint(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
# # # # #
# ]
3357 : 0 : return;
3358 : : }
3359 : :
3360 : : int64_t nTime;
3361 [ # # ]: 0 : CService addrMe;
3362 : 0 : uint64_t nNonce = 1;
3363 : : ServiceFlags nServices;
3364 : : int nVersion;
3365 : 0 : std::string cleanSubVer;
3366 : 0 : int starting_height = -1;
3367 : 0 : bool fRelay = true;
3368 : :
3369 [ # # # # : 0 : vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
# # # # ]
3370 [ # # ]: 0 : if (nTime < 0) {
3371 : 0 : nTime = 0;
3372 : 0 : }
3373 [ # # ]: 0 : vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3374 [ # # # # ]: 0 : vRecv >> CNetAddr::V1(addrMe);
3375 [ # # # # ]: 0 : if (!pfrom.IsInboundConn())
3376 : : {
3377 [ # # ]: 0 : m_addrman.SetServices(pfrom.addr, nServices);
3378 : 0 : }
3379 [ # # # # : 0 : if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
# # # # ]
3380 : : {
3381 [ # # # # : 0 : LogPrint(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
# # # # #
# # # ]
3382 : 0 : pfrom.fDisconnect = true;
3383 : 0 : return;
3384 : : }
3385 : :
3386 [ # # ]: 0 : if (nVersion < MIN_PEER_PROTO_VERSION) {
3387 : : // disconnect from peers older than this proto version
3388 [ # # # # : 0 : LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
# # # # #
# ]
3389 : 0 : pfrom.fDisconnect = true;
3390 : 0 : return;
3391 : : }
3392 : :
3393 [ # # # # ]: 0 : if (!vRecv.empty()) {
3394 : : // The version message includes information about the sending node which we don't use:
3395 : : // - 8 bytes (service bits)
3396 : : // - 16 bytes (ipv6 address)
3397 : : // - 2 bytes (port)
3398 [ # # ]: 0 : vRecv.ignore(26);
3399 [ # # ]: 0 : vRecv >> nNonce;
3400 : 0 : }
3401 [ # # # # ]: 0 : if (!vRecv.empty()) {
3402 : 0 : std::string strSubVer;
3403 [ # # # # ]: 0 : vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3404 [ # # ]: 0 : cleanSubVer = SanitizeString(strSubVer);
3405 : 0 : }
3406 [ # # # # ]: 0 : if (!vRecv.empty()) {
3407 [ # # ]: 0 : vRecv >> starting_height;
3408 : 0 : }
3409 [ # # # # ]: 0 : if (!vRecv.empty())
3410 [ # # ]: 0 : vRecv >> fRelay;
3411 : : // Disconnect if we connected to ourself
3412 [ # # # # : 0 : if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
# # # # ]
3413 : : {
3414 [ # # # # : 0 : LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
# # # # ]
3415 : 0 : pfrom.fDisconnect = true;
3416 : 0 : return;
3417 : : }
3418 : :
3419 [ # # # # : 0 : if (pfrom.IsInboundConn() && addrMe.IsRoutable())
# # # # ]
3420 : : {
3421 [ # # ]: 0 : SeenLocal(addrMe);
3422 : 0 : }
3423 : :
3424 : : // Inbound peers send us their version message when they connect.
3425 : : // We send our version message in response.
3426 [ # # # # ]: 0 : if (pfrom.IsInboundConn()) {
3427 [ # # ]: 0 : PushNodeVersion(pfrom, *peer);
3428 : 0 : }
3429 : :
3430 : : // Change version
3431 : 0 : const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3432 [ # # ]: 0 : pfrom.SetCommonVersion(greatest_common_version);
3433 : 0 : pfrom.nVersion = nVersion;
3434 : :
3435 [ # # ]: 0 : const CNetMsgMaker msg_maker(greatest_common_version);
3436 : :
3437 [ # # ]: 0 : if (greatest_common_version >= WTXID_RELAY_VERSION) {
3438 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::WTXIDRELAY));
# # ]
3439 : 0 : }
3440 : :
3441 : : // Signal ADDRv2 support (BIP155).
3442 [ # # ]: 0 : if (greatest_common_version >= 70016) {
3443 : : // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3444 : : // implementations reject messages they don't know. As a courtesy, don't send
3445 : : // it to nodes with a version before 70016, as no software is known to support
3446 : : // BIP155 that doesn't announce at least that protocol version number.
3447 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2));
# # ]
3448 : 0 : }
3449 : :
3450 [ # # ]: 0 : pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3451 : 0 : peer->m_their_services = nServices;
3452 [ # # ]: 0 : pfrom.SetAddrLocal(addrMe);
3453 : : {
3454 [ # # ]: 0 : LOCK(pfrom.m_subver_mutex);
3455 [ # # ]: 0 : pfrom.cleanSubVer = cleanSubVer;
3456 : 0 : }
3457 : 0 : peer->m_starting_height = starting_height;
3458 : :
3459 : : // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3460 : : // - this isn't an outbound block-relay-only connection, and
3461 : : // - this isn't an outbound feeler connection, and
3462 : : // - fRelay=true (the peer wishes to receive transaction announcements)
3463 : : // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3464 : : // the peer may turn on transaction relay later.
3465 [ # # # # ]: 0 : if (!pfrom.IsBlockOnlyConn() &&
3466 [ # # # # ]: 0 : !pfrom.IsFeelerConn() &&
3467 [ # # ]: 0 : (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3468 [ # # ]: 0 : auto* const tx_relay = peer->SetTxRelay();
3469 : : {
3470 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
3471 : 0 : tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3472 : 0 : }
3473 [ # # ]: 0 : if (fRelay) pfrom.m_relays_txs = true;
3474 : 0 : }
3475 : :
3476 [ # # # # ]: 0 : if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3477 : : // Per BIP-330, we announce txreconciliation support if:
3478 : : // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3479 : : // - transaction relay is supported per the peer's VERSION message
3480 : : // - this is not a block-relay-only connection and not a feeler
3481 : : // - this is not an addr fetch connection;
3482 : : // - we are not in -blocksonly mode.
3483 [ # # ]: 0 : const auto* tx_relay = peer->GetTxRelay();
3484 [ # # # # : 0 : if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
# # # # ]
3485 [ # # # # ]: 0 : !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3486 [ # # ]: 0 : const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3487 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDTXRCNCL,
# # ]
3488 : : TXRECONCILIATION_VERSION, recon_salt));
3489 : 0 : }
3490 : 0 : }
3491 : :
3492 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK));
# # ]
3493 : :
3494 : : // Potentially mark this peer as a preferred download peer.
3495 : : {
3496 [ # # ]: 0 : LOCK(cs_main);
3497 [ # # ]: 0 : CNodeState* state = State(pfrom.GetId());
3498 [ # # # # : 0 : state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
# # # # #
# # # #
# ]
3499 : 0 : m_num_preferred_download_peers += state->fPreferredDownload;
3500 : 0 : }
3501 : :
3502 : : // Attempt to initialize address relay for outbound peers and use result
3503 : : // to decide whether to send GETADDR, so that we don't send it to
3504 : : // inbound or outbound block-relay-only peers.
3505 : 0 : bool send_getaddr{false};
3506 [ # # # # ]: 0 : if (!pfrom.IsInboundConn()) {
3507 [ # # ]: 0 : send_getaddr = SetupAddressRelay(pfrom, *peer);
3508 : 0 : }
3509 [ # # ]: 0 : if (send_getaddr) {
3510 : : // Do a one-time address fetch to help populate/update our addrman.
3511 : : // If we're starting up for the first time, our addrman may be pretty
3512 : : // empty, so this mechanism is important to help us connect to the network.
3513 : : // We skip this for block-relay-only peers. We want to avoid
3514 : : // potentially leaking addr information and we do not want to
3515 : : // indicate to the peer that we will participate in addr relay.
3516 [ # # # # : 0 : m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version).Make(NetMsgType::GETADDR));
# # # # ]
3517 : 0 : peer->m_getaddr_sent = true;
3518 : : // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3519 : : // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3520 : 0 : peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3521 : 0 : }
3522 : :
3523 [ # # # # ]: 0 : if (!pfrom.IsInboundConn()) {
3524 : : // For non-inbound connections, we update the addrman to record
3525 : : // connection success so that addrman will have an up-to-date
3526 : : // notion of which peers are online and available.
3527 : : //
3528 : : // While we strive to not leak information about block-relay-only
3529 : : // connections via the addrman, not moving an address to the tried
3530 : : // table is also potentially detrimental because new-table entries
3531 : : // are subject to eviction in the event of addrman collisions. We
3532 : : // mitigate the information-leak by never calling
3533 : : // AddrMan::Connected() on block-relay-only peers; see
3534 : : // FinalizeNode().
3535 : : //
3536 : : // This moves an address from New to Tried table in Addrman,
3537 : : // resolves tried-table collisions, etc.
3538 [ # # # # ]: 0 : m_addrman.Good(pfrom.addr);
3539 : 0 : }
3540 : :
3541 : 0 : std::string remoteAddr;
3542 [ # # ]: 0 : if (fLogIPs)
3543 [ # # # # ]: 0 : remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3544 : :
3545 [ # # ]: 0 : const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3546 [ # # # # : 0 : LogPrint(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
# # # # #
# # # # #
# # # # #
# # # ]
3547 : : cleanSubVer, pfrom.nVersion,
3548 : : peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3549 : : remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3550 : :
3551 [ # # ]: 0 : int64_t nTimeOffset = nTime - GetTime();
3552 : 0 : pfrom.nTimeOffset = nTimeOffset;
3553 [ # # # # ]: 0 : if (!pfrom.IsInboundConn()) {
3554 : : // Don't use timedata samples from inbound peers to make it
3555 : : // harder for others to tamper with our adjusted time.
3556 [ # # ]: 0 : AddTimeData(pfrom.addr, nTimeOffset);
3557 : 0 : }
3558 : :
3559 : : // If the peer is old enough to have the old alert system, send it the final alert.
3560 [ # # ]: 0 : if (greatest_common_version <= 70012) {
3561 [ # # ]: 0 : const auto finalAlert{ParseHex("60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50")};
3562 [ # # # # : 0 : m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version).Make("alert", Span{finalAlert}));
# # # # #
# ]
3563 : 0 : }
3564 : :
3565 : : // Feeler connections exist only to verify if address is online.
3566 [ # # # # ]: 0 : if (pfrom.IsFeelerConn()) {
3567 [ # # # # : 0 : LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3568 : 0 : pfrom.fDisconnect = true;
3569 : 0 : }
3570 : : return;
3571 : 0 : }
3572 : :
3573 [ # # ]: 0 : if (pfrom.nVersion == 0) {
3574 : : // Must have a version message before anything else
3575 [ # # # # : 0 : LogPrint(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
# # # # #
# # # ]
3576 : 0 : return;
3577 : : }
3578 : :
3579 : : // At this point, the outgoing message serialization version can't change.
3580 [ # # ]: 0 : const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
3581 : :
3582 [ # # ]: 0 : if (msg_type == NetMsgType::VERACK) {
3583 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3584 [ # # # # : 0 : LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
# # # # #
# ]
3585 : 0 : return;
3586 : : }
3587 : :
3588 : : // Log succesful connections unconditionally for outbound, but not for inbound as those
3589 : : // can be triggered by an attacker at high rate.
3590 [ # # # # : 0 : if (!pfrom.IsInboundConn() || LogAcceptCategory(BCLog::NET, BCLog::Level::Debug)) {
# # ]
3591 [ # # ]: 0 : const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3592 [ # # # # : 0 : LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
3593 : : pfrom.ConnectionTypeAsString(),
3594 : : TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3595 : : pfrom.nVersion.load(), peer->m_starting_height,
3596 : : pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3597 : : (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3598 : 0 : }
3599 : :
3600 [ # # ]: 0 : if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
3601 : : // Tell our peer we are willing to provide version 2 cmpctblocks.
3602 : : // However, we do not request new block announcements using
3603 : : // cmpctblock messages.
3604 : : // We send this to non-NODE NETWORK peers as well, because
3605 : : // they may wish to request compact blocks from us
3606 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION));
# # ]
3607 : 0 : }
3608 : :
3609 [ # # ]: 0 : if (m_txreconciliation) {
3610 [ # # # # : 0 : if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
# # ]
3611 : : // We could have optimistically pre-registered/registered the peer. In that case,
3612 : : // we should forget about the reconciliation state here if this wasn't followed
3613 : : // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3614 [ # # ]: 0 : m_txreconciliation->ForgetPeer(pfrom.GetId());
3615 : 0 : }
3616 : 0 : }
3617 : :
3618 [ # # # # ]: 0 : if (auto tx_relay = peer->GetTxRelay()) {
3619 : : // `TxRelay::m_tx_inventory_to_send` must be empty before the
3620 : : // version handshake is completed as
3621 : : // `TxRelay::m_next_inv_send_time` is first initialised in
3622 : : // `SendMessages` after the verack is received. Any transactions
3623 : : // received during the version handshake would otherwise
3624 : : // immediately be advertised without random delay, potentially
3625 : : // leaking the time of arrival to a spy.
3626 [ # # # # : 0 : Assume(WITH_LOCK(
# # # # ]
3627 : : tx_relay->m_tx_inventory_mutex,
3628 : : return tx_relay->m_tx_inventory_to_send.empty() &&
3629 : : tx_relay->m_next_inv_send_time == 0s));
3630 : 0 : }
3631 : :
3632 : 0 : pfrom.fSuccessfullyConnected = true;
3633 : 0 : return;
3634 : : }
3635 : :
3636 [ # # ]: 0 : if (msg_type == NetMsgType::SENDHEADERS) {
3637 : 0 : peer->m_prefers_headers = true;
3638 : 0 : return;
3639 : : }
3640 : :
3641 [ # # ]: 0 : if (msg_type == NetMsgType::SENDCMPCT) {
3642 : 0 : bool sendcmpct_hb{false};
3643 : 0 : uint64_t sendcmpct_version{0};
3644 [ # # # # ]: 0 : vRecv >> sendcmpct_hb >> sendcmpct_version;
3645 : :
3646 : : // Only support compact block relay with witnesses
3647 [ # # ]: 0 : if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3648 : :
3649 [ # # ]: 0 : LOCK(cs_main);
3650 [ # # ]: 0 : CNodeState* nodestate = State(pfrom.GetId());
3651 : 0 : nodestate->m_provides_cmpctblocks = true;
3652 : 0 : nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3653 : : // save whether peer selects us as BIP152 high-bandwidth peer
3654 : : // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3655 : 0 : pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3656 : : return;
3657 : 0 : }
3658 : :
3659 : : // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3660 : : // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3661 [ # # ]: 0 : if (msg_type == NetMsgType::WTXIDRELAY) {
3662 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3663 : : // Disconnect peers that send a wtxidrelay message after VERACK.
3664 [ # # # # : 0 : LogPrint(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3665 : 0 : pfrom.fDisconnect = true;
3666 : 0 : return;
3667 : : }
3668 [ # # ]: 0 : if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3669 [ # # ]: 0 : if (!peer->m_wtxid_relay) {
3670 : 0 : peer->m_wtxid_relay = true;
3671 : 0 : m_wtxid_relay_peers++;
3672 : 0 : } else {
3673 [ # # # # : 0 : LogPrint(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
# # # # #
# ]
3674 : : }
3675 : 0 : } else {
3676 [ # # # # : 0 : LogPrint(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
# # # # #
# ]
3677 : : }
3678 : 0 : return;
3679 : : }
3680 : :
3681 : : // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3682 : : // between VERSION and VERACK.
3683 [ # # ]: 0 : if (msg_type == NetMsgType::SENDADDRV2) {
3684 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3685 : : // Disconnect peers that send a SENDADDRV2 message after VERACK.
