Branch data Line data Source code
1 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
2 : : // Copyright (c) 2017 The Zcash developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <key.h>
7 : :
8 : : #include <crypto/common.h>
9 : : #include <crypto/hmac_sha512.h>
10 : : #include <hash.h>
11 : : #include <random.h>
12 : :
13 : : #include <secp256k1.h>
14 : : #include <secp256k1_ellswift.h>
15 : : #include <secp256k1_extrakeys.h>
16 : : #include <secp256k1_recovery.h>
17 : : #include <secp256k1_schnorrsig.h>
18 : :
19 : : static secp256k1_context* secp256k1_context_sign = nullptr;
20 : :
21 : : /** These functions are taken from the libsecp256k1 distribution and are very ugly. */
22 : :
23 : : /**
24 : : * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
25 : : * section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats:
26 : : *
27 : : * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
28 : : * required to be encoded as one octet if it is less than 256, as DER would require.
29 : : * * The octet-length of the SEQUENCE must not be greater than the remaining
30 : : * length of the key encoding, but need not match it (i.e. the encoding may contain
31 : : * junk after the encoded SEQUENCE).
32 : : * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
33 : : * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
34 : : * or not it is validly encoded DER.
35 : : *
36 : : * out32 must point to an output buffer of length at least 32 bytes.
37 : : */
38 : 0 : int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
39 : 0 : const unsigned char *end = seckey + seckeylen;
40 : 0 : memset(out32, 0, 32);
41 : : /* sequence header */
42 [ # # # # ]: 0 : if (end - seckey < 1 || *seckey != 0x30u) {
43 : 0 : return 0;
44 : : }
45 : 0 : seckey++;
46 : : /* sequence length constructor */
47 [ # # # # ]: 0 : if (end - seckey < 1 || !(*seckey & 0x80u)) {
48 : 0 : return 0;
49 : : }
50 : 0 : ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
51 [ # # # # ]: 0 : if (lenb < 1 || lenb > 2) {
52 : 0 : return 0;
53 : : }
54 [ # # ]: 0 : if (end - seckey < lenb) {
55 : 0 : return 0;
56 : : }
57 : : /* sequence length */
58 [ # # ]: 0 : ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
59 : 0 : seckey += lenb;
60 [ # # ]: 0 : if (end - seckey < len) {
61 : 0 : return 0;
62 : : }
63 : : /* sequence element 0: version number (=1) */
64 [ # # # # : 0 : if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
# # # # ]
65 : 0 : return 0;
66 : : }
67 : 0 : seckey += 3;
68 : : /* sequence element 1: octet string, up to 32 bytes */
69 [ # # # # ]: 0 : if (end - seckey < 2 || seckey[0] != 0x04u) {
70 : 0 : return 0;
71 : : }
72 : 0 : ptrdiff_t oslen = seckey[1];
73 : 0 : seckey += 2;
74 [ # # # # ]: 0 : if (oslen > 32 || end - seckey < oslen) {
75 : 0 : return 0;
76 : : }
77 : 0 : memcpy(out32 + (32 - oslen), seckey, oslen);
78 [ # # ]: 0 : if (!secp256k1_ec_seckey_verify(ctx, out32)) {
79 : 0 : memset(out32, 0, 32);
80 : 0 : return 0;
81 : : }
82 : 0 : return 1;
83 : 0 : }
84 : :
85 : : /**
86 : : * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
87 : : * <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
88 : : * included.
89 : : *
90 : : * seckey must point to an output buffer of length at least CKey::SIZE bytes.
91 : : * seckeylen must initially be set to the size of the seckey buffer. Upon return it
92 : : * will be set to the number of bytes used in the buffer.
93 : : * key32 must point to a 32-byte raw private key.
