Line data Source code
1 : // Copyright (c) 2019-2022 The Bitcoin Core developers
2 : // Distributed under the MIT software license, see the accompanying
3 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 :
5 : #include <chainparams.h>
6 : #include <hash.h>
7 : #include <net.h>
8 : #include <netmessagemaker.h>
9 : #include <protocol.h>
10 : #include <test/fuzz/FuzzedDataProvider.h>
11 : #include <test/fuzz/fuzz.h>
12 : #include <test/fuzz/util.h>
13 : #include <test/util/xoroshiro128plusplus.h>
14 : #include <util/chaintype.h>
15 :
16 : #include <cassert>
17 2 : #include <cstdint>
18 2 : #include <limits>
19 : #include <optional>
20 : #include <vector>
21 :
22 : namespace {
23 :
24 2 : std::vector<std::string> g_all_messages;
25 :
26 0 : void initialize_p2p_transport_serialization()
27 : {
28 0 : ECC_Start();
29 0 : SelectParams(ChainType::REGTEST);
30 0 : g_all_messages = getAllNetMessageTypes();
31 0 : std::sort(g_all_messages.begin(), g_all_messages.end());
32 0 : }
33 :
34 : } // namespace
35 :
36 4 : FUZZ_TARGET(p2p_transport_serialization, .init = initialize_p2p_transport_serialization)
37 : {
38 : // Construct transports for both sides, with dummy NodeIds.
39 0 : V1Transport recv_transport{NodeId{0}, SER_NETWORK, INIT_PROTO_VERSION};
40 0 : V1Transport send_transport{NodeId{1}, SER_NETWORK, INIT_PROTO_VERSION};
41 :
42 0 : FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
43 :
44 0 : auto checksum_assist = fuzzed_data_provider.ConsumeBool();
45 0 : auto magic_bytes_assist = fuzzed_data_provider.ConsumeBool();
46 0 : std::vector<uint8_t> mutable_msg_bytes;
47 :
48 0 : auto header_bytes_remaining = CMessageHeader::HEADER_SIZE;
49 0 : if (magic_bytes_assist) {
50 0 : auto msg_start = Params().MessageStart();
51 0 : for (size_t i = 0; i < CMessageHeader::MESSAGE_SIZE_SIZE; ++i) {
52 0 : mutable_msg_bytes.push_back(msg_start[i]);
53 0 : }
54 0 : header_bytes_remaining -= CMessageHeader::MESSAGE_SIZE_SIZE;
55 0 : }
56 :
57 0 : if (checksum_assist) {
58 0 : header_bytes_remaining -= CMessageHeader::CHECKSUM_SIZE;
59 0 : }
60 :
61 0 : auto header_random_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(header_bytes_remaining);
62 0 : mutable_msg_bytes.insert(mutable_msg_bytes.end(), header_random_bytes.begin(), header_random_bytes.end());
63 0 : auto payload_bytes = fuzzed_data_provider.ConsumeRemainingBytes<uint8_t>();
64 :
65 0 : if (checksum_assist && mutable_msg_bytes.size() == CMessageHeader::CHECKSUM_OFFSET) {
66 0 : CHash256 hasher;
67 : unsigned char hsh[32];
68 0 : hasher.Write(payload_bytes);
69 0 : hasher.Finalize(hsh);
70 0 : for (size_t i = 0; i < CMessageHeader::CHECKSUM_SIZE; ++i) {
71 0 : mutable_msg_bytes.push_back(hsh[i]);
72 0 : }
73 0 : }
74 2 :
75 0 : mutable_msg_bytes.insert(mutable_msg_bytes.end(), payload_bytes.begin(), payload_bytes.end());
76 0 : Span<const uint8_t> msg_bytes{mutable_msg_bytes};
77 0 : while (msg_bytes.size() > 0) {
78 0 : if (!recv_transport.ReceivedBytes(msg_bytes)) {
79 0 : break;
80 : }
81 0 : if (recv_transport.ReceivedMessageComplete()) {
82 0 : const std::chrono::microseconds m_time{std::numeric_limits<int64_t>::max()};
83 2 : bool reject_message{false};
84 0 : CNetMessage msg = recv_transport.GetReceivedMessage(m_time, reject_message);
85 0 : assert(msg.m_type.size() <= CMessageHeader::COMMAND_SIZE);
86 0 : assert(msg.m_raw_message_size <= mutable_msg_bytes.size());
87 0 : assert(msg.m_raw_message_size == CMessageHeader::HEADER_SIZE + msg.m_message_size);
88 0 : assert(msg.m_time == m_time);
89 :
90 0 : std::vector<unsigned char> header;
91 0 : auto msg2 = CNetMsgMaker{msg.m_recv.GetVersion()}.Make(msg.m_type, Span{msg.m_recv});
92 0 : bool queued = send_transport.SetMessageToSend(msg2);
93 0 : assert(queued);
94 0 : std::optional<bool> known_more;
95 0 : while (true) {
96 0 : const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend(false);
97 0 : if (known_more) assert(!to_send.empty() == *known_more);
98 0 : if (to_send.empty()) break;
99 0 : send_transport.MarkBytesSent(to_send.size());
100 0 : known_more = more;
101 : }
102 0 : }
103 : }
104 0 : }
105 :
106 : namespace {
107 :
108 : template<typename R>
109 0 : void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDataProvider& provider)
110 : {
111 : // Simulation test with two Transport objects, which send messages to each other, with
112 : // sending and receiving fragmented into multiple pieces that may be interleaved. It primarily
113 : // verifies that the sending and receiving side are compatible with each other, plus a few
114 : // sanity checks. It does not attempt to introduce errors in the communicated data.
115 :
116 : // Put the transports in an array for by-index access.
117 0 : const std::array<Transport*, 2> transports = {&initiator, &responder};
118 :
119 : // Two vectors representing in-flight bytes. inflight[i] is from transport[i] to transport[!i].
120 0 : std::array<std::vector<uint8_t>, 2> in_flight;
121 :
122 : // Two queues with expected messages. expected[i] is expected to arrive in transport[!i].
123 0 : std::array<std::deque<CSerializedNetMsg>, 2> expected;
124 :
125 : // Vectors with bytes last returned by GetBytesToSend() on transport[i].
126 0 : std::array<std::vector<uint8_t>, 2> to_send;
127 :
128 : // Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend(), for
129 : // both have_next_message false and true.
130 0 : std::array<std::optional<bool>, 2> last_more, last_more_next;
131 :
132 : // Whether more bytes to be sent are expected on transport[i], before and after
133 : // SetMessageToSend().
134 0 : std::array<std::optional<bool>, 2> expect_more, expect_more_next;
135 :
136 : // Function to consume a message type.
137 0 : auto msg_type_fn = [&]() {
138 0 : uint8_t v = provider.ConsumeIntegral<uint8_t>();
139 0 : if (v == 0xFF) {
140 : // If v is 0xFF, construct a valid (but possibly unknown) message type