3686 [ # # # # : 0 : LogPrint(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3687 : 0 : pfrom.fDisconnect = true;
3688 : 0 : return;
3689 : : }
3690 : 0 : peer->m_wants_addrv2 = true;
3691 : 0 : return;
3692 : : }
3693 : :
3694 : : // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3695 : : // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3696 : : // from switching announcement protocols after the connection is up.
3697 [ # # ]: 0 : if (msg_type == NetMsgType::SENDTXRCNCL) {
3698 [ # # ]: 0 : if (!m_txreconciliation) {
3699 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
# # # # #
# ]
3700 : 0 : return;
3701 : : }
3702 : :
3703 [ # # ]: 0 : if (pfrom.fSuccessfullyConnected) {
3704 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3705 : 0 : pfrom.fDisconnect = true;
3706 : 0 : return;
3707 : : }
3708 : :
3709 : : // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3710 [ # # # # ]: 0 : if (RejectIncomingTxs(pfrom)) {
3711 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3712 : 0 : pfrom.fDisconnect = true;
3713 : 0 : return;
3714 : : }
3715 : :
3716 : : // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3717 : : // This flag might also be false in other cases, but the RejectIncomingTxs check above
3718 : : // eliminates them, so that this flag fully represents what we are looking for.
3719 [ # # ]: 0 : const auto* tx_relay = peer->GetTxRelay();
3720 [ # # # # : 0 : if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
# # ]
3721 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3722 : 0 : pfrom.fDisconnect = true;
3723 : 0 : return;
3724 : : }
3725 : :
3726 : : uint32_t peer_txreconcl_version;
3727 : : uint64_t remote_salt;
3728 [ # # # # ]: 0 : vRecv >> peer_txreconcl_version >> remote_salt;
3729 : :
3730 [ # # # # ]: 0 : const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3731 : 0 : peer_txreconcl_version, remote_salt);
3732 [ # # # # : 0 : switch (result) {
# ]
3733 : : case ReconciliationRegisterResult::NOT_FOUND:
3734 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
# # # # #
# ]
3735 : 0 : break;
3736 : : case ReconciliationRegisterResult::SUCCESS:
3737 : 0 : break;
3738 : : case ReconciliationRegisterResult::ALREADY_REGISTERED:
3739 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
# # # # #
# ]
3740 : 0 : pfrom.fDisconnect = true;
3741 : 0 : return;
3742 : : case ReconciliationRegisterResult::PROTOCOL_VIOLATION:
3743 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3744 : 0 : pfrom.fDisconnect = true;
3745 : 0 : return;
3746 : : }
3747 : 0 : return;
3748 : : }
3749 : :
3750 [ # # ]: 0 : if (!pfrom.fSuccessfullyConnected) {
3751 [ # # # # : 0 : LogPrint(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
# # # # #
# # # ]
3752 : 0 : return;
3753 : : }
3754 : :
3755 [ # # # # ]: 0 : if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3756 : 0 : const auto ser_params{
3757 [ # # ]: 0 : msg_type == NetMsgType::ADDRV2 ?
3758 : : // Set V2 param so that the CNetAddr and CAddress
3759 : : // unserialize methods know that an address in v2 format is coming.
3760 : : CAddress::V2_NETWORK :
3761 : : CAddress::V1_NETWORK,
3762 : : };
3763 : :
3764 : 0 : std::vector<CAddress> vAddr;
3765 : :
3766 [ # # # # ]: 0 : vRecv >> WithParams(ser_params, vAddr);
3767 : :
3768 [ # # # # ]: 0 : if (!SetupAddressRelay(pfrom, *peer)) {
3769 [ # # # # : 0 : LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
# # # # #
# # # ]
3770 : 0 : return;
3771 : : }
3772 : :
3773 [ # # ]: 0 : if (vAddr.size() > MAX_ADDR_TO_SEND)
3774 : : {
3775 [ # # # # ]: 0 : Misbehaving(*peer, 20, strprintf("%s message size = %u", msg_type, vAddr.size()));
3776 : 0 : return;
3777 : : }
3778 : :
3779 : : // Store the new addresses
3780 : 0 : std::vector<CAddress> vAddrOk;
3781 [ # # ]: 0 : const auto current_a_time{Now<NodeSeconds>()};
3782 : :
3783 : : // Update/increment addr rate limiting bucket.
3784 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
3785 [ # # ]: 0 : if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3786 : : // Don't increment bucket if it's already full
3787 [ # # # # : 0 : const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
# # ]
3788 [ # # ]: 0 : const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3789 [ # # ]: 0 : peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3790 : 0 : }
3791 : 0 : peer->m_addr_token_timestamp = current_time;
3792 : :
3793 [ # # ]: 0 : const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3794 : 0 : uint64_t num_proc = 0;
3795 : 0 : uint64_t num_rate_limit = 0;
3796 [ # # ]: 0 : Shuffle(vAddr.begin(), vAddr.end(), FastRandomContext());
3797 [ # # ]: 0 : for (CAddress& addr : vAddr)
3798 : : {
3799 [ # # ]: 0 : if (interruptMsgProc)
3800 : 0 : return;
3801 : :
3802 : : // Apply rate limiting.
3803 [ # # ]: 0 : if (peer->m_addr_token_bucket < 1.0) {
3804 [ # # ]: 0 : if (rate_limited) {
3805 : 0 : ++num_rate_limit;
3806 : 0 : continue;
3807 : : }
3808 : 0 : } else {
3809 : 0 : peer->m_addr_token_bucket -= 1.0;
3810 : : }
3811 : : // We only bother storing full nodes, though this may include
3812 : : // things which we would not make an outbound connection to, in
3813 : : // part because we may make feeler connections to them.
3814 [ # # # # : 0 : if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
# # # # ]
3815 : 0 : continue;
3816 : :
3817 [ # # # # : 0 : if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
# # # # #
# # # # #
# # ]
3818 [ # # # # : 0 : addr.nTime = current_a_time - 5 * 24h;
# # ]
3819 : 0 : }
3820 [ # # ]: 0 : AddAddressKnown(*peer, addr);
3821 [ # # # # : 0 : if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
# # # # #
# ]
3822 : : // Do not process banned/discouraged addresses beyond remembering we received them
3823 : 0 : continue;
3824 : : }
3825 : 0 : ++num_proc;
3826 [ # # ]: 0 : bool fReachable = IsReachable(addr);
3827 [ # # # # : 0 : if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
# # # # #
# # # # #
# # ]
3828 : : // Relay to a limited number of other nodes
3829 [ # # ]: 0 : RelayAddress(pfrom.GetId(), addr, fReachable);
3830 : 0 : }
3831 : : // Do not store addresses outside our network
3832 [ # # ]: 0 : if (fReachable)
3833 [ # # ]: 0 : vAddrOk.push_back(addr);
3834 : : }
3835 : 0 : peer->m_addr_processed += num_proc;
3836 : 0 : peer->m_addr_rate_limited += num_rate_limit;
3837 [ # # # # : 0 : LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
# # # # #
# ]
3838 : : vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3839 : :
3840 [ # # # # : 0 : m_addrman.Add(vAddrOk, pfrom.addr, 2h);
# # ]
3841 [ # # ]: 0 : if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3842 : :
3843 : : // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3844 [ # # # # : 0 : if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
# # ]
3845 [ # # # # : 0 : LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
3846 : 0 : pfrom.fDisconnect = true;
3847 : 0 : }
3848 : 0 : return;
3849 : 0 : }
3850 : :
3851 [ # # ]: 0 : if (msg_type == NetMsgType::INV) {
3852 : 0 : std::vector<CInv> vInv;
3853 [ # # ]: 0 : vRecv >> vInv;
3854 [ # # ]: 0 : if (vInv.size() > MAX_INV_SZ)
3855 : : {
3856 [ # # # # ]: 0 : Misbehaving(*peer, 20, strprintf("inv message size = %u", vInv.size()));
3857 : 0 : return;
3858 : : }
3859 : :
3860 [ # # ]: 0 : const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3861 : :
3862 [ # # ]: 0 : LOCK(cs_main);
3863 : :
3864 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
3865 : 0 : uint256* best_block{nullptr};
3866 : :
3867 [ # # ]: 0 : for (CInv& inv : vInv) {
3868 [ # # ]: 0 : if (interruptMsgProc) return;
3869 : :
3870 : : // Ignore INVs that don't match wtxidrelay setting.
3871 : : // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3872 : : // This is fine as no INV messages are involved in that process.
3873 [ # # ]: 0 : if (peer->m_wtxid_relay) {
3874 [ # # # # ]: 0 : if (inv.IsMsgTx()) continue;
3875 : 0 : } else {
3876 [ # # # # ]: 0 : if (inv.IsMsgWtx()) continue;
3877 : : }
3878 : :
3879 [ # # # # ]: 0 : if (inv.IsMsgBlk()) {
3880 [ # # ]: 0 : const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3881 [ # # # # : 0 : LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
# # # # #
# # # ]
3882 : :
3883 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3884 [ # # # # : 0 : if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
# # # # ]
3885 : : // Headers-first is the primary method of announcement on
3886 : : // the network. If a node fell back to sending blocks by
3887 : : // inv, it may be for a re-org, or because we haven't
3888 : : // completed initial headers sync. The final block hash
3889 : : // provided should be the highest, so send a getheaders and
3890 : : // then fetch the blocks we need to catch up.
3891 : 0 : best_block = &inv.hash;
3892 : 0 : }
3893 [ # # # # ]: 0 : } else if (inv.IsGenTxMsg()) {
3894 [ # # ]: 0 : if (reject_tx_invs) {
3895 [ # # # # : 0 : LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
# # # # #
# # # ]
3896 : 0 : pfrom.fDisconnect = true;
3897 : 0 : return;
3898 : : }
3899 [ # # ]: 0 : const GenTxid gtxid = ToGenTxid(inv);
3900 [ # # ]: 0 : const bool fAlreadyHave = AlreadyHaveTx(gtxid);
3901 [ # # # # : 0 : LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
# # # # #
# # # ]
3902 : :
3903 [ # # ]: 0 : AddKnownTx(*peer, inv.hash);
3904 [ # # # # : 0 : if (!fAlreadyHave && !m_chainman.IsInitialBlockDownload()) {
# # ]
3905 [ # # ]: 0 : AddTxAnnouncement(pfrom, gtxid, current_time);
3906 : 0 : }
3907 : 0 : } else {
3908 [ # # # # : 0 : LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
# # # # #
# # # ]
3909 : : }
3910 : : }
3911 : :
3912 [ # # ]: 0 : if (best_block != nullptr) {
3913 : : // If we haven't started initial headers-sync with this peer, then
3914 : : // consider sending a getheaders now. On initial startup, there's a
3915 : : // reliability vs bandwidth tradeoff, where we are only trying to do
3916 : : // initial headers sync with one peer at a time, with a long
3917 : : // timeout (at which point, if the sync hasn't completed, we will
3918 : : // disconnect the peer and then choose another). In the meantime,
3919 : : // as new blocks are found, we are willing to add one new peer per
3920 : : // block to sync with as well, to sync quicker in the case where
3921 : : // our initial peer is unresponsive (but less bandwidth than we'd
3922 : : // use if we turned on sync with all peers).
3923 [ # # # # ]: 0 : CNodeState& state{*Assert(State(pfrom.GetId()))};
3924 [ # # # # : 0 : if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
# # # # ]
3925 [ # # # # : 0 : if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
# # ]
3926 [ # # # # : 0 : LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
# # # # #
# # # ]
3927 : : m_chainman.m_best_header->nHeight, best_block->ToString(),
3928 : : pfrom.GetId());
3929 : 0 : }
3930 [ # # ]: 0 : if (!state.fSyncStarted) {
3931 : 0 : peer->m_inv_triggered_getheaders_before_sync = true;
3932 : : // Update the last block hash that triggered a new headers
3933 : : // sync, so that we don't turn on headers sync with more
3934 : : // than 1 new peer every new block.
3935 : 0 : m_last_block_inv_triggering_headers_sync = *best_block;
3936 : 0 : }
3937 : 0 : }
3938 : 0 : }
3939 : :
3940 : 0 : return;
3941 : 0 : }
3942 : :
3943 [ # # ]: 0 : if (msg_type == NetMsgType::GETDATA) {
3944 : 0 : std::vector<CInv> vInv;
3945 [ # # ]: 0 : vRecv >> vInv;
3946 [ # # ]: 0 : if (vInv.size() > MAX_INV_SZ)
3947 : : {
3948 [ # # # # ]: 0 : Misbehaving(*peer, 20, strprintf("getdata message size = %u", vInv.size()));
3949 : 0 : return;
3950 : : }
3951 : :
3952 [ # # # # : 0 : LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
# # # # #
# ]
3953 : :
3954 [ # # ]: 0 : if (vInv.size() > 0) {
3955 [ # # # # : 0 : LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
# # # # #
# # # ]
3956 : 0 : }
3957 : :
3958 : : {
3959 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
3960 [ # # ]: 0 : peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3961 [ # # ]: 0 : ProcessGetData(pfrom, *peer, interruptMsgProc);
3962 : 0 : }
3963 : :
3964 : 0 : return;
3965 : 0 : }
3966 : :
3967 [ # # ]: 0 : if (msg_type == NetMsgType::GETBLOCKS) {
3968 [ # # ]: 0 : CBlockLocator locator;
3969 [ # # ]: 0 : uint256 hashStop;
3970 [ # # # # ]: 0 : vRecv >> locator >> hashStop;
3971 : :
3972 [ # # ]: 0 : if (locator.vHave.size() > MAX_LOCATOR_SZ) {
3973 [ # # # # : 0 : LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
# # # # #
# ]
3974 : 0 : pfrom.fDisconnect = true;
3975 : 0 : return;
3976 : : }
3977 : :
3978 : : // We might have announced the currently-being-connected tip using a
3979 : : // compact block, which resulted in the peer sending a getblocks
3980 : : // request, which we would otherwise respond to without the new block.
3981 : : // To avoid this situation we simply verify that we are on our best
3982 : : // known chain now. This is super overkill, but we handle it better
3983 : : // for getheaders requests, and there are no known nodes which support
3984 : : // compact blocks but still use getblocks to request blocks.
3985 : : {
3986 : 0 : std::shared_ptr<const CBlock> a_recent_block;
3987 : : {
3988 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
3989 : 0 : a_recent_block = m_most_recent_block;
3990 : 0 : }
3991 : 0 : BlockValidationState state;
3992 [ # # # # : 0 : if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
# # ]
3993 [ # # # # : 0 : LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
# # # # #
# # # ]
3994 : 0 : }
3995 : 0 : }
3996 : :
3997 [ # # ]: 0 : LOCK(cs_main);
3998 : :
3999 : : // Find the last block the caller has in the main chain
4000 [ # # # # ]: 0 : const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4001 : :
4002 : : // Send the rest of the chain
4003 [ # # ]: 0 : if (pindex)
4004 [ # # # # ]: 0 : pindex = m_chainman.ActiveChain().Next(pindex);
4005 : 0 : int nLimit = 500;
4006 [ # # # # : 0 : LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
# # # # #
# # # # #
# # # # #
# # # #
# ]
4007 [ # # # # : 0 : for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
# # ]
4008 : : {
4009 [ # # # # ]: 0 : if (pindex->GetBlockHash() == hashStop)
4010 : : {
4011 [ # # # # : 0 : LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
# # # # #
# # # ]
4012 : 0 : break;
4013 : : }
4014 : : // If pruning, don't inv blocks unless we have on disk and are likely to still have
4015 : : // for some reasonable time window (1 hour) that block relay might require.
4016 : 0 : const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4017 [ # # # # : 0 : if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
# # # # #
# ]
4018 [ # # # # : 0 : LogPrint(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
# # # # #
# # # ]
4019 : 0 : break;
4020 : : }
4021 [ # # # # ]: 0 : WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4022 [ # # ]: 0 : if (--nLimit <= 0) {
4023 : : // When this block is requested, we'll send an inv that'll
4024 : : // trigger the peer to getblocks the next batch of inventory.
4025 [ # # # # : 0 : LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
# # # # #
# # # ]
4026 [ # # ]: 0 : WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4027 : 0 : break;
4028 : : }
4029 : 0 : }
4030 : : return;
4031 : 0 : }
4032 : :
4033 [ # # ]: 0 : if (msg_type == NetMsgType::GETBLOCKTXN) {
4034 [ # # ]: 0 : BlockTransactionsRequest req;
4035 [ # # ]: 0 : vRecv >> req;
4036 : :
4037 : 0 : std::shared_ptr<const CBlock> recent_block;
4038 : : {
4039 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
4040 [ # # # # ]: 0 : if (m_most_recent_block_hash == req.blockhash)
4041 : 0 : recent_block = m_most_recent_block;
4042 : : // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4043 : 0 : }
4044 [ # # # # ]: 0 : if (recent_block) {
4045 [ # # ]: 0 : SendBlockTransactions(pfrom, *peer, *recent_block, req);
4046 : 0 : return;
4047 : : }
4048 : :
4049 : : {
4050 [ # # ]: 0 : LOCK(cs_main);
4051 : :
4052 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4053 [ # # # # ]: 0 : if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4054 [ # # # # : 0 : LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
# # # # #
# ]
4055 : 0 : return;
4056 : : }
4057 : :
4058 [ # # # # : 0 : if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
# # ]
4059 [ # # ]: 0 : CBlock block;
4060 [ # # ]: 0 : const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pindex)};
4061 [ # # ]: 0 : assert(ret);
4062 : :
4063 [ # # ]: 0 : SendBlockTransactions(pfrom, *peer, block, req);
4064 : : return;
4065 : 0 : }
4066 [ # # ]: 0 : }
4067 : :
4068 : : // If an older block is requested (should never happen in practice,
4069 : : // but can happen in tests) send a block response instead of a
4070 : : // blocktxn response. Sending a full block response instead of a
4071 : : // small blocktxn response is preferable in the case where a peer
4072 : : // might maliciously send lots of getblocktxn requests to trigger
4073 : : // expensive disk reads, because it will require the peer to
4074 : : // actually receive all the data read from disk over the network.
4075 [ # # # # : 0 : LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
# # # # #
# ]
4076 [ # # ]: 0 : CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
4077 [ # # # # ]: 0 : WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4078 : : // The message processing loop will go around again (without pausing) and we'll respond then
4079 : 0 : return;
4080 : 0 : }
4081 : :
4082 [ # # ]: 0 : if (msg_type == NetMsgType::GETHEADERS) {
4083 [ # # ]: 0 : CBlockLocator locator;
4084 [ # # ]: 0 : uint256 hashStop;
4085 [ # # # # ]: 0 : vRecv >> locator >> hashStop;
4086 : :
4087 [ # # ]: 0 : if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4088 [ # # # # : 0 : LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
# # # # #
# ]
4089 : 0 : pfrom.fDisconnect = true;
4090 : 0 : return;
4091 : : }
4092 : :
4093 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4094 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
# # # # #
# ]
4095 : 0 : return;
4096 : : }
4097 : :
4098 [ # # ]: 0 : LOCK(cs_main);
4099 : :
4100 : : // Note that if we were to be on a chain that forks from the checkpointed
4101 : : // chain, then serving those headers to a peer that has seen the
4102 : : // checkpointed chain would cause that peer to disconnect us. Requiring
4103 : : // that our chainwork exceed the minimum chain work is a protection against
4104 : : // being fed a bogus chain when we started up for the first time and
4105 : : // getting partitioned off the honest network for serving that chain to
4106 : : // others.
4107 [ # # # # : 0 : if (m_chainman.ActiveTip() == nullptr ||
# # ]
4108 [ # # # # : 0 : (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
# # # # #
# ]
4109 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
# # # # #
# ]
4110 : : // Just respond with an empty headers message, to tell the peer to
4111 : : // go away but not treat us as unresponsive.
4112 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, std::vector<CBlock>()));
# # ]
4113 : 0 : return;
4114 : : }
4115 : :
4116 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
4117 : 0 : const CBlockIndex* pindex = nullptr;
4118 [ # # # # ]: 0 : if (locator.IsNull())
4119 : : {
4120 : : // If locator is null, return the hashStop block
4121 [ # # ]: 0 : pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4122 [ # # ]: 0 : if (!pindex) {
4123 : 0 : return;
4124 : : }
4125 : :
4126 [ # # # # ]: 0 : if (!BlockRequestAllowed(pindex)) {
4127 [ # # # # : 0 : LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
# # # # #
# ]
4128 : 0 : return;
4129 : : }
4130 : 0 : }
4131 : : else
4132 : : {
4133 : : // Find the last block the caller has in the main chain
4134 [ # # # # ]: 0 : pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4135 [ # # ]: 0 : if (pindex)
4136 [ # # # # ]: 0 : pindex = m_chainman.ActiveChain().Next(pindex);
4137 : : }
4138 : :
4139 : : // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4140 : 0 : std::vector<CBlock> vHeaders;
4141 : 0 : int nLimit = MAX_HEADERS_RESULTS;
4142 [ # # # # : 0 : LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
# # # # #
# # # # #
# # # # #
# # # #
# ]
4143 [ # # # # : 0 : for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
# # ]
4144 : : {
4145 [ # # # # : 0 : vHeaders.push_back(pindex->GetBlockHeader());
# # ]
4146 [ # # # # : 0 : if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
# # ]
4147 : 0 : break;
4148 : 0 : }
4149 : : // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4150 : : // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4151 : : // headers message). In both cases it's safe to update
4152 : : // pindexBestHeaderSent to be our tip.
4153 : : //
4154 : : // It is important that we simply reset the BestHeaderSent value here,
4155 : : // and not max(BestHeaderSent, newHeaderSent). We might have announced
4156 : : // the currently-being-connected tip using a compact block, which
4157 : : // resulted in the peer sending a headers request, which we respond to
4158 : : // without the new block. By resetting the BestHeaderSent, we ensure we
4159 : : // will re-announce the new block via headers (or compact blocks again)
4160 : : // in the SendMessages logic.
4161 [ # # # # ]: 0 : nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4162 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
# # ]
4163 : : return;
4164 : 0 : }
4165 : :
4166 [ # # ]: 0 : if (msg_type == NetMsgType::TX) {
4167 [ # # # # ]: 0 : if (RejectIncomingTxs(pfrom)) {
4168 [ # # # # : 0 : LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
# # # # #
# ]
4169 : 0 : pfrom.fDisconnect = true;
4170 : 0 : return;
4171 : : }
4172 : :
4173 : : // Stop processing the transaction early if we are still in IBD since we don't
4174 : : // have enough information to validate it yet. Sending unsolicited transactions
4175 : : // is not considered a protocol violation, so don't punish the peer.
4176 [ # # # # ]: 0 : if (m_chainman.IsInitialBlockDownload()) return;
4177 : :
4178 : 0 : CTransactionRef ptx;
4179 [ # # ]: 0 : vRecv >> ptx;
4180 : 0 : const CTransaction& tx = *ptx;
4181 : :
4182 : 0 : const uint256& txid = ptx->GetHash();
4183 : 0 : const uint256& wtxid = ptx->GetWitnessHash();
4184 : :
4185 [ # # ]: 0 : const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4186 [ # # ]: 0 : AddKnownTx(*peer, hash);
4187 : :
4188 [ # # ]: 0 : LOCK(cs_main);
4189 : :
4190 [ # # ]: 0 : m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
4191 [ # # # # : 0 : if (tx.HasWitness()) m_txrequest.ReceivedResponse(pfrom.GetId(), wtxid);
# # ]
4192 : :
4193 : : // We do the AlreadyHaveTx() check using wtxid, rather than txid - in the
4194 : : // absence of witness malleation, this is strictly better, because the
4195 : : // recent rejects filter may contain the wtxid but rarely contains
4196 : : // the txid of a segwit transaction that has been rejected.
4197 : : // In the presence of witness malleation, it's possible that by only
4198 : : // doing the check with wtxid, we could overlook a transaction which
4199 : : // was confirmed with a different witness, or exists in our mempool
4200 : : // with a different witness, but this has limited downside:
4201 : : // mempool validation does its own lookup of whether we have the txid
4202 : : // already; and an adversary can already relay us old transactions
4203 : : // (older than our recency filter) if trying to DoS us, without any need
4204 : : // for witness malleation.
4205 [ # # # # : 0 : if (AlreadyHaveTx(GenTxid::Wtxid(wtxid))) {
# # ]
4206 [ # # # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
4207 : : // Always relay transactions received from peers with forcerelay
4208 : : // permission, even if they were already in the mempool, allowing
4209 : : // the node to function as a gateway for nodes hidden behind it.
4210 [ # # # # : 0 : if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
# # ]
4211 [ # # # # : 0 : LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
# # # # #
# ]
4212 : : tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4213 : 0 : } else {
4214 [ # # # # : 0 : LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
# # # # #
# ]
4215 : : tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4216 [ # # ]: 0 : RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4217 : : }
4218 : 0 : }
4219 : : // If a tx is detected by m_recent_rejects it is ignored. Because we haven't
4220 : : // submitted the tx to our mempool, we won't have computed a DoS
4221 : : // score for it or determined exactly why we consider it invalid.
4222 : : //
4223 : : // This means we won't penalize any peer subsequently relaying a DoSy
4224 : : // tx (even if we penalized the first peer who gave it to us) because
4225 : : // we have to account for m_recent_rejects showing false positives. In
4226 : : // other words, we shouldn't penalize a peer if we aren't *sure* they
4227 : : // submitted a DoSy tx.
4228 : : //
4229 : : // Note that m_recent_rejects doesn't just record DoSy or invalid
4230 : : // transactions, but any tx not accepted by the mempool, which may be
4231 : : // due to node policy (vs. consensus). So we can't blanket penalize a
4232 : : // peer simply for relaying a tx that our m_recent_rejects has caught,
4233 : : // regardless of false positives.
4234 : 0 : return;
4235 : : }
4236 : :
4237 [ # # ]: 0 : const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4238 : 0 : const TxValidationState& state = result.m_state;
4239 : :
4240 [ # # ]: 0 : if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
4241 : : // As this version of the transaction was acceptable, we can forget about any
4242 : : // requests for it.
4243 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4244 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4245 [ # # ]: 0 : RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4246 [ # # ]: 0 : m_orphanage.AddChildrenToWorkSet(tx);
4247 : :
4248 [ # # ]: 0 : pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4249 : :
4250 [ # # # # : 0 : LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
# # # # #
# # # # #
# # # # ]
4251 : : pfrom.GetId(),
4252 : : tx.GetHash().ToString(),
4253 : : tx.GetWitnessHash().ToString(),
4254 : : m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
4255 : :
4256 [ # # # # ]: 0 : for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
4257 [ # # ]: 0 : AddToCompactExtraTransactions(removedTx);
4258 : : }
4259 : 0 : }
4260 [ # # # # ]: 0 : else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS)
4261 : : {
4262 : 0 : bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
4263 : :
4264 : : // Deduplicate parent txids, so that we don't have to loop over
4265 : : // the same parent txid more than once down below.
4266 : 0 : std::vector<uint256> unique_parents;
4267 [ # # ]: 0 : unique_parents.reserve(tx.vin.size());
4268 [ # # ]: 0 : for (const CTxIn& txin : tx.vin) {
4269 : : // We start with all parents, and then remove duplicates below.
4270 [ # # ]: 0 : unique_parents.push_back(txin.prevout.hash);
4271 : : }
4272 [ # # ]: 0 : std::sort(unique_parents.begin(), unique_parents.end());
4273 [ # # # # ]: 0 : unique_parents.erase(std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end());
4274 [ # # ]: 0 : for (const uint256& parent_txid : unique_parents) {
4275 [ # # # # : 0 : if (m_recent_rejects.contains(parent_txid)) {
# # ]
4276 : 0 : fRejectedParents = true;
4277 : 0 : break;
4278 : : }
4279 : : }
4280 [ # # ]: 0 : if (!fRejectedParents) {
4281 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
4282 : :
4283 [ # # ]: 0 : for (const uint256& parent_txid : unique_parents) {
4284 : : // Here, we only have the txid (and not wtxid) of the
4285 : : // inputs, so we only request in txid mode, even for
4286 : : // wtxidrelay peers.
4287 : : // Eventually we should replace this with an improved
4288 : : // protocol for getting all unconfirmed parents.
4289 [ # # ]: 0 : const auto gtxid{GenTxid::Txid(parent_txid)};
4290 [ # # ]: 0 : AddKnownTx(*peer, parent_txid);
4291 [ # # # # : 0 : if (!AlreadyHaveTx(gtxid)) AddTxAnnouncement(pfrom, gtxid, current_time);
# # ]
4292 : : }
4293 : :
4294 [ # # # # ]: 0 : if (m_orphanage.AddTx(ptx, pfrom.GetId())) {
4295 [ # # ]: 0 : AddToCompactExtraTransactions(ptx);
4296 : 0 : }
4297 : :
4298 : : // Once added to the orphan pool, a tx is considered AlreadyHave, and we shouldn't request it anymore.
4299 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4300 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4301 : :
4302 : : // DoS prevention: do not allow m_orphanage to grow unbounded (see CVE-2012-3789)
4303 [ # # ]: 0 : m_orphanage.LimitOrphans(m_opts.max_orphan_txs);
4304 : 0 : } else {
4305 [ # # # # : 0 : LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s (wtxid=%s)\n",
# # # # #
# # # #
# ]
4306 : : tx.GetHash().ToString(),
4307 : : tx.GetWitnessHash().ToString());
4308 : : // We will continue to reject this tx since it has rejected
4309 : : // parents so avoid re-requesting it from other peers.
4310 : : // Here we add both the txid and the wtxid, as we know that
4311 : : // regardless of what witness is provided, we will not accept
4312 : : // this, so we don't need to allow for redownload of this txid
4313 : : // from any of our non-wtxidrelay peers.
4314 [ # # # # ]: 0 : m_recent_rejects.insert(tx.GetHash());
4315 [ # # # # ]: 0 : m_recent_rejects.insert(tx.GetWitnessHash());
4316 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4317 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4318 : : }
4319 : 0 : } else {
4320 [ # # # # ]: 0 : if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
4321 : : // We can add the wtxid of this transaction to our reject filter.
4322 : : // Do not add txids of witness transactions or witness-stripped
4323 : : // transactions to the filter, as they can have been malleated;
4324 : : // adding such txids to the reject filter would potentially
4325 : : // interfere with relay of valid transactions from peers that
4326 : : // do not support wtxid-based relay. See
4327 : : // https://github.com/bitcoin/bitcoin/issues/8279 for details.
4328 : : // We can remove this restriction (and always add wtxids to
4329 : : // the filter even for witness stripped transactions) once
4330 : : // wtxid-based relay is broadly deployed.
4331 : : // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
4332 : : // for concerns around weakening security of unupgraded nodes
4333 : : // if we start doing this too early.
4334 [ # # # # ]: 0 : m_recent_rejects.insert(tx.GetWitnessHash());
4335 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4336 : : // If the transaction failed for TX_INPUTS_NOT_STANDARD,
4337 : : // then we know that the witness was irrelevant to the policy
4338 : : // failure, since this check depends only on the txid
4339 : : // (the scriptPubKey being spent is covered by the txid).
4340 : : // Add the txid to the reject filter to prevent repeated
4341 : : // processing of this transaction in the event that child
4342 : : // transactions are later received (resulting in
4343 : : // parent-fetching by txid via the orphan-handling logic).
4344 [ # # # # : 0 : if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && tx.GetWitnessHash() != tx.GetHash()) {
# # # # ]
4345 [ # # # # ]: 0 : m_recent_rejects.insert(tx.GetHash());
4346 [ # # ]: 0 : m_txrequest.ForgetTxHash(tx.GetHash());
4347 : 0 : }
4348 [ # # # # ]: 0 : if (RecursiveDynamicUsage(*ptx) < 100000) {
4349 [ # # ]: 0 : AddToCompactExtraTransactions(ptx);
4350 : 0 : }
4351 : 0 : }
4352 : : }
4353 : :
4354 [ # # # # ]: 0 : if (state.IsInvalid()) {
4355 [ # # # # : 0 : LogPrint(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
# # # # #
# # # # #
# # ]
4356 : : tx.GetHash().ToString(),
4357 : : tx.GetWitnessHash().ToString(),
4358 : : pfrom.GetId(),
4359 : : state.ToString());
4360 [ # # ]: 0 : MaybePunishNodeForTx(pfrom.GetId(), state);
4361 : 0 : }
4362 : : return;
4363 : 0 : }
4364 : :
4365 [ # # ]: 0 : if (msg_type == NetMsgType::CMPCTBLOCK)
4366 : : {
4367 : : // Ignore cmpctblock received while importing
4368 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4369 [ # # # # : 0 : LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
# # # # #
# ]
4370 : 0 : return;
4371 : : }
4372 : :
4373 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock;
4374 [ # # ]: 0 : vRecv >> cmpctblock;
4375 : :
4376 : 0 : bool received_new_header = false;
4377 [ # # ]: 0 : const auto blockhash = cmpctblock.header.GetHash();
4378 : :
4379 : : {
4380 [ # # ]: 0 : LOCK(cs_main);
4381 : :
4382 [ # # ]: 0 : const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4383 [ # # ]: 0 : if (!prev_block) {
4384 : : // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4385 [ # # # # ]: 0 : if (!m_chainman.IsInitialBlockDownload()) {
4386 [ # # # # ]: 0 : MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4387 : 0 : }
4388 : 0 : return;
4389 [ # # # # : 0 : } else if (prev_block->nChainWork + CalculateHeadersWork({cmpctblock.header}) < GetAntiDoSWorkThreshold()) {
# # # # #
# # # ]
4390 : : // If we get a low-work header in a compact block, we can ignore it.
4391 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
# # # # #
# ]
4392 : 0 : return;
4393 : : }
4394 : :
4395 [ # # # # ]: 0 : if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4396 : 0 : received_new_header = true;
4397 : 0 : }
4398 [ # # ]: 0 : }
4399 : :
4400 : 0 : const CBlockIndex *pindex = nullptr;
4401 : 0 : BlockValidationState state;
4402 [ # # # # : 0 : if (!m_chainman.ProcessNewBlockHeaders({cmpctblock.header}, /*min_pow_checked=*/true, state, &pindex)) {
# # ]
4403 [ # # ]: 0 : if (state.IsInvalid()) {
4404 [ # # # # ]: 0 : MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4405 : 0 : return;
4406 : : }
4407 : 0 : }
4408 : :
4409 [ # # ]: 0 : if (received_new_header) {
4410 [ # # # # : 0 : LogPrintfCategory(BCLog::NET, "Saw new cmpctblock header hash=%s peer=%d\n",
# # # # ]
4411 : : blockhash.ToString(), pfrom.GetId());
4412 : 0 : }
4413 : :
4414 : 0 : bool fProcessBLOCKTXN = false;
4415 : :
4416 : : // If we end up treating this as a plain headers message, call that as well
4417 : : // without cs_main.
4418 : 0 : bool fRevertToHeaderProcessing = false;
4419 : :
4420 : : // Keep a CBlock for "optimistic" compactblock reconstructions (see
4421 : : // below)
4422 [ # # ]: 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4423 : 0 : bool fBlockReconstructed = false;
4424 : :
4425 : : {
4426 [ # # ]: 0 : LOCK(cs_main);
4427 : : // If AcceptBlockHeader returned true, it set pindex
4428 [ # # ]: 0 : assert(pindex);
4429 [ # # ]: 0 : UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4430 : :
4431 [ # # ]: 0 : CNodeState *nodestate = State(pfrom.GetId());
4432 : :
4433 : : // If this was a new header with more work than our tip, update the
4434 : : // peer's last block announcement time
4435 [ # # # # : 0 : if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
# # # # ]
4436 [ # # ]: 0 : nodestate->m_last_block_announcement = GetTime();
4437 : 0 : }
4438 : :
4439 [ # # ]: 0 : if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4440 : 0 : return;
4441 : :
4442 [ # # ]: 0 : auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4443 [ # # ]: 0 : size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4444 : 0 : bool requested_block_from_this_peer{false};
4445 : :
4446 : : // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4447 [ # # ]: 0 : bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4448 : :
4449 [ # # ]: 0 : while (range_flight.first != range_flight.second) {
4450 [ # # ]: 0 : if (range_flight.first->second.first == pfrom.GetId()) {
4451 : 0 : requested_block_from_this_peer = true;
4452 : 0 : break;
4453 : : }
4454 : 0 : range_flight.first++;
4455 : : }
4456 : :
4457 [ # # # # : 0 : if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
# # # # ]
4458 : 0 : pindex->nTx != 0) { // We had this block at some point, but pruned it
4459 [ # # ]: 0 : if (requested_block_from_this_peer) {
4460 : : // We requested this block for some reason, but our mempool will probably be useless
4461 : : // so we just grab the block via normal getdata
4462 [ # # ]: 0 : std::vector<CInv> vInv(1);
4463 [ # # # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4464 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
# # ]
4465 : 0 : }
4466 : 0 : return;
4467 : : }
4468 : :
4469 : : // If we're not close to tip yet, give up and let parallel block fetch work its magic
4470 [ # # # # : 0 : if (!already_in_flight && !CanDirectFetch()) {
# # ]
4471 : 0 : return;
4472 : : }
4473 : :
4474 : : // We want to be a bit conservative just to be extra careful about DoS
4475 : : // possibilities in compact block processing...
4476 [ # # # # : 0 : if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
# # ]
4477 [ # # # # ]: 0 : if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4478 : 0 : requested_block_from_this_peer) {
4479 : 0 : std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4480 [ # # # # ]: 0 : if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4481 [ # # ]: 0 : if (!(*queuedBlockIt)->partialBlock)
4482 [ # # # # ]: 0 : (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4483 : : else {
4484 : : // The block was already in flight using compact blocks from the same peer
4485 [ # # # # : 0 : LogPrint(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
# # # # #
# ]
4486 : 0 : return;
4487 : : }
4488 : 0 : }
4489 : :
4490 [ # # ]: 0 : PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4491 [ # # ]: 0 : ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4492 [ # # ]: 0 : if (status == READ_STATUS_INVALID) {
4493 [ # # # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4494 [ # # # # ]: 0 : Misbehaving(*peer, 100, "invalid compact block");
4495 : 0 : return;
4496 [ # # ]: 0 : } else if (status == READ_STATUS_FAILED) {
4497 [ # # ]: 0 : if (first_in_flight) {
4498 : : // Duplicate txindexes, the block is now in-flight, so just request it
4499 [ # # ]: 0 : std::vector<CInv> vInv(1);
4500 [ # # # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4501 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
# # ]
4502 : 0 : } else {
4503 : : // Give up for this peer and wait for other peer(s)
4504 [ # # # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4505 : : }
4506 : 0 : return;
4507 : : }
4508 : :
4509 [ # # ]: 0 : BlockTransactionsRequest req;
4510 [ # # # # ]: 0 : for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4511 [ # # # # ]: 0 : if (!partialBlock.IsTxAvailable(i))
4512 [ # # ]: 0 : req.indexes.push_back(i);
4513 : 0 : }
4514 [ # # ]: 0 : if (req.indexes.empty()) {
4515 : 0 : fProcessBLOCKTXN = true;
4516 [ # # ]: 0 : } else if (first_in_flight) {
4517 : : // We will try to round-trip any compact blocks we get on failure,
4518 : : // as long as it's first...
4519 : 0 : req.blockhash = pindex->GetBlockHash();
4520 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req));
# # ]
4521 [ # # # # ]: 0 : } else if (pfrom.m_bip152_highbandwidth_to &&
4522 [ # # # # ]: 0 : (!pfrom.IsInboundConn() ||
4523 [ # # # # ]: 0 : IsBlockRequestedFromOutbound(blockhash) ||
4524 : 0 : already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4525 : : // ... or it's a hb relay peer and:
4526 : : // - peer is outbound, or
4527 : : // - we already have an outbound attempt in flight(so we'll take what we can get), or
4528 : : // - it's not the final parallel download slot (which we may reserve for first outbound)
4529 : 0 : req.blockhash = pindex->GetBlockHash();
4530 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req));
# # ]
4531 : 0 : } else {
4532 : : // Give up for this peer and wait for other peer(s)
4533 [ # # # # ]: 0 : RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4534 : : }
4535 : 0 : } else {
4536 : : // This block is either already in flight from a different
4537 : : // peer, or this peer has too many blocks outstanding to
4538 : : // download from.
4539 : : // Optimistically try to reconstruct anyway since we might be
4540 : : // able to without any round trips.
4541 [ # # ]: 0 : PartiallyDownloadedBlock tempBlock(&m_mempool);
4542 [ # # ]: 0 : ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4543 [ # # ]: 0 : if (status != READ_STATUS_OK) {
4544 : : // TODO: don't ignore failures
4545 : 0 : return;
4546 : : }
4547 : 0 : std::vector<CTransactionRef> dummy;
4548 [ # # ]: 0 : status = tempBlock.FillBlock(*pblock, dummy);
4549 [ # # ]: 0 : if (status == READ_STATUS_OK) {
4550 : 0 : fBlockReconstructed = true;
4551 : 0 : }
4552 [ # # ]: 0 : }
4553 : 0 : } else {
4554 [ # # ]: 0 : if (requested_block_from_this_peer) {
4555 : : // We requested this block, but its far into the future, so our
4556 : : // mempool will probably be useless - request the block normally
4557 [ # # ]: 0 : std::vector<CInv> vInv(1);
4558 [ # # # # ]: 0 : vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4559 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
# # ]
4560 : : return;
4561 : 0 : } else {
4562 : : // If this was an announce-cmpctblock, we want the same treatment as a header message
4563 : 0 : fRevertToHeaderProcessing = true;
4564 : : }
4565 : : }
4566 [ # # ]: 0 : } // cs_main
4567 : :
4568 [ # # ]: 0 : if (fProcessBLOCKTXN) {
4569 [ # # ]: 0 : BlockTransactions txn;
4570 : 0 : txn.blockhash = blockhash;
4571 [ # # ]: 0 : return ProcessCompactBlockTxns(pfrom, *peer, txn);
4572 : 0 : }
4573 : :
4574 [ # # ]: 0 : if (fRevertToHeaderProcessing) {
4575 : : // Headers received from HB compact block peers are permitted to be
4576 : : // relayed before full validation (see BIP 152), so we don't want to disconnect
4577 : : // the peer if the header turns out to be for an invalid block.
4578 : : // Note that if a peer tries to build on an invalid chain, that
4579 : : // will be detected and the peer will be disconnected/discouraged.
4580 [ # # # # ]: 0 : return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4581 : : }
4582 : :
4583 [ # # ]: 0 : if (fBlockReconstructed) {
4584 : : // If we got here, we were able to optimistically reconstruct a
4585 : : // block that is in flight from some other peer.
4586 : : {
4587 [ # # ]: 0 : LOCK(cs_main);
4588 [ # # # # : 0 : mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
# # ]
4589 : 0 : }
4590 : : // Setting force_processing to true means that we bypass some of
4591 : : // our anti-DoS protections in AcceptBlock, which filters
4592 : : // unrequested blocks that might be trying to waste our resources
4593 : : // (eg disk space). Because we only try to reconstruct blocks when
4594 : : // we're close to caught up (via the CanDirectFetch() requirement
4595 : : // above, combined with the behavior of not requesting blocks until
4596 : : // we have a chain with at least the minimum chain work), and we ignore
4597 : : // compact blocks with less work than our tip, it is safe to treat
4598 : : // reconstructed compact blocks as having been requested.
4599 [ # # ]: 0 : ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4600 [ # # ]: 0 : LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4601 [ # # # # ]: 0 : if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4602 : : // Clear download state for this block, which is in
4603 : : // process from some other peer. We do this after calling
4604 : : // ProcessNewBlock so that a malleated cmpctblock announcement
4605 : : // can't be used to interfere with block relay.
4606 [ # # # # ]: 0 : RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4607 : 0 : }
4608 : 0 : }
4609 : 0 : return;
4610 : 0 : }
4611 : :
4612 [ # # ]: 0 : if (msg_type == NetMsgType::BLOCKTXN)
4613 : : {
4614 : : // Ignore blocktxn received while importing
4615 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4616 [ # # # # : 0 : LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
# # # # #
# ]
4617 : 0 : return;
4618 : : }
4619 : :
4620 [ # # ]: 0 : BlockTransactions resp;
4621 [ # # ]: 0 : vRecv >> resp;
4622 : :
4623 [ # # ]: 0 : return ProcessCompactBlockTxns(pfrom, *peer, resp);
4624 : 0 : }
4625 : :
4626 [ # # ]: 0 : if (msg_type == NetMsgType::HEADERS)
4627 : : {
4628 : : // Ignore headers received while importing
4629 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4630 [ # # # # : 0 : LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
# # # # #
# ]
4631 : 0 : return;
4632 : : }
4633 : :
4634 : : // Assume that this is in response to any outstanding getheaders
4635 : : // request we may have sent, and clear out the time of our last request
4636 [ # # ]: 0 : peer->m_last_getheaders_timestamp = {};
4637 : :
4638 : 0 : std::vector<CBlockHeader> headers;
4639 : :
4640 : : // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4641 [ # # ]: 0 : unsigned int nCount = ReadCompactSize(vRecv);
4642 [ # # ]: 0 : if (nCount > MAX_HEADERS_RESULTS) {
4643 [ # # # # ]: 0 : Misbehaving(*peer, 20, strprintf("headers message size = %u", nCount));
4644 : 0 : return;
4645 : : }
4646 [ # # ]: 0 : headers.resize(nCount);
4647 [ # # ]: 0 : for (unsigned int n = 0; n < nCount; n++) {
4648 [ # # ]: 0 : vRecv >> headers[n];
4649 [ # # ]: 0 : ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4650 : 0 : }
4651 : :
4652 [ # # ]: 0 : ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4653 : :
4654 : : // Check if the headers presync progress needs to be reported to validation.
4655 : : // This needs to be done without holding the m_headers_presync_mutex lock.
4656 [ # # ]: 0 : if (m_headers_presync_should_signal.exchange(false)) {
4657 [ # # ]: 0 : HeadersPresyncStats stats;
4658 : : {
4659 [ # # ]: 0 : LOCK(m_headers_presync_mutex);
4660 [ # # ]: 0 : auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4661 [ # # # # ]: 0 : if (it != m_headers_presync_stats.end()) stats = it->second;
4662 : 0 : }
4663 [ # # ]: 0 : if (stats.second) {
4664 [ # # # # : 0 : m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
# # ]
4665 : 0 : }
4666 : 0 : }
4667 : :
4668 : 0 : return;
4669 : 0 : }
4670 : :
4671 [ # # ]: 0 : if (msg_type == NetMsgType::BLOCK)
4672 : : {
4673 : : // Ignore block received while importing
4674 [ # # ]: 0 : if (m_chainman.m_blockman.LoadingBlocks()) {
4675 [ # # # # : 0 : LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
# # # # #
# ]
4676 : 0 : return;
4677 : : }
4678 : :
4679 [ # # ]: 0 : std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4680 [ # # ]: 0 : vRecv >> *pblock;
4681 : :
4682 [ # # # # : 0 : LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
# # # # #
# # # #
# ]
4683 : :
4684 : 0 : bool forceProcessing = false;
4685 [ # # ]: 0 : const uint256 hash(pblock->GetHash());
4686 : 0 : bool min_pow_checked = false;
4687 : : {
4688 [ # # ]: 0 : LOCK(cs_main);
4689 : : // Always process the block if we requested it, since we may
4690 : : // need it even when it's not a candidate for a new best tip.
4691 [ # # ]: 0 : forceProcessing = IsBlockRequested(hash);
4692 [ # # # # ]: 0 : RemoveBlockRequest(hash, pfrom.GetId());
4693 : : // mapBlockSource is only used for punishing peers and setting
4694 : : // which peers send us compact blocks, so the race between here and
4695 : : // cs_main in ProcessNewBlock is fine.
4696 [ # # # # ]: 0 : mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4697 : :
4698 : : // Check work on this block against our anti-dos thresholds.
4699 [ # # ]: 0 : const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock);
4700 [ # # # # : 0 : if (prev_block && prev_block->nChainWork + CalculateHeadersWork({pblock->GetBlockHeader()}) >= GetAntiDoSWorkThreshold()) {
# # # # #
# # # # #
# # # # #
# # # #
# ]
4701 : 0 : min_pow_checked = true;
4702 : 0 : }
4703 : 0 : }
4704 [ # # ]: 0 : ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4705 : : return;
4706 : 0 : }
4707 : :
4708 [ # # ]: 0 : if (msg_type == NetMsgType::GETADDR) {
4709 : : // This asymmetric behavior for inbound and outbound connections was introduced
4710 : : // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4711 : : // to users' AddrMan and later request them by sending getaddr messages.
4712 : : // Making nodes which are behind NAT and can only make outgoing connections ignore
4713 : : // the getaddr message mitigates the attack.
4714 [ # # # # ]: 0 : if (!pfrom.IsInboundConn()) {
4715 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
# # # # #
# # # ]
4716 : 0 : return;
4717 : : }
4718 : :
4719 : : // Since this must be an inbound connection, SetupAddressRelay will
4720 : : // never fail.
4721 [ # # ]: 0 : Assume(SetupAddressRelay(pfrom, *peer));
4722 : :
4723 : : // Only send one GetAddr response per connection to reduce resource waste
4724 : : // and discourage addr stamping of INV announcements.
4725 [ # # ]: 0 : if (peer->m_getaddr_recvd) {
4726 [ # # # # : 0 : LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
# # # # #
# ]
4727 : 0 : return;
4728 : : }
4729 : 0 : peer->m_getaddr_recvd = true;
4730 : :
4731 : 0 : peer->m_addrs_to_send.clear();
4732 : 0 : std::vector<CAddress> vAddr;
4733 [ # # # # ]: 0 : if (pfrom.HasPermission(NetPermissionFlags::Addr)) {
4734 [ # # ]: 0 : vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4735 : 0 : } else {
4736 [ # # ]: 0 : vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4737 : : }
4738 : 0 : FastRandomContext insecure_rand;
4739 [ # # ]: 0 : for (const CAddress &addr : vAddr) {
4740 [ # # ]: 0 : PushAddress(*peer, addr, insecure_rand);
4741 : : }
4742 : : return;
4743 : 0 : }
4744 : :
4745 [ # # ]: 0 : if (msg_type == NetMsgType::MEMPOOL) {
4746 : : // Only process received mempool messages if we advertise NODE_BLOOM
4747 : : // or if the peer has mempool permissions.
4748 [ # # # # : 0 : if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
# # ]
4749 : : {
4750 [ # # # # ]: 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4751 : : {
4752 [ # # # # : 0 : LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
# # # # #
# ]
4753 : 0 : pfrom.fDisconnect = true;
4754 : 0 : }
4755 : 0 : return;
4756 : : }
4757 : :
4758 [ # # # # : 0 : if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
# # # # ]
4759 : : {
4760 [ # # # # ]: 0 : if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4761 : : {
4762 [ # # # # : 0 : LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
# # # # #
# ]
4763 : 0 : pfrom.fDisconnect = true;
4764 : 0 : }
4765 : 0 : return;
4766 : : }
4767 : :
4768 [ # # # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4769 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
4770 : 0 : tx_relay->m_send_mempool = true;
4771 : 0 : }
4772 : 0 : return;
4773 : : }
4774 : :
4775 [ # # ]: 0 : if (msg_type == NetMsgType::PING) {
4776 [ # # ]: 0 : if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4777 : 0 : uint64_t nonce = 0;
4778 [ # # ]: 0 : vRecv >> nonce;
4779 : : // Echo the message back with the nonce. This allows for two useful features:
4780 : : //
4781 : : // 1) A remote node can quickly check if the connection is operational
4782 : : // 2) Remote nodes can measure the latency of the network thread. If this node
4783 : : // is overloaded it won't respond to pings quickly and the remote node can
4784 : : // avoid sending us more work, like chain download requests.
4785 : : //
4786 : : // The nonce stops the remote getting confused between different pings: without
4787 : : // it, if the remote node sends a ping once per second and this node takes 5
4788 : : // seconds to respond to each, the 5th ping the remote sends would appear to
4789 : : // return very quickly.
4790 [ # # # # : 0 : m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce));
# # ]
4791 : 0 : }
4792 : 0 : return;
4793 : : }
4794 : :
4795 [ # # ]: 0 : if (msg_type == NetMsgType::PONG) {
4796 : 0 : const auto ping_end = time_received;
4797 : 0 : uint64_t nonce = 0;
4798 [ # # ]: 0 : size_t nAvail = vRecv.in_avail();
4799 : 0 : bool bPingFinished = false;
4800 : 0 : std::string sProblem;
4801 : :
4802 [ # # ]: 0 : if (nAvail >= sizeof(nonce)) {
4803 [ # # ]: 0 : vRecv >> nonce;
4804 : :
4805 : : // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4806 [ # # ]: 0 : if (peer->m_ping_nonce_sent != 0) {
4807 [ # # ]: 0 : if (nonce == peer->m_ping_nonce_sent) {
4808 : : // Matching pong received, this ping is no longer outstanding
4809 : 0 : bPingFinished = true;
4810 [ # # ]: 0 : const auto ping_time = ping_end - peer->m_ping_start.load();
4811 [ # # ]: 0 : if (ping_time.count() >= 0) {
4812 : : // Let connman know about this successful ping-pong
4813 [ # # ]: 0 : pfrom.PongReceived(ping_time);
4814 : 0 : } else {
4815 : : // This should never happen
4816 [ # # ]: 0 : sProblem = "Timing mishap";
4817 : : }
4818 : 0 : } else {
4819 : : // Nonce mismatches are normal when pings are overlapping
4820 [ # # ]: 0 : sProblem = "Nonce mismatch";
4821 [ # # ]: 0 : if (nonce == 0) {
4822 : : // This is most likely a bug in another implementation somewhere; cancel this ping
4823 : 0 : bPingFinished = true;
4824 [ # # ]: 0 : sProblem = "Nonce zero";
4825 : 0 : }
4826 : : }
4827 : 0 : } else {
4828 [ # # ]: 0 : sProblem = "Unsolicited pong without ping";
4829 : : }
4830 : 0 : } else {
4831 : : // This is most likely a bug in another implementation somewhere; cancel this ping
4832 : 0 : bPingFinished = true;
4833 [ # # ]: 0 : sProblem = "Short payload";
4834 : : }
4835 : :
4836 [ # # ]: 0 : if (!(sProblem.empty())) {
4837 [ # # # # : 0 : LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
# # # # #
# ]
4838 : : pfrom.GetId(),
4839 : : sProblem,
4840 : : peer->m_ping_nonce_sent,
4841 : : nonce,
4842 : : nAvail);
4843 : 0 : }
4844 [ # # ]: 0 : if (bPingFinished) {
4845 : 0 : peer->m_ping_nonce_sent = 0;
4846 : 0 : }
4847 : : return;
4848 : 0 : }
4849 : :
4850 [ # # ]: 0 : if (msg_type == NetMsgType::FILTERLOAD) {
4851 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4852 [ # # # # : 0 : LogPrint(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
4853 : 0 : pfrom.fDisconnect = true;
4854 : 0 : return;
4855 : : }
4856 [ # # ]: 0 : CBloomFilter filter;
4857 [ # # ]: 0 : vRecv >> filter;
4858 : :
4859 [ # # # # ]: 0 : if (!filter.IsWithinSizeConstraints())
4860 : : {
4861 : : // There is no excuse for sending a too-large filter
4862 [ # # # # ]: 0 : Misbehaving(*peer, 100, "too-large bloom filter");
4863 [ # # # # ]: 0 : } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4864 : : {
4865 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4866 [ # # # # ]: 0 : tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4867 : 0 : tx_relay->m_relay_txs = true;
4868 : 0 : }
4869 : 0 : pfrom.m_bloom_filter_loaded = true;
4870 : 0 : pfrom.m_relays_txs = true;
4871 : 0 : }
4872 : : return;
4873 : 0 : }
4874 : :
4875 [ # # ]: 0 : if (msg_type == NetMsgType::FILTERADD) {
4876 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4877 [ # # # # : 0 : LogPrint(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
4878 : 0 : pfrom.fDisconnect = true;
4879 : 0 : return;
4880 : : }
4881 : 0 : std::vector<unsigned char> vData;
4882 [ # # ]: 0 : vRecv >> vData;
4883 : :
4884 : : // Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
4885 : : // and thus, the maximum size any matched object can have) in a filteradd message
4886 : 0 : bool bad = false;
4887 [ # # ]: 0 : if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4888 : 0 : bad = true;
4889 [ # # # # ]: 0 : } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4890 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4891 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
4892 [ # # # # ]: 0 : tx_relay->m_bloom_filter->insert(vData);
4893 : 0 : } else {
4894 : 0 : bad = true;
4895 : : }
4896 : 0 : }
4897 [ # # ]: 0 : if (bad) {
4898 [ # # # # ]: 0 : Misbehaving(*peer, 100, "bad filteradd message");
4899 : 0 : }
4900 : : return;
4901 : 0 : }
4902 : :
4903 [ # # ]: 0 : if (msg_type == NetMsgType::FILTERCLEAR) {
4904 [ # # ]: 0 : if (!(peer->m_our_services & NODE_BLOOM)) {
4905 [ # # # # : 0 : LogPrint(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
# # # # #
# ]
4906 : 0 : pfrom.fDisconnect = true;
4907 : 0 : return;
4908 : : }
4909 [ # # ]: 0 : auto tx_relay = peer->GetTxRelay();
4910 [ # # ]: 0 : if (!tx_relay) return;
4911 : :
4912 : : {
4913 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
4914 : 0 : tx_relay->m_bloom_filter = nullptr;
4915 : 0 : tx_relay->m_relay_txs = true;
4916 : 0 : }
4917 : 0 : pfrom.m_bloom_filter_loaded = false;
4918 : 0 : pfrom.m_relays_txs = true;
4919 : 0 : return;
4920 : : }
4921 : :
4922 [ # # ]: 0 : if (msg_type == NetMsgType::FEEFILTER) {
4923 : 0 : CAmount newFeeFilter = 0;
4924 [ # # ]: 0 : vRecv >> newFeeFilter;
4925 [ # # # # ]: 0 : if (MoneyRange(newFeeFilter)) {
4926 [ # # # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4927 : 0 : tx_relay->m_fee_filter_received = newFeeFilter;
4928 : 0 : }
4929 [ # # # # : 0 : LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
# # # # #
# # # #
# ]
4930 : 0 : }
4931 : 0 : return;
4932 : : }
4933 : :
4934 [ # # ]: 0 : if (msg_type == NetMsgType::GETCFILTERS) {
4935 [ # # ]: 0 : ProcessGetCFilters(pfrom, *peer, vRecv);
4936 : 0 : return;
4937 : : }
4938 : :
4939 [ # # ]: 0 : if (msg_type == NetMsgType::GETCFHEADERS) {
4940 [ # # ]: 0 : ProcessGetCFHeaders(pfrom, *peer, vRecv);
4941 : 0 : return;
4942 : : }
4943 : :
4944 [ # # ]: 0 : if (msg_type == NetMsgType::GETCFCHECKPT) {
4945 [ # # ]: 0 : ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4946 : 0 : return;
4947 : : }
4948 : :
4949 [ # # ]: 0 : if (msg_type == NetMsgType::NOTFOUND) {
4950 : 0 : std::vector<CInv> vInv;
4951 [ # # ]: 0 : vRecv >> vInv;
4952 [ # # ]: 0 : if (vInv.size() <= MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
4953 [ # # ]: 0 : LOCK(::cs_main);
4954 [ # # ]: 0 : for (CInv &inv : vInv) {
4955 [ # # # # ]: 0 : if (inv.IsGenTxMsg()) {
4956 : : // If we receive a NOTFOUND message for a tx we requested, mark the announcement for it as
4957 : : // completed in TxRequestTracker.
4958 [ # # ]: 0 : m_txrequest.ReceivedResponse(pfrom.GetId(), inv.hash);
4959 : 0 : }
4960 : : }
4961 : 0 : }
4962 : : return;
4963 : 0 : }
4964 : :
4965 : : // Ignore unknown commands for extensibility
4966 [ # # # # : 0 : LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
# # # # #
# # # ]
4967 : 0 : return;
4968 : 0 : }
4969 : :
4970 : 0 : bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4971 : : {
4972 : : {
4973 : 0 : LOCK(peer.m_misbehavior_mutex);
4974 : :
4975 : : // There's nothing to do if the m_should_discourage flag isn't set
4976 [ # # ]: 0 : if (!peer.m_should_discourage) return false;
4977 : :
4978 : 0 : peer.m_should_discourage = false;
4979 [ # # # ]: 0 : } // peer.m_misbehavior_mutex
4980 : :
4981 [ # # ]: 0 : if (pnode.HasPermission(NetPermissionFlags::NoBan)) {
4982 : : // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4983 [ # # # # : 0 : LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
# # ]
4984 : 0 : return false;
4985 : : }
4986 : :
4987 [ # # ]: 0 : if (pnode.IsManualConn()) {
4988 : : // We never disconnect or discourage manual peers for bad behavior
4989 [ # # # # : 0 : LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
# # ]
4990 : 0 : return false;
4991 : : }
4992 : :
4993 [ # # ]: 0 : if (pnode.addr.IsLocal()) {
4994 : : // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4995 : : // all peers on the same local address)
4996 [ # # # # : 0 : LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
# # # # ]
4997 : : pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4998 : 0 : pnode.fDisconnect = true;
4999 : 0 : return true;
5000 : : }
5001 : :
5002 : : // Normal case: Disconnect the peer and discourage all nodes sharing the address
5003 [ # # # # : 0 : LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
# # # # ]
5004 [ # # ]: 0 : if (m_banman) m_banman->Discourage(pnode.addr);
5005 : 0 : m_connman.DisconnectNode(pnode.addr);
5006 : 0 : return true;
5007 : 0 : }
5008 : :
5009 : 0 : bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
5010 : : {
5011 : 0 : AssertLockHeld(g_msgproc_mutex);
5012 : :
5013 : 0 : PeerRef peer = GetPeerRef(pfrom->GetId());
5014 [ # # ]: 0 : if (peer == nullptr) return false;
5015 : :
5016 : : {
5017 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5018 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) {
5019 [ # # ]: 0 : ProcessGetData(*pfrom, *peer, interruptMsgProc);
5020 : 0 : }
5021 : 0 : }
5022 : :
5023 [ # # ]: 0 : const bool processed_orphan = ProcessOrphanTx(*peer);
5024 : :
5025 [ # # ]: 0 : if (pfrom->fDisconnect)
5026 : 0 : return false;
5027 : :
5028 [ # # ]: 0 : if (processed_orphan) return true;
5029 : :
5030 : : // this maintains the order of responses
5031 : : // and prevents m_getdata_requests to grow unbounded
5032 : : {
5033 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5034 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) return true;
5035 [ # # ]: 0 : }
5036 : :
5037 : : // Don't bother if send buffer is too full to respond anyway
5038 [ # # ]: 0 : if (pfrom->fPauseSend) return false;
5039 : :
5040 [ # # ]: 0 : auto poll_result{pfrom->PollMessage()};
5041 [ # # ]: 0 : if (!poll_result) {
5042 : : // No message to process
5043 : 0 : return false;
5044 : : }
5045 : :
5046 [ # # ]: 0 : CNetMessage& msg{poll_result->first};
5047 [ # # ]: 0 : bool fMoreWork = poll_result->second;
5048 : :
5049 : : TRACE6(net, inbound_message,
5050 : : pfrom->GetId(),
5051 : : pfrom->m_addr_name.c_str(),
5052 : : pfrom->ConnectionTypeAsString().c_str(),
5053 : : msg.m_type.c_str(),
5054 : : msg.m_recv.size(),
5055 : : msg.m_recv.data()
5056 : : );
5057 : :
5058 [ # # ]: 0 : if (m_opts.capture_messages) {
5059 [ # # # # ]: 0 : CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5060 : 0 : }
5061 : :
5062 [ # # ]: 0 : msg.SetVersion(pfrom->GetCommonVersion());
5063 : :
5064 : : try {
5065 [ # # ]: 0 : ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5066 [ # # ]: 0 : if (interruptMsgProc) return false;
5067 : : {
5068 [ # # ]: 0 : LOCK(peer->m_getdata_requests_mutex);
5069 [ # # ]: 0 : if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5070 : 0 : }
5071 : : // Does this peer has an orphan ready to reconsider?
5072 : : // (Note: we may have provided a parent for an orphan provided
5073 : : // by another peer that was already processed; in that case,
5074 : : // the extra work may not be noticed, possibly resulting in an
5075 : : // unnecessary 100ms delay)
5076 [ # # # # ]: 0 : if (m_orphanage.HaveTxToReconsider(peer->m_id)) fMoreWork = true;
5077 [ # # ]: 0 : } catch (const std::exception& e) {
5078 [ # # # # : 0 : LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
# # # # #
# # # ]
5079 [ # # # # ]: 0 : } catch (...) {
5080 [ # # # # : 0 : LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
# # # # #
# # # ]
5081 [ # # # # ]: 0 : }
5082 : :
5083 : 0 : return fMoreWork;
5084 : 0 : }
5085 : :
5086 : 0 : void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5087 : : {
5088 : 0 : AssertLockHeld(cs_main);
5089 : :
5090 : 0 : CNodeState &state = *State(pto.GetId());
5091 : :
5092 [ # # # # : 0 : if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
# # ]
5093 : : // This is an outbound peer subject to disconnection if they don't
5094 : : // announce a block with as much work as the current tip within
5095 : : // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5096 : : // their chain has more work than ours, we should sync to it,
5097 : : // unless it's invalid, in which case we should find that out and
5098 : : // disconnect from them elsewhere).
5099 [ # # # # ]: 0 : if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5100 [ # # ]: 0 : if (state.m_chain_sync.m_timeout != 0s) {
5101 : 0 : state.m_chain_sync.m_timeout = 0s;
5102 : 0 : state.m_chain_sync.m_work_header = nullptr;
5103 : 0 : state.m_chain_sync.m_sent_getheaders = false;
5104 : 0 : }
5105 [ # # # # : 0 : } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
# # # # ]
5106 : : // Our best block known by this peer is behind our tip, and we're either noticing
5107 : : // that for the first time, OR this peer was able to catch up to some earlier point
5108 : : // where we checked against our tip.
5109 : : // Either way, set a new timeout based on current tip.
5110 : 0 : state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5111 : 0 : state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5112 : 0 : state.m_chain_sync.m_sent_getheaders = false;
5113 [ # # # # ]: 0 : } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5114 : : // No evidence yet that our peer has synced to a chain with work equal to that
5115 : : // of our tip, when we first detected it was behind. Send a single getheaders
5116 : : // message to give the peer a chance to update us.
5117 [ # # ]: 0 : if (state.m_chain_sync.m_sent_getheaders) {
5118 : : // They've run out of time to catch up!
5119 [ # # # # : 0 : LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
# # # # #
# # # # #
# # ]
5120 : 0 : pto.fDisconnect = true;
5121 : 0 : } else {
5122 [ # # ]: 0 : assert(state.m_chain_sync.m_work_header);
5123 : : // Here, we assume that the getheaders message goes out,
5124 : : // because it'll either go out or be skipped because of a
5125 : : // getheaders in-flight already, in which case the peer should
5126 : : // still respond to us with a sufficiently high work chain tip.
5127 [ # # # # ]: 0 : MaybeSendGetHeaders(pto,
5128 : 0 : GetLocator(state.m_chain_sync.m_work_header->pprev),
5129 : 0 : peer);
5130 [ # # # # : 0 : LogPrint(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
# # # # #
# # # # #
# # # # #
# ]
5131 : 0 : state.m_chain_sync.m_sent_getheaders = true;
5132 : : // Bump the timeout to allow a response, which could clear the timeout
5133 : : // (if the response shows the peer has synced), reset the timeout (if
5134 : : // the peer syncs to the required work but not to our tip), or result
5135 : : // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5136 : : // has not sufficiently progressed)
5137 : 0 : state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5138 : : }
5139 : 0 : }
5140 : 0 : }
5141 : 0 : }
5142 : :
5143 : 0 : void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5144 : : {
5145 : : // If we have any extra block-relay-only peers, disconnect the youngest unless
5146 : : // it's given us a block -- in which case, compare with the second-youngest, and
5147 : : // out of those two, disconnect the peer who least recently gave us a block.
5148 : : // The youngest block-relay-only peer would be the extra peer we connected
5149 : : // to temporarily in order to sync our tip; see net.cpp.
5150 : : // Note that we use higher nodeid as a measure for most recent connection.
5151 [ # # ]: 0 : if (m_connman.GetExtraBlockRelayCount() > 0) {
5152 : 0 : std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5153 : :
5154 [ # # ]: 0 : m_connman.ForEachNode([&](CNode* pnode) {
5155 [ # # # # ]: 0 : if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5156 [ # # ]: 0 : if (pnode->GetId() > youngest_peer.first) {
5157 : 0 : next_youngest_peer = youngest_peer;
5158 : 0 : youngest_peer.first = pnode->GetId();
5159 : 0 : youngest_peer.second = pnode->m_last_block_time;
5160 : 0 : }
5161 : 0 : });
5162 : 0 : NodeId to_disconnect = youngest_peer.first;
5163 [ # # ]: 0 : if (youngest_peer.second > next_youngest_peer.second) {
5164 : : // Our newest block-relay-only peer gave us a block more recently;
5165 : : // disconnect our second youngest.
5166 : 0 : to_disconnect = next_youngest_peer.first;
5167 : 0 : }
5168 [ # # ]: 0 : m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5169 : 0 : AssertLockHeld(::cs_main);
5170 : : // Make sure we're not getting a block right now, and that
5171 : : // we've been connected long enough for this eviction to happen
5172 : : // at all.
5173 : : // Note that we only request blocks from a peer if we learn of a
5174 : : // valid headers chain with at least as much work as our tip.
5175 : 0 : CNodeState *node_state = State(pnode->GetId());
5176 [ # # # # ]: 0 : if (node_state == nullptr ||
5177 [ # # ]: 0 : (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5178 : 0 : pnode->fDisconnect = true;
5179 [ # # # # : 0 : LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
# # # # ]
5180 : : pnode->GetId(), count_seconds(pnode->m_last_block_time));
5181 : 0 : return true;
5182 : : } else {
5183 [ # # # # : 0 : LogPrint(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
# # # # ]
5184 : : pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5185 : : }
5186 : 0 : return false;
5187 : 0 : });
5188 : 0 : }
5189 : :
5190 : : // Check whether we have too many outbound-full-relay peers
5191 [ # # ]: 0 : if (m_connman.GetExtraFullOutboundCount() > 0) {
5192 : : // If we have more outbound-full-relay peers than we target, disconnect one.
5193 : : // Pick the outbound-full-relay peer that least recently announced
5194 : : // us a new block, with ties broken by choosing the more recent
5195 : : // connection (higher node id)
5196 : : // Protect peers from eviction if we don't have another connection
5197 : : // to their network, counting both outbound-full-relay and manual peers.
5198 : 0 : NodeId worst_peer = -1;
5199 : 0 : int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5200 : :
5201 [ # # ]: 0 : m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5202 : 0 : AssertLockHeld(::cs_main);
5203 : :
5204 : : // Only consider outbound-full-relay peers that are not already
5205 : : // marked for disconnection
5206 [ # # # # ]: 0 : if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5207 : 0 : CNodeState *state = State(pnode->GetId());
5208 [ # # ]: 0 : if (state == nullptr) return; // shouldn't be possible, but just in case
5209 : : // Don't evict our protected peers
5210 [ # # ]: 0 : if (state->m_chain_sync.m_protect) return;
5211 : : // If this is the only connection on a particular network that is
5212 : : // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5213 [ # # ]: 0 : if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5214 [ # # # # : 0 : if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
# # ]
5215 : 0 : worst_peer = pnode->GetId();
5216 : 0 : oldest_block_announcement = state->m_last_block_announcement;
5217 : 0 : }
5218 : 0 : });
5219 [ # # ]: 0 : if (worst_peer != -1) {
5220 [ # # ]: 0 : bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5221 : 0 : AssertLockHeld(::cs_main);
5222 : :
5223 : : // Only disconnect a peer that has been connected to us for
5224 : : // some reasonable fraction of our check-frequency, to give
5225 : : // it time for new information to have arrived.
5226 : : // Also don't disconnect any peer we're trying to download a
5227 : : // block from.
5228 : 0 : CNodeState &state = *State(pnode->GetId());
5229 [ # # # # ]: 0 : if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5230 [ # # # # : 0 : LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
# # # # ]
5231 : 0 : pnode->fDisconnect = true;
5232 : 0 : return true;
5233 : : } else {
5234 [ # # # # : 0 : LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
# # # # ]
5235 : : pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5236 : 0 : return false;
5237 : : }
5238 : 0 : });
5239 [ # # ]: 0 : if (disconnected) {
5240 : : // If we disconnected an extra peer, that means we successfully
5241 : : // connected to at least one peer after the last time we
5242 : : // detected a stale tip. Don't try any more extra peers until
5243 : : // we next detect a stale tip, to limit the load we put on the
5244 : : // network from these extra connections.
5245 : 0 : m_connman.SetTryNewOutboundPeer(false);
5246 : 0 : }
5247 : 0 : }
5248 : 0 : }
5249 : 0 : }
5250 : :
5251 : 0 : void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5252 : : {
5253 : 0 : LOCK(cs_main);
5254 : :
5255 [ # # ]: 0 : auto now{GetTime<std::chrono::seconds>()};
5256 : :
5257 [ # # ]: 0 : EvictExtraOutboundPeers(now);
5258 : :
5259 [ # # # # ]: 0 : if (now > m_stale_tip_check_time) {
5260 : : // Check whether our tip is stale, and if so, allow using an extra
5261 : : // outbound peer
5262 [ # # # # : 0 : if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
# # # # #
# # # #
# ]
5263 [ # # # # : 0 : LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
# # # # ]
5264 : : count_seconds(now - m_last_tip_update.load()));
5265 [ # # ]: 0 : m_connman.SetTryNewOutboundPeer(true);
5266 [ # # # # ]: 0 : } else if (m_connman.GetTryNewOutboundPeer()) {
5267 [ # # ]: 0 : m_connman.SetTryNewOutboundPeer(false);
5268 : 0 : }
5269 [ # # ]: 0 : m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5270 : 0 : }
5271 : :
5272 [ # # # # : 0 : if (!m_initial_sync_finished && CanDirectFetch()) {
# # ]
5273 [ # # ]: 0 : m_connman.StartExtraBlockRelayPeers();
5274 : 0 : m_initial_sync_finished = true;
5275 : 0 : }
5276 : 0 : }
5277 : :
5278 : 0 : void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5279 : : {
5280 [ # # # # ]: 0 : if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5281 [ # # ]: 0 : peer.m_ping_nonce_sent &&
5282 : 0 : now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5283 : : {
5284 : : // The ping timeout is using mocktime. To disable the check during
5285 : : // testing, increase -peertimeout.
5286 [ # # # # : 0 : LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
# # # # #
# # # ]
5287 : 0 : node_to.fDisconnect = true;
5288 : 0 : return;
5289 : : }
5290 : :
5291 : 0 : const CNetMsgMaker msgMaker(node_to.GetCommonVersion());
5292 : 0 : bool pingSend = false;
5293 : :
5294 [ # # ]: 0 : if (peer.m_ping_queued) {
5295 : : // RPC ping request by user
5296 : 0 : pingSend = true;
5297 : 0 : }
5298 : :
5299 [ # # # # ]: 0 : if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5300 : : // Ping automatically sent as a latency probe & keepalive.
5301 : 0 : pingSend = true;
5302 : 0 : }
5303 : :
5304 [ # # ]: 0 : if (pingSend) {
5305 : : uint64_t nonce;
5306 : 0 : do {
5307 : 0 : nonce = GetRand<uint64_t>();
5308 [ # # ]: 0 : } while (nonce == 0);
5309 : 0 : peer.m_ping_queued = false;
5310 : 0 : peer.m_ping_start = now;
5311 [ # # ]: 0 : if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5312 : 0 : peer.m_ping_nonce_sent = nonce;
5313 [ # # # # : 0 : m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING, nonce));
# # ]
5314 : 0 : } else {
5315 : : // Peer is too old to support ping command with nonce, pong will never arrive.
5316 : 0 : peer.m_ping_nonce_sent = 0;
5317 [ # # # # : 0 : m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING));
# # ]
5318 : : }
5319 : 0 : }
5320 : 0 : }
5321 : :
5322 : 0 : void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5323 : : {
5324 : : // Nothing to do for non-address-relay peers
5325 [ # # ]: 0 : if (!peer.m_addr_relay_enabled) return;
5326 : :
5327 : 0 : LOCK(peer.m_addr_send_times_mutex);
5328 : : // Periodically advertise our local address to the peer.
5329 [ # # # # : 0 : if (fListen && !m_chainman.IsInitialBlockDownload() &&
# # # # ]
5330 [ # # ]: 0 : peer.m_next_local_addr_send < current_time) {
5331 : : // If we've sent before, clear the bloom filter for the peer, so that our
5332 : : // self-announcement will actually go out.
5333 : : // This might be unnecessary if the bloom filter has already rolled
5334 : : // over since our last self-announcement, but there is only a small
5335 : : // bandwidth cost that we can incur by doing this (which happens
5336 : : // once a day on average).
5337 [ # # # # : 0 : if (peer.m_next_local_addr_send != 0us) {
# # ]
5338 [ # # ]: 0 : peer.m_addr_known->reset();
5339 : 0 : }
5340 [ # # # # ]: 0 : if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5341 [ # # # # : 0 : CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
# # # # ]
5342 : 0 : FastRandomContext insecure_rand;
5343 [ # # ]: 0 : PushAddress(peer, local_addr, insecure_rand);
5344 : 0 : }
5345 [ # # # # ]: 0 : peer.m_next_local_addr_send = GetExponentialRand(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5346 : 0 : }
5347 : :
5348 : : // We sent an `addr` message to this peer recently. Nothing more to do.
5349 [ # # # # ]: 0 : if (current_time <= peer.m_next_addr_send) return;
5350 : :
5351 [ # # ]: 0 : peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
5352 : :
5353 [ # # ]: 0 : if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5354 : : // Should be impossible since we always check size before adding to
5355 : : // m_addrs_to_send. Recover by trimming the vector.
5356 [ # # ]: 0 : peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5357 : 0 : }
5358 : :
5359 : : // Remove addr records that the peer already knows about, and add new
5360 : : // addrs to the m_addr_known filter on the same pass.
5361 : 0 : auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5362 [ # # # # ]: 0 : bool ret = peer.m_addr_known->contains(addr.GetKey());
5363 [ # # # # : 0 : if (!ret) peer.m_addr_known->insert(addr.GetKey());
# # ]
5364 : 0 : return ret;
5365 : 0 : };
5366 [ # # # # : 0 : peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
# # ]
5367 : 0 : peer.m_addrs_to_send.end());
5368 : :
5369 : : // No addr messages to send
5370 [ # # ]: 0 : if (peer.m_addrs_to_send.empty()) return;
5371 : :
5372 : : const char* msg_type;
5373 : : CNetAddr::Encoding ser_enc;
5374 [ # # ]: 0 : if (peer.m_wants_addrv2) {
5375 : 0 : msg_type = NetMsgType::ADDRV2;
5376 : 0 : ser_enc = CNetAddr::Encoding::V2;
5377 : 0 : } else {
5378 : 0 : msg_type = NetMsgType::ADDR;
5379 : 0 : ser_enc = CNetAddr::Encoding::V1;
5380 : : }
5381 [ # # # # : 0 : m_connman.PushMessage(&node, CNetMsgMaker(node.GetCommonVersion()).Make(msg_type, WithParams(CAddress::SerParams{{ser_enc}, CAddress::Format::Network}, peer.m_addrs_to_send)));
# # # # #
# ]
5382 : 0 : peer.m_addrs_to_send.clear();
5383 : :
5384 : : // we only send the big addr message once
5385 [ # # ]: 0 : if (peer.m_addrs_to_send.capacity() > 40) {
5386 [ # # ]: 0 : peer.m_addrs_to_send.shrink_to_fit();
5387 : 0 : }
5388 [ # # ]: 0 : }
5389 : :
5390 : 0 : void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5391 : : {
5392 : : // Delay sending SENDHEADERS (BIP 130) until we're done with an
5393 : : // initial-headers-sync with this peer. Receiving headers announcements for
5394 : : // new blocks while trying to sync their headers chain is problematic,
5395 : : // because of the state tracking done.
5396 [ # # # # ]: 0 : if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5397 : 0 : LOCK(cs_main);
5398 [ # # ]: 0 : CNodeState &state = *State(node.GetId());
5399 [ # # # # ]: 0 : if (state.pindexBestKnownBlock != nullptr &&
5400 [ # # # # ]: 0 : state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5401 : : // Tell our peer we prefer to receive headers rather than inv's
5402 : : // We send this to non-NODE NETWORK peers as well, because even
5403 : : // non-NODE NETWORK peers can announce blocks (such as pruning
5404 : : // nodes)
5405 [ # # # # : 0 : m_connman.PushMessage(&node, CNetMsgMaker(node.GetCommonVersion()).Make(NetMsgType::SENDHEADERS));
# # # # ]
5406 : 0 : peer.m_sent_sendheaders = true;
5407 : 0 : }
5408 : 0 : }
5409 : 0 : }
5410 : :
5411 : 0 : void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5412 : : {
5413 [ # # ]: 0 : if (m_opts.ignore_incoming_txs) return;
5414 [ # # ]: 0 : if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5415 : : // peers with the forcerelay permission should not filter txs to us
5416 [ # # ]: 0 : if (pto.HasPermission(NetPermissionFlags::ForceRelay)) return;
5417 : : // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5418 : : // transactions to us, regardless of feefilter state.
5419 [ # # ]: 0 : if (pto.IsBlockOnlyConn()) return;
5420 : :
5421 : 0 : CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5422 [ # # # # : 0 : static FeeFilterRounder g_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}};
# # # # ]
5423 : :
5424 [ # # ]: 0 : if (m_chainman.IsInitialBlockDownload()) {
5425 : : // Received tx-inv messages are discarded when the active
5426 : : // chainstate is in IBD, so tell the peer to not send them.
5427 : 0 : currentFilter = MAX_MONEY;
5428 : 0 : } else {
5429 [ # # # # : 0 : static const CAmount MAX_FILTER{g_filter_rounder.round(MAX_MONEY)};
# # ]
5430 [ # # ]: 0 : if (peer.m_fee_filter_sent == MAX_FILTER) {
5431 : : // Send the current filter if we sent MAX_FILTER previously
5432 : : // and made it out of IBD.
5433 : 0 : peer.m_next_send_feefilter = 0us;
5434 : 0 : }
5435 : : }
5436 [ # # ]: 0 : if (current_time > peer.m_next_send_feefilter) {
5437 : 0 : CAmount filterToSend = g_filter_rounder.round(currentFilter);
5438 : : // We always have a fee filter of at least the min relay fee
5439 : 0 : filterToSend = std::max(filterToSend, m_mempool.m_min_relay_feerate.GetFeePerK());
5440 [ # # ]: 0 : if (filterToSend != peer.m_fee_filter_sent) {
5441 [ # # # # : 0 : m_connman.PushMessage(&pto, CNetMsgMaker(pto.GetCommonVersion()).Make(NetMsgType::FEEFILTER, filterToSend));
# # ]
5442 : 0 : peer.m_fee_filter_sent = filterToSend;
5443 : 0 : }
5444 : 0 : peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL);
5445 : 0 : }
5446 : : // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5447 : : // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5448 [ # # # # ]: 0 : else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5449 [ # # ]: 0 : (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5450 : 0 : peer.m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5451 : 0 : }
5452 : 0 : }
5453 : :
5454 : : namespace {
5455 : : class CompareInvMempoolOrder
5456 : : {
5457 : : CTxMemPool* mp;
5458 : : bool m_wtxid_relay;
5459 : : public:
5460 : 0 : explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5461 : : {
5462 : 0 : mp = _mempool;
5463 : 0 : m_wtxid_relay = use_wtxid;
5464 : 0 : }
5465 : :
5466 : 0 : bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5467 : : {
5468 : : /* As std::make_heap produces a max-heap, we want the entries with the
5469 : : * fewest ancestors/highest fee to sort later. */
5470 : 0 : return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5471 : : }
5472 : : };
5473 : : } // namespace
5474 : :
5475 : 6993 : bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5476 : : {
5477 : : // block-relay-only peers may never send txs to us
5478 [ + + ]: 6993 : if (peer.IsBlockOnlyConn()) return true;
5479 [ + + ]: 6914 : if (peer.IsFeelerConn()) return true;
5480 : : // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5481 [ - + # # ]: 2499 : if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5482 : 2499 : return false;
5483 : 6993 : }
5484 : :
5485 : 0 : bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5486 : : {
5487 : : // We don't participate in addr relay with outbound block-relay-only
5488 : : // connections to prevent providing adversaries with the additional
5489 : : // information of addr traffic to infer the link.
5490 [ # # ]: 0 : if (node.IsBlockOnlyConn()) return false;
5491 : :
5492 [ # # ]: 0 : if (!peer.m_addr_relay_enabled.exchange(true)) {
5493 : : // During version message processing (non-block-relay-only outbound peers)
5494 : : // or on first addr-related message we have received (inbound peers), initialize
5495 : : // m_addr_known.
5496 : 0 : peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5497 : 0 : }
5498 : :
5499 : 0 : return true;
5500 : 0 : }
5501 : :
5502 : 0 : bool PeerManagerImpl::SendMessages(CNode* pto)
5503 : : {
5504 : 0 : AssertLockHeld(g_msgproc_mutex);
5505 : :
5506 : 0 : PeerRef peer = GetPeerRef(pto->GetId());
5507 [ # # ]: 0 : if (!peer) return false;
5508 : 0 : const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5509 : :
5510 : : // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5511 : : // disconnect misbehaving peers even before the version handshake is complete.
5512 [ # # # # ]: 0 : if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5513 : :
5514 : : // Don't send anything until the version handshake is complete
5515 [ # # # # ]: 0 : if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5516 : 0 : return true;
5517 : :
5518 : : // If we get here, the outgoing message serialization version is set and can't change.
5519 [ # # ]: 0 : const CNetMsgMaker msgMaker(pto->GetCommonVersion());
5520 : :
5521 [ # # ]: 0 : const auto current_time{GetTime<std::chrono::microseconds>()};
5522 : :
5523 [ # # # # : 0 : if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
# # # # #
# ]
5524 [ # # # # : 0 : LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
# # # # #
# ]
5525 : 0 : pto->fDisconnect = true;
5526 : 0 : return true;
5527 : : }
5528 : :
5529 [ # # ]: 0 : MaybeSendPing(*pto, *peer, current_time);
5530 : :
5531 : : // MaybeSendPing may have marked peer for disconnection
5532 [ # # ]: 0 : if (pto->fDisconnect) return true;
5533 : :
5534 [ # # ]: 0 : MaybeSendAddr(*pto, *peer, current_time);
5535 : :
5536 [ # # ]: 0 : MaybeSendSendHeaders(*pto, *peer);
5537 : :
5538 : : {
5539 [ # # ]: 0 : LOCK(cs_main);
5540 : :
5541 [ # # ]: 0 : CNodeState &state = *State(pto->GetId());
5542 : :
5543 : : // Start block sync
5544 [ # # ]: 0 : if (m_chainman.m_best_header == nullptr) {
5545 [ # # ]: 0 : m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5546 : 0 : }
5547 : :
5548 : : // Determine whether we might try initial headers sync or parallel
5549 : : // block download from this peer -- this mostly affects behavior while
5550 : : // in IBD (once out of IBD, we sync from all peers).
5551 : 0 : bool sync_blocks_and_headers_from_peer = false;
5552 [ # # ]: 0 : if (state.fPreferredDownload) {
5553 : 0 : sync_blocks_and_headers_from_peer = true;
5554 [ # # # # ]: 0 : } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5555 : : // Typically this is an inbound peer. If we don't have any outbound
5556 : : // peers, or if we aren't downloading any blocks from such peers,
5557 : : // then allow block downloads from this peer, too.
5558 : : // We prefer downloading blocks from outbound peers to avoid
5559 : : // putting undue load on (say) some home user who is just making
5560 : : // outbound connections to the network, but if our only source of
5561 : : // the latest blocks is from an inbound peer, we have to be sure to
5562 : : // eventually download it (and not just wait indefinitely for an
5563 : : // outbound peer to have it).
5564 [ # # # # ]: 0 : if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5565 : 0 : sync_blocks_and_headers_from_peer = true;
5566 : 0 : }
5567 : 0 : }
5568 : :
5569 [ # # # # : 0 : if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
# # ]
5570 : : // Only actively request headers from a single peer, unless we're close to today.
5571 [ # # # # : 0 : if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > GetAdjustedTime() - 24h) {
# # # # #
# # # # #
# # ]
5572 : 0 : const CBlockIndex* pindexStart = m_chainman.m_best_header;
5573 : : /* If possible, start at the block preceding the currently
5574 : : best known header. This ensures that we always get a
5575 : : non-empty list of headers back as long as the peer
5576 : : is up-to-date. With a non-empty response, we can initialise
5577 : : the peer's known best block. This wouldn't be possible
5578 : : if we requested starting at m_chainman.m_best_header and
5579 : : got back an empty response. */
5580 [ # # ]: 0 : if (pindexStart->pprev)
5581 : 0 : pindexStart = pindexStart->pprev;
5582 [ # # # # : 0 : if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
# # ]
5583 [ # # # # : 0 : LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
# # # # #
# ]
5584 : :
5585 : 0 : state.fSyncStarted = true;
5586 [ # # # # ]: 0 : peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5587 : : (
5588 : : // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5589 : : // to maintain precision
5590 [ # # # # ]: 0 : std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5591 [ # # # # : 0 : Ticks<std::chrono::seconds>(GetAdjustedTime() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
# # # # #
# ]
5592 : : );
5593 : 0 : nSyncStarted++;
5594 : 0 : }
5595 : 0 : }
5596 : 0 : }
5597 : :
5598 : : //
5599 : : // Try sending block announcements via headers
5600 : : //
5601 : : {
5602 : : // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5603 : : // list of block hashes we're relaying, and our peer wants
5604 : : // headers announcements, then find the first header
5605 : : // not yet known to our peer but would connect, and send.
5606 : : // If no header would connect, or if we have too many
5607 : : // blocks, or if the peer doesn't want headers, just
5608 : : // add all to the inv queue.
5609 [ # # ]: 0 : LOCK(peer->m_block_inv_mutex);
5610 : 0 : std::vector<CBlock> vHeaders;
5611 [ # # ]: 0 : bool fRevertToInv = ((!peer->m_prefers_headers &&
5612 [ # # # # ]: 0 : (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5613 : 0 : peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5614 : 0 : const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5615 [ # # ]: 0 : ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5616 : :
5617 [ # # ]: 0 : if (!fRevertToInv) {
5618 : 0 : bool fFoundStartingHeader = false;
5619 : : // Try to find first header that our peer doesn't have, and
5620 : : // then send all headers past that one. If we come across any
5621 : : // headers that aren't on m_chainman.ActiveChain(), give up.
5622 [ # # ]: 0 : for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5623 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5624 [ # # ]: 0 : assert(pindex);
5625 [ # # # # ]: 0 : if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5626 : : // Bail out if we reorged away from this block
5627 : 0 : fRevertToInv = true;
5628 : 0 : break;
5629 : : }
5630 [ # # # # ]: 0 : if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5631 : : // This means that the list of blocks to announce don't
5632 : : // connect to each other.
5633 : : // This shouldn't really be possible to hit during
5634 : : // regular operation (because reorgs should take us to
5635 : : // a chain that has some block not on the prior chain,
5636 : : // which should be caught by the prior check), but one
5637 : : // way this could happen is by using invalidateblock /
5638 : : // reconsiderblock repeatedly on the tip, causing it to
5639 : : // be added multiple times to m_blocks_for_headers_relay.
5640 : : // Robustly deal with this rare situation by reverting
5641 : : // to an inv.
5642 : 0 : fRevertToInv = true;
5643 : 0 : break;
5644 : : }
5645 : 0 : pBestIndex = pindex;
5646 [ # # ]: 0 : if (fFoundStartingHeader) {
5647 : : // add this to the headers message
5648 [ # # # # : 0 : vHeaders.push_back(pindex->GetBlockHeader());
# # ]
5649 [ # # # # ]: 0 : } else if (PeerHasHeader(&state, pindex)) {
5650 : 0 : continue; // keep looking for the first new block
5651 [ # # # # : 0 : } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
# # ]
5652 : : // Peer doesn't have this header but they do have the prior one.
5653 : : // Start sending headers.
5654 : 0 : fFoundStartingHeader = true;
5655 [ # # # # : 0 : vHeaders.push_back(pindex->GetBlockHeader());
# # ]
5656 : 0 : } else {
5657 : : // Peer doesn't have this header or the prior one -- nothing will
5658 : : // connect, so bail out.
5659 : 0 : fRevertToInv = true;
5660 : 0 : break;
5661 : : }
5662 : : }
5663 : 0 : }
5664 [ # # # # ]: 0 : if (!fRevertToInv && !vHeaders.empty()) {
5665 [ # # # # ]: 0 : if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5666 : : // We only send up to 1 block as header-and-ids, as otherwise
5667 : : // probably means we're doing an initial-ish-sync or they're slow
5668 [ # # # # : 0 : LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
# # # # #
# # # #
# ]
5669 : : vHeaders.front().GetHash().ToString(), pto->GetId());
5670 : :
5671 : 0 : std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5672 : : {
5673 [ # # ]: 0 : LOCK(m_most_recent_block_mutex);
5674 [ # # ]: 0 : if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5675 [ # # # # : 0 : cached_cmpctblock_msg = msgMaker.Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
# # ]
5676 : 0 : }
5677 : 0 : }
5678 [ # # ]: 0 : if (cached_cmpctblock_msg.has_value()) {
5679 [ # # # # ]: 0 : m_connman.PushMessage(pto, std::move(cached_cmpctblock_msg.value()));
5680 : 0 : } else {
5681 [ # # ]: 0 : CBlock block;
5682 [ # # ]: 0 : const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
5683 [ # # ]: 0 : assert(ret);
5684 [ # # ]: 0 : CBlockHeaderAndShortTxIDs cmpctblock{block};
5685 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock));
# # ]
5686 : 0 : }
5687 : 0 : state.pindexBestHeaderSent = pBestIndex;
5688 [ # # ]: 0 : } else if (peer->m_prefers_headers) {
5689 [ # # ]: 0 : if (vHeaders.size() > 1) {
5690 [ # # # # : 0 : LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
# # # # #
# # # # #
# # # # ]
5691 : : vHeaders.size(),
5692 : : vHeaders.front().GetHash().ToString(),
5693 : : vHeaders.back().GetHash().ToString(), pto->GetId());
5694 : 0 : } else {
5695 [ # # # # : 0 : LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
# # # # #
# # # #
# ]
5696 : : vHeaders.front().GetHash().ToString(), pto->GetId());
5697 : : }
5698 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
# # ]
5699 : 0 : state.pindexBestHeaderSent = pBestIndex;
5700 : 0 : } else
5701 : 0 : fRevertToInv = true;
5702 : 0 : }
5703 [ # # ]: 0 : if (fRevertToInv) {
5704 : : // If falling back to using an inv, just try to inv the tip.
5705 : : // The last entry in m_blocks_for_headers_relay was our tip at some point
5706 : : // in the past.
5707 [ # # ]: 0 : if (!peer->m_blocks_for_headers_relay.empty()) {
5708 : 0 : const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5709 [ # # ]: 0 : const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5710 [ # # ]: 0 : assert(pindex);
5711 : :
5712 : : // Warn if we're announcing a block that is not on the main chain.
5713 : : // This should be very rare and could be optimized out.
5714 : : // Just log for now.
5715 [ # # # # ]: 0 : if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5716 [ # # # # : 0 : LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
# # # # #
# # # # #
# # ]
5717 : : hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5718 : 0 : }
5719 : :
5720 : : // If the peer's chain has this block, don't inv it back.
5721 [ # # # # ]: 0 : if (!PeerHasHeader(&state, pindex)) {
5722 [ # # ]: 0 : peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5723 [ # # # # : 0 : LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
# # # # #
# # # ]
5724 : : pto->GetId(), hashToAnnounce.ToString());
5725 : 0 : }
5726 : 0 : }
5727 : 0 : }
5728 : 0 : peer->m_blocks_for_headers_relay.clear();
5729 : 0 : }
5730 : :
5731 : : //
5732 : : // Message: inventory
5733 : : //
5734 : 0 : std::vector<CInv> vInv;
5735 : : {
5736 [ # # ]: 0 : LOCK(peer->m_block_inv_mutex);
5737 [ # # ]: 0 : vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5738 : :
5739 : : // Add blocks
5740 [ # # ]: 0 : for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5741 [ # # # # ]: 0 : vInv.push_back(CInv(MSG_BLOCK, hash));
5742 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5743 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
# # ]
5744 : 0 : vInv.clear();
5745 : 0 : }
5746 : : }
5747 : 0 : peer->m_blocks_for_inv_relay.clear();
5748 : 0 : }
5749 : :
5750 [ # # # # ]: 0 : if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5751 [ # # ]: 0 : LOCK(tx_relay->m_tx_inventory_mutex);
5752 : : // Check whether periodic sends should happen
5753 [ # # ]: 0 : bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5754 [ # # # # ]: 0 : if (tx_relay->m_next_inv_send_time < current_time) {
5755 : 0 : fSendTrickle = true;
5756 [ # # ]: 0 : if (pto->IsInboundConn()) {
5757 [ # # ]: 0 : tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5758 : 0 : } else {
5759 [ # # ]: 0 : tx_relay->m_next_inv_send_time = GetExponentialRand(current_time, OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5760 : : }
5761 : 0 : }
5762 : :
5763 : : // Time to send but the peer has requested we not relay transactions.
5764 [ # # ]: 0 : if (fSendTrickle) {
5765 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5766 [ # # ]: 0 : if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5767 : 0 : }
5768 : :
5769 : : // Respond to BIP35 mempool requests
5770 [ # # # # ]: 0 : if (fSendTrickle && tx_relay->m_send_mempool) {
5771 [ # # ]: 0 : auto vtxinfo = m_mempool.infoAll();
5772 : 0 : tx_relay->m_send_mempool = false;
5773 [ # # ]: 0 : const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5774 : :
5775 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5776 : :
5777 [ # # ]: 0 : for (const auto& txinfo : vtxinfo) {
5778 [ # # ]: 0 : const uint256& hash = peer->m_wtxid_relay ? txinfo.tx->GetWitnessHash() : txinfo.tx->GetHash();
5779 [ # # ]: 0 : CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5780 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.erase(hash);
5781 : : // Don't send transactions that peers will not put into their mempool
5782 [ # # # # ]: 0 : if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5783 : 0 : continue;
5784 : : }
5785 [ # # ]: 0 : if (tx_relay->m_bloom_filter) {
5786 [ # # # # ]: 0 : if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5787 : 0 : }
5788 [ # # # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(hash);
5789 [ # # ]: 0 : vInv.push_back(inv);
5790 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5791 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
# # ]
5792 : 0 : vInv.clear();
5793 : 0 : }
5794 : : }
5795 : 0 : }
5796 : :
5797 : : // Determine transactions to relay
5798 [ # # ]: 0 : if (fSendTrickle) {
5799 : : // Produce a vector with all candidates for sending
5800 : 0 : std::vector<std::set<uint256>::iterator> vInvTx;
5801 [ # # ]: 0 : vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5802 [ # # ]: 0 : for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5803 [ # # ]: 0 : vInvTx.push_back(it);
5804 : 0 : }
5805 [ # # ]: 0 : const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5806 : : // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5807 : : // A heap is used so that not all items need sorting if only a few are being sent.
5808 [ # # ]: 0 : CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5809 [ # # ]: 0 : std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5810 : : // No reason to drain out at many times the network's capacity,
5811 : : // especially since we have many peers and some will draw much shorter delays.
5812 : 0 : unsigned int nRelayedTransactions = 0;
5813 [ # # ]: 0 : LOCK(tx_relay->m_bloom_filter_mutex);
5814 : 0 : size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5815 : 0 : broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5816 [ # # # # ]: 0 : while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5817 : : // Fetch the top element from the heap
5818 [ # # ]: 0 : std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5819 : 0 : std::set<uint256>::iterator it = vInvTx.back();
5820 : 0 : vInvTx.pop_back();
5821 : 0 : uint256 hash = *it;
5822 [ # # ]: 0 : CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5823 : : // Remove it from the to-be-sent set
5824 [ # # ]: 0 : tx_relay->m_tx_inventory_to_send.erase(it);
5825 : : // Check if not in the filter already
5826 [ # # # # : 0 : if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
# # ]
5827 : 0 : continue;
5828 : : }
5829 : : // Not in the mempool anymore? don't bother sending it.
5830 [ # # # # ]: 0 : auto txinfo = m_mempool.info(ToGenTxid(inv));
5831 [ # # ]: 0 : if (!txinfo.tx) {
5832 : 0 : continue;
5833 : : }
5834 : : // Peer told you to not send transactions at that feerate? Don't bother sending it.
5835 [ # # # # ]: 0 : if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5836 : 0 : continue;
5837 : : }
5838 [ # # # # : 0 : if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
# # ]
5839 : : // Send
5840 [ # # ]: 0 : vInv.push_back(inv);
5841 : 0 : nRelayedTransactions++;
5842 [ # # ]: 0 : if (vInv.size() == MAX_INV_SZ) {
5843 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
# # ]
5844 : 0 : vInv.clear();
5845 : 0 : }
5846 [ # # # # ]: 0 : tx_relay->m_tx_inventory_known_filter.insert(hash);
5847 [ # # # ]: 0 : }
5848 : :
5849 : : // Ensure we'll respond to GETDATA requests for anything we've just announced
5850 [ # # ]: 0 : LOCK(m_mempool.cs);
5851 [ # # ]: 0 : tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5852 : 0 : }
5853 : 0 : }
5854 [ # # ]: 0 : if (!vInv.empty())
5855 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
# # ]
5856 : :
5857 : : // Detect whether we're stalling
5858 : 0 : auto stalling_timeout = m_block_stalling_timeout.load();
5859 [ # # # # : 0 : if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
# # # # ]
5860 : : // Stalling only triggers when the block download window cannot move. During normal steady state,
5861 : : // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5862 : : // should only happen during initial block download.
5863 [ # # # # : 0 : LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
# # # # #
# # # # #
# # # # #
# # # ]
5864 : 0 : pto->fDisconnect = true;
5865 : : // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5866 : : // bandwidth is insufficient.
5867 [ # # # # ]: 0 : const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5868 [ # # # # : 0 : if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
# # ]
5869 [ # # # # : 0 : LogPrint(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
# # # # #
# ]
5870 : 0 : }
5871 : 0 : return true;
5872 : : }
5873 : : // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5874 : : // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5875 : : // We compensate for other peers to prevent killing off peers due to our own downstream link
5876 : : // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5877 : : // to unreasonably increase our timeout.
5878 [ # # ]: 0 : if (state.vBlocksInFlight.size() > 0) {
5879 : 0 : QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5880 : 0 : int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5881 [ # # # # : 0 : if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
# # # # #
# ]
5882 [ # # # # : 0 : LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
# # # # #
# # # # #
# # # # #
# # # #
# ]
5883 : 0 : pto->fDisconnect = true;
5884 : 0 : return true;
5885 : : }
5886 : 0 : }
5887 : : // Check for headers sync timeouts
5888 [ # # # # : 0 : if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
# # ]
5889 : : // Detect whether this is a stalling initial-headers-sync peer
5890 [ # # # # : 0 : if (m_chainman.m_best_header->Time() <= GetAdjustedTime() - 24h) {
# # # # #
# # # ]
5891 [ # # # # : 0 : if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
# # # # ]
5892 : : // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5893 : : // and we have others we could be using instead.
5894 : : // Note: If all our peers are inbound, then we won't
5895 : : // disconnect our sync peer for stalling; we have bigger
5896 : : // problems if we can't get any outbound peers.
5897 [ # # # # ]: 0 : if (!pto->HasPermission(NetPermissionFlags::NoBan)) {
5898 [ # # # # : 0 : LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
# # # # #
# # # # #
# # # # #
# # # ]
5899 : 0 : pto->fDisconnect = true;
5900 : 0 : return true;
5901 : : } else {
5902 [ # # # # : 0 : LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
# # # # #
# # # # #
# # # # #
# # # ]
5903 : : // Reset the headers sync state so that we have a
5904 : : // chance to try downloading from a different peer.
5905 : : // Note: this will also result in at least one more
5906 : : // getheaders message to be sent to
5907 : : // this peer (eventually).
5908 : 0 : state.fSyncStarted = false;
5909 : 0 : nSyncStarted--;
5910 [ # # ]: 0 : peer->m_headers_sync_timeout = 0us;
5911 : : }
5912 : 0 : }
5913 : 0 : } else {
5914 : : // After we've caught up once, reset the timeout so we can't trigger
5915 : : // disconnect later.
5916 : 0 : peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5917 : : }
5918 : 0 : }
5919 : :
5920 : : // Check that outbound peers have reasonable chains
5921 : : // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5922 [ # # # # ]: 0 : ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5923 : :
5924 : : //
5925 : : // Message: getdata (blocks)
5926 : : //
5927 : 0 : std::vector<CInv> vGetData;
5928 [ # # # # : 0 : if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
# # # # #
# # # ]
5929 : 0 : std::vector<const CBlockIndex*> vToDownload;
5930 : 0 : NodeId staller = -1;
5931 : 0 : auto get_inflight_budget = [&state]() {
5932 : 0 : return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5933 : : };
5934 : :
5935 : : // If a snapshot chainstate is in use, we want to find its next blocks
5936 : : // before the background chainstate to prioritize getting to network tip.
5937 [ # # # # ]: 0 : FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5938 [ # # # # : 0 : if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
# # # # ]
5939 [ # # ]: 0 : TryDownloadingHistoricalBlocks(
5940 : 0 : *peer,
5941 [ # # ]: 0 : get_inflight_budget(),
5942 [ # # ]: 0 : vToDownload, m_chainman.GetBackgroundSyncTip(),
5943 [ # # # # ]: 0 : Assert(m_chainman.GetSnapshotBaseBlock()));
5944 : 0 : }
5945 [ # # ]: 0 : for (const CBlockIndex *pindex : vToDownload) {
5946 : 0 : uint32_t nFetchFlags = GetFetchFlags(*peer);
5947 [ # # # # ]: 0 : vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
5948 [ # # ]: 0 : BlockRequested(pto->GetId(), *pindex);
5949 [ # # # # : 0 : LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
# # # # #
# # # ]
5950 : : pindex->nHeight, pto->GetId());
5951 : : }
5952 [ # # # # ]: 0 : if (state.vBlocksInFlight.empty() && staller != -1) {
5953 [ # # # # : 0 : if (State(staller)->m_stalling_since == 0us) {
# # # # ]
5954 [ # # ]: 0 : State(staller)->m_stalling_since = current_time;
5955 [ # # # # : 0 : LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
# # # # #
# ]
5956 : 0 : }
5957 : 0 : }
5958 : 0 : }
5959 : :
5960 : : //
5961 : : // Message: getdata (transactions)
5962 : : //
5963 : 0 : std::vector<std::pair<NodeId, GenTxid>> expired;
5964 [ # # ]: 0 : auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
5965 [ # # ]: 0 : for (const auto& entry : expired) {
5966 [ # # # # : 0 : LogPrint(BCLog::NET, "timeout of inflight %s %s from peer=%d\n", entry.second.IsWtxid() ? "wtx" : "tx",
# # # # #
# # # ]
5967 : : entry.second.GetHash().ToString(), entry.first);
5968 : : }
5969 [ # # ]: 0 : for (const GenTxid& gtxid : requestable) {
5970 [ # # # # ]: 0 : if (!AlreadyHaveTx(gtxid)) {
5971 [ # # # # : 0 : LogPrint(BCLog::NET, "Requesting %s %s peer=%d\n", gtxid.IsWtxid() ? "wtx" : "tx",
# # # # #
# # # ]
5972 : : gtxid.GetHash().ToString(), pto->GetId());
5973 [ # # # # ]: 0 : vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5974 [ # # ]: 0 : if (vGetData.size() >= MAX_GETDATA_SZ) {
5975 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData));
# # ]
5976 : 0 : vGetData.clear();
5977 : 0 : }
5978 [ # # # # ]: 0 : m_txrequest.RequestedTx(pto->GetId(), gtxid.GetHash(), current_time + GETDATA_TX_INTERVAL);
5979 : 0 : } else {
5980 : : // We have already seen this transaction, no need to download. This is just a belt-and-suspenders, as
5981 : : // this should already be called whenever a transaction becomes AlreadyHaveTx().
5982 [ # # ]: 0 : m_txrequest.ForgetTxHash(gtxid.GetHash());
5983 : : }
5984 : : }
5985 : :
5986 : :
5987 [ # # ]: 0 : if (!vGetData.empty())
5988 [ # # # # : 0 : m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData));
# # ]
5989 [ # # ]: 0 : } // release cs_main
5990 [ # # ]: 0 : MaybeSendFeefilter(*pto, *peer, current_time);
5991 : 0 : return true;
5992 : 0 : }
|