94 : : */
95 : 0 : int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
96 [ # # ]: 0 : assert(*seckeylen >= CKey::SIZE);
97 : : secp256k1_pubkey pubkey;
98 : 0 : size_t pubkeylen = 0;
99 [ # # ]: 0 : if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
100 : 0 : *seckeylen = 0;
101 : 0 : return 0;
102 : : }
103 [ # # ]: 0 : if (compressed) {
104 : : static const unsigned char begin[] = {
105 : : 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
106 : : };
107 : : static const unsigned char middle[] = {
108 : : 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
109 : : 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 : : 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 : : 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
112 : : 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
113 : : 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
114 : : 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
115 : : 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
116 : : 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
117 : : };
118 : 0 : unsigned char *ptr = seckey;
119 : 0 : memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
120 : 0 : memcpy(ptr, key32, 32); ptr += 32;
121 : 0 : memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
122 : 0 : pubkeylen = CPubKey::COMPRESSED_SIZE;
123 : 0 : secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
124 : 0 : ptr += pubkeylen;
125 : 0 : *seckeylen = ptr - seckey;
126 [ # # ]: 0 : assert(*seckeylen == CKey::COMPRESSED_SIZE);
127 : 0 : } else {
128 : : static const unsigned char begin[] = {
129 : : 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
130 : : };
131 : : static const unsigned char middle[] = {
132 : : 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
133 : : 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
134 : : 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
135 : : 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
136 : : 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
137 : : 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
138 : : 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
139 : : 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
140 : : 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
141 : : 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
142 : : 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
143 : : };
144 : 0 : unsigned char *ptr = seckey;
145 : 0 : memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
146 : 0 : memcpy(ptr, key32, 32); ptr += 32;
147 : 0 : memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
148 : 0 : pubkeylen = CPubKey::SIZE;
149 : 0 : secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
150 : 0 : ptr += pubkeylen;
151 : 0 : *seckeylen = ptr - seckey;
152 [ # # ]: 0 : assert(*seckeylen == CKey::SIZE);
153 : : }
154 : 0 : return 1;
155 : 0 : }
156 : :
157 : 5054 : bool CKey::Check(const unsigned char *vch) {
158 : 5054 : return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
159 : : }
160 : :
161 : 5054 : void CKey::MakeNewKey(bool fCompressedIn) {
162 : 5054 : MakeKeyData();
163 : 5054 : do {
164 : 5054 : GetStrongRandBytes(*keydata);
165 [ - + ]: 5054 : } while (!Check(keydata->data()));
166 : 5054 : fCompressed = fCompressedIn;
167 : 5054 : }
168 : :
169 : 0 : bool CKey::Negate()
170 : : {
171 [ # # ]: 0 : assert(keydata);
172 : 0 : return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata->data());
173 : : }
174 : :
175 : 0 : CPrivKey CKey::GetPrivKey() const {
176 [ # # ]: 0 : assert(keydata);
177 : 0 : CPrivKey seckey;
178 : : int ret;
179 : : size_t seckeylen;
180 [ # # ]: 0 : seckey.resize(SIZE);
181 : 0 : seckeylen = SIZE;
182 [ # # # # ]: 0 : ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);
183 [ # # ]: 0 : assert(ret);
184 [ # # ]: 0 : seckey.resize(seckeylen);
185 : 0 : return seckey;
186 [ # # ]: 0 : }
187 : :
188 : 0 : CPubKey CKey::GetPubKey() const {
189 [ # # ]: 0 : assert(keydata);
190 : : secp256k1_pubkey pubkey;
191 : 0 : size_t clen = CPubKey::SIZE;
192 : 0 : CPubKey result;
193 : 0 : int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
194 [ # # ]: 0 : assert(ret);
195 : 0 : secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
196 [ # # ]: 0 : assert(result.size() == clen);
197 [ # # ]: 0 : assert(result.IsValid());
198 : 0 : return result;
199 : : }
200 : :
201 : : // Check that the sig has a low R value and will be less than 71 bytes
202 : 0 : bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
203 : : {
204 : : unsigned char compact_sig[64];
205 : 0 : secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
206 : :
207 : : // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
208 : : // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
209 : : // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
210 : : // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
211 : 0 : return compact_sig[0] < 0x80;
212 : : }
213 : :
214 : 0 : bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
215 [ # # ]: 0 : if (!keydata)
216 : 0 : return false;
217 : 0 : vchSig.resize(CPubKey::SIGNATURE_SIZE);
218 : 0 : size_t nSigLen = CPubKey::SIGNATURE_SIZE;
219 : 0 : unsigned char extra_entropy[32] = {0};
220 : 0 : WriteLE32(extra_entropy, test_case);
221 : : secp256k1_ecdsa_signature sig;
222 : 0 : uint32_t counter = 0;
223 [ # # # # ]: 0 : int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
224 : :
225 : : // Grind for low R
226 [ # # # # : 0 : while (ret && !SigHasLowR(&sig) && grind) {
# # ]
227 : 0 : WriteLE32(extra_entropy, ++counter);
228 : 0 : ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);
229 : : }
230 [ # # ]: 0 : assert(ret);
231 : 0 : secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
232 : 0 : vchSig.resize(nSigLen);
233 : : // Additional verification step to prevent using a potentially corrupted signature
234 : : secp256k1_pubkey pk;
235 : 0 : ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pk, begin());
236 [ # # ]: 0 : assert(ret);
237 : 0 : ret = secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pk);
238 [ # # ]: 0 : assert(ret);
239 : 0 : return true;
240 : 0 : }
241 : :
242 : 0 : bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
243 [ # # ]: 0 : if (pubkey.IsCompressed() != fCompressed) {
244 : 0 : return false;
245 : : }
246 : : unsigned char rnd[8];
247 [ # # ]: 0 : std::string str = "Bitcoin key verification\n";
248 : 0 : GetRandBytes(rnd);
249 [ # # ]: 0 : uint256 hash{Hash(str, rnd)};
250 : 0 : std::vector<unsigned char> vchSig;
251 [ # # ]: 0 : Sign(hash, vchSig);
252 [ # # ]: 0 : return pubkey.Verify(hash, vchSig);
253 : 0 : }
254 : :
255 : 0 : bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
256 [ # # ]: 0 : if (!keydata)
257 : 0 : return false;
258 : 0 : vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
259 : 0 : int rec = -1;
260 : : secp256k1_ecdsa_recoverable_signature rsig;
261 : 0 : int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &rsig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);
262 [ # # ]: 0 : assert(ret);
263 : 0 : ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &rsig);
264 [ # # ]: 0 : assert(ret);
265 [ # # ]: 0 : assert(rec != -1);
266 : 0 : vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
267 : : // Additional verification step to prevent using a potentially corrupted signature
268 : : secp256k1_pubkey epk, rpk;
269 : 0 : ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &epk, begin());
270 [ # # ]: 0 : assert(ret);
271 : 0 : ret = secp256k1_ecdsa_recover(secp256k1_context_static, &rpk, &rsig, hash.begin());
272 [ # # ]: 0 : assert(ret);
273 : 0 : ret = secp256k1_ec_pubkey_cmp(secp256k1_context_static, &epk, &rpk);
274 [ # # ]: 0 : assert(ret == 0);
275 : 0 : return true;
276 : 0 : }
277 : :
278 : 0 : bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
279 : : {
280 [ # # ]: 0 : assert(sig.size() == 64);
281 : : secp256k1_keypair keypair;
282 [ # # ]: 0 : if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, begin())) return false;
283 [ # # ]: 0 : if (merkle_root) {
284 : : secp256k1_xonly_pubkey pubkey;
285 [ # # ]: 0 : if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, &keypair)) return false;
286 : : unsigned char pubkey_bytes[32];
287 [ # # ]: 0 : if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey)) return false;
288 [ # # ]: 0 : uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
289 [ # # ]: 0 : if (!secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, &keypair, tweak.data())) return false;
290 : 0 : }
291 : 0 : bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), &keypair, aux.data());
292 [ # # ]: 0 : if (ret) {
293 : : // Additional verification step to prevent using a potentially corrupted signature
294 : : secp256k1_xonly_pubkey pubkey_verify;
295 : 0 : ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, &keypair);
296 : 0 : ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
297 : 0 : }
298 [ # # ]: 0 : if (!ret) memory_cleanse(sig.data(), sig.size());
299 : 0 : memory_cleanse(&keypair, sizeof(keypair));
300 : 0 : return ret;
301 : 0 : }
302 : :
303 : 0 : bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
304 : 0 : MakeKeyData();
305 [ # # ]: 0 : if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size())) {
306 : 0 : ClearKeyData();
307 : 0 : return false;
308 : : }
309 : 0 : fCompressed = vchPubKey.IsCompressed();
310 : :
311 [ # # ]: 0 : if (fSkipCheck)
312 : 0 : return true;
313 : :
314 : 0 : return VerifyPubKey(vchPubKey);
315 : 0 : }
316 : :
317 : 0 : bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
318 [ # # ]: 0 : assert(IsValid());
319 [ # # ]: 0 : assert(IsCompressed());
320 : 0 : std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
321 [ # # ]: 0 : if ((nChild >> 31) == 0) {
322 [ # # ]: 0 : CPubKey pubkey = GetPubKey();
323 [ # # # # ]: 0 : assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
324 [ # # # # : 0 : BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
# # ]
325 : 0 : } else {
326 [ # # # # ]: 0 : assert(size() == 32);
327 [ # # # # ]: 0 : BIP32Hash(cc, nChild, 0, begin(), vout.data());
328 : : }
329 [ # # ]: 0 : memcpy(ccChild.begin(), vout.data()+32, 32);
330 [ # # # # : 0 : keyChild.Set(begin(), begin() + 32, true);
# # ]
331 [ # # # # ]: 0 : bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
332 [ # # # # ]: 0 : if (!ret) keyChild.ClearKeyData();
333 : 0 : return ret;
334 : 0 : }
335 : :
336 : 5054 : EllSwiftPubKey CKey::EllSwiftCreate(Span<const std::byte> ent32) const
337 : : {
338 [ + - ]: 5054 : assert(keydata);
339 [ + - ]: 5054 : assert(ent32.size() == 32);
340 : : std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
341 : :
342 : 10108 : auto success = secp256k1_ellswift_create(secp256k1_context_sign,
343 : 5054 : UCharCast(encoded_pubkey.data()),
344 : 5054 : keydata->data(),
345 : 5054 : UCharCast(ent32.data()));
346 : :
347 : : // Should always succeed for valid keys (asserted above).
348 [ + - ]: 5054 : assert(success);
349 : 5054 : return {encoded_pubkey};
350 : : }
351 : :
352 : 335 : ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
353 : : {
354 [ + - ]: 335 : assert(keydata);
355 : :
356 : : ECDHSecret output;
357 : : // BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
358 : : // accordingly:
359 : 670 : bool success = secp256k1_ellswift_xdh(secp256k1_context_sign,
360 : 335 : UCharCast(output.data()),
361 [ + - ]: 335 : UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
362 [ + - ]: 335 : UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
363 : 335 : keydata->data(),
364 : 335 : initiating ? 0 : 1,
365 : 335 : secp256k1_ellswift_xdh_hash_function_bip324,
366 : : nullptr);
367 : : // Should always succeed for valid keys (assert above).
368 [ - + ]: 335 : assert(success);
369 : 335 : return output;
370 : : }
371 : :
372 : 0 : bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
373 [ # # ]: 0 : if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
374 : 0 : out.nDepth = nDepth + 1;
375 : 0 : CKeyID id = key.GetPubKey().GetID();
376 : 0 : memcpy(out.vchFingerprint, &id, 4);
377 : 0 : out.nChild = _nChild;
378 : 0 : return key.Derive(out.key, out.chaincode, _nChild, chaincode);
379 : 0 : }
380 : :
381 : 0 : void CExtKey::SetSeed(Span<const std::byte> seed)
382 : : {
383 : : static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
384 : 0 : std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
385 [ # # # # : 0 : CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data());
# # # # ]
386 [ # # ]: 0 : key.Set(vout.data(), vout.data() + 32, true);
387 [ # # ]: 0 : memcpy(chaincode.begin(), vout.data() + 32, 32);
388 : 0 : nDepth = 0;
389 : 0 : nChild = 0;
390 : 0 : memset(vchFingerprint, 0, sizeof(vchFingerprint));
391 : 0 : }
392 : :
393 : 0 : CExtPubKey CExtKey::Neuter() const {
394 : 0 : CExtPubKey ret;
395 : 0 : ret.nDepth = nDepth;
396 : 0 : memcpy(ret.vchFingerprint, vchFingerprint, 4);
397 : 0 : ret.nChild = nChild;
398 : 0 : ret.pubkey = key.GetPubKey();
399 : 0 : ret.chaincode = chaincode;
400 : 0 : return ret;
401 : : }
402 : :
403 : 0 : void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
404 : 0 : code[0] = nDepth;
405 : 0 : memcpy(code+1, vchFingerprint, 4);
406 : 0 : WriteBE32(code+5, nChild);
407 : 0 : memcpy(code+9, chaincode.begin(), 32);
408 : 0 : code[41] = 0;
409 [ # # ]: 0 : assert(key.size() == 32);
410 : 0 : memcpy(code+42, key.begin(), 32);
411 : 0 : }
412 : :
413 : 0 : void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
414 : 0 : nDepth = code[0];
415 : 0 : memcpy(vchFingerprint, code+1, 4);
416 : 0 : nChild = ReadBE32(code+5);
417 : 0 : memcpy(chaincode.begin(), code+9, 32);
418 : 0 : key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
419 [ # # # # : 0 : if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
# # ]
420 : 0 : }
421 : :
422 : 0 : bool ECC_InitSanityCheck() {
423 : 0 : CKey key;
424 [ # # ]: 0 : key.MakeNewKey(true);
425 [ # # ]: 0 : CPubKey pubkey = key.GetPubKey();
426 [ # # ]: 0 : return key.VerifyPubKey(pubkey);
427 : 0 : }
428 : :
429 : 1 : void ECC_Start() {
430 [ + - ]: 1 : assert(secp256k1_context_sign == nullptr);
431 : :
432 : 1 : secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
433 [ + - ]: 1 : assert(ctx != nullptr);
434 : :
435 : : {
436 : : // Pass in a random blinding seed to the secp256k1 context.
437 : 1 : std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
438 [ + - ]: 1 : GetRandBytes(vseed);
439 [ + - ]: 1 : bool ret = secp256k1_context_randomize(ctx, vseed.data());
440 [ + - ]: 1 : assert(ret);
441 : 1 : }
442 : :
443 : 1 : secp256k1_context_sign = ctx;
444 : 1 : }
445 : :
446 : 1 : void ECC_Stop() {
447 : 1 : secp256k1_context *ctx = secp256k1_context_sign;
448 : 1 : secp256k1_context_sign = nullptr;
449 : :
450 [ + - ]: 1 : if (ctx) {
451 : 1 : secp256k1_context_destroy(ctx);
452 : 1 : }
453 : 1 : }
|