Branch data Line data Source code
1 : : // Copyright (c) 2020 The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : // Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
6 : : // by Markku-Juhani O. Saarinen <mjos@iki.fi>
7 : :
8 : : #include <crypto/sha3.h>
9 : : #include <crypto/common.h>
10 : : #include <span.h>
11 : :
12 : : #include <algorithm>
13 : : #include <array> // For std::begin and std::end.
14 : :
15 : : #include <stdint.h>
16 : :
17 : : // Internal implementation code.
18 : : namespace
19 : : {
20 : 2851512 : uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); }
21 : : } // namespace
22 : :
23 : 4097 : void KeccakF(uint64_t (&st)[25])
24 : : {
25 : : static constexpr uint64_t RNDC[24] = {
26 : : 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
27 : : 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
28 : : 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
29 : : 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
30 : : 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
31 : : 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
32 : : };
33 : : static constexpr int ROUNDS = 24;
34 : :
35 [ + + ]: 102425 : for (int round = 0; round < ROUNDS; ++round) {
36 : : uint64_t bc0, bc1, bc2, bc3, bc4, t;
37 : :
38 : : // Theta
39 : 98328 : bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
40 : 98328 : bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
41 : 98328 : bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
42 : 98328 : bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
43 : 98328 : bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
44 : 98328 : t = bc4 ^ Rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t;
45 : 98328 : t = bc0 ^ Rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t;
46 : 98328 : t = bc1 ^ Rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t;
47 : 98328 : t = bc2 ^ Rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t;
48 : 98328 : t = bc3 ^ Rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t;
49 : :
50 : : // Rho Pi
51 : 98328 : t = st[1];
52 : 98328 : bc0 = st[10]; st[10] = Rotl(t, 1); t = bc0;
53 : 98328 : bc0 = st[7]; st[7] = Rotl(t, 3); t = bc0;
54 : 98328 : bc0 = st[11]; st[11] = Rotl(t, 6); t = bc0;
55 : 98328 : bc0 = st[17]; st[17] = Rotl(t, 10); t = bc0;
56 : 98328 : bc0 = st[18]; st[18] = Rotl(t, 15); t = bc0;
57 : 98328 : bc0 = st[3]; st[3] = Rotl(t, 21); t = bc0;
58 : 98328 : bc0 = st[5]; st[5] = Rotl(t, 28); t = bc0;
59 : 98328 : bc0 = st[16]; st[16] = Rotl(t, 36); t = bc0;
60 : 98328 : bc0 = st[8]; st[8] = Rotl(t, 45); t = bc0;
61 : 98328 : bc0 = st[21]; st[21] = Rotl(t, 55); t = bc0;
62 : 98328 : bc0 = st[24]; st[24] = Rotl(t, 2); t = bc0;
63 : 98328 : bc0 = st[4]; st[4] = Rotl(t, 14); t = bc0;
64 : 98328 : bc0 = st[15]; st[15] = Rotl(t, 27); t = bc0;
65 : 98328 : bc0 = st[23]; st[23] = Rotl(t, 41); t = bc0;
66 : 98328 : bc0 = st[19]; st[19] = Rotl(t, 56); t = bc0;
67 : 98328 : bc0 = st[13]; st[13] = Rotl(t, 8); t = bc0;
68 : 98328 : bc0 = st[12]; st[12] = Rotl(t, 25); t = bc0;
69 : 98328 : bc0 = st[2]; st[2] = Rotl(t, 43); t = bc0;
70 : 98328 : bc0 = st[20]; st[20] = Rotl(t, 62); t = bc0;
71 : 98328 : bc0 = st[14]; st[14] = Rotl(t, 18); t = bc0;
72 : 98328 : bc0 = st[22]; st[22] = Rotl(t, 39); t = bc0;
73 : 98328 : bc0 = st[9]; st[9] = Rotl(t, 61); t = bc0;
74 : 98328 : bc0 = st[6]; st[6] = Rotl(t, 20); t = bc0;
75 : 98328 : st[1] = Rotl(t, 44);
76 : :
77 : : // Chi Iota
78 : 98328 : bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
79 : 98328 : st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
80 : 98328 : st[1] = bc1 ^ (~bc2 & bc3);
81 : 98328 : st[2] = bc2 ^ (~bc3 & bc4);
82 : 98328 : st[3] = bc3 ^ (~bc4 & bc0);
83 : 98328 : st[4] = bc4 ^ (~bc0 & bc1);
84 : 98328 : bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
85 : 98328 : st[5] = bc0 ^ (~bc1 & bc2);
86 : 98328 : st[6] = bc1 ^ (~bc2 & bc3);
87 : 98328 : st[7] = bc2 ^ (~bc3 & bc4);
88 : 98328 : st[8] = bc3 ^ (~bc4 & bc0);
89 : 98328 : st[9] = bc4 ^ (~bc0 & bc1);
90 : 98328 : bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
91 : 98328 : st[10] = bc0 ^ (~bc1 & bc2);
92 : 98328 : st[11] = bc1 ^ (~bc2 & bc3);
93 : 98328 : st[12] = bc2 ^ (~bc3 & bc4);
94 : 98328 : st[13] = bc3 ^ (~bc4 & bc0);
95 : 98328 : st[14] = bc4 ^ (~bc0 & bc1);
96 : 98328 : bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
97 : 98328 : st[15] = bc0 ^ (~bc1 & bc2);
98 : 98328 : st[16] = bc1 ^ (~bc2 & bc3);
99 : 98328 : st[17] = bc2 ^ (~bc3 & bc4);
100 : 98328 : st[18] = bc3 ^ (~bc4 & bc0);
101 : 98328 : st[19] = bc4 ^ (~bc0 & bc1);
102 : 98328 : bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
103 : 98328 : st[20] = bc0 ^ (~bc1 & bc2);
104 : 98328 : st[21] = bc1 ^ (~bc2 & bc3);
105 : 98328 : st[22] = bc2 ^ (~bc3 & bc4);
106 : 98328 : st[23] = bc3 ^ (~bc4 & bc0);
107 : 98328 : st[24] = bc4 ^ (~bc0 & bc1);
108 : 98328 : }
109 : 4097 : }
110 : :
111 : 12291 : SHA3_256& SHA3_256::Write(Span<const unsigned char> data)
112 : : {
113 [ + + - + ]: 12291 : if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) {
114 : : // Fill the buffer and process it.
115 : 8194 : std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize);
116 : 8194 : data = data.subspan(sizeof(m_buffer) - m_bufsize);
117 : 8194 : m_state[m_pos++] ^= ReadLE64(m_buffer);
118 : 8194 : m_bufsize = 0;
119 [ + - ]: 8194 : if (m_pos == RATE_BUFFERS) {
120 : 0 : KeccakF(m_state);
121 : 0 : m_pos = 0;
122 : 0 : }
123 : 8194 : }
124 [ + + ]: 28679 : while (data.size() >= sizeof(m_buffer)) {
125 : : // Process chunks directly from the buffer.
126 : 16388 : m_state[m_pos++] ^= ReadLE64(data.data());
127 : 16388 : data = data.subspan(8);
128 [ + - ]: 16388 : if (m_pos == RATE_BUFFERS) {
129 : 0 : KeccakF(m_state);
130 : 0 : m_pos = 0;
131 : 0 : }
132 : : }
133 [ + + ]: 12291 : if (data.size()) {
134 : : // Keep the remainder in the buffer.
135 : 8194 : std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
136 : 8194 : m_bufsize += data.size();
137 : 8194 : }
138 : 12291 : return *this;
139 : : }
140 : :
141 : 4097 : SHA3_256& SHA3_256::Finalize(Span<unsigned char> output)
142 : : {
143 [ + - ]: 4097 : assert(output.size() == OUTPUT_SIZE);
144 : 4097 : std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
145 : 4097 : m_buffer[m_bufsize] ^= 0x06;
146 : 4097 : m_state[m_pos] ^= ReadLE64(m_buffer);
147 : 4097 : m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
148 : 4097 : KeccakF(m_state);
149 [ + + ]: 20485 : for (unsigned i = 0; i < 4; ++i) {
150 : 16388 : WriteLE64(output.data() + 8 * i, m_state[i]);
151 : 16388 : }
152 : 4097 : return *this;
153 : : }
154 : :
155 : 0 : SHA3_256& SHA3_256::Reset()
156 : : {
157 : 0 : m_bufsize = 0;
158 : 0 : m_pos = 0;
159 : 0 : std::fill(std::begin(m_state), std::end(m_state), 0);
160 : 0 : return *this;
161 : : }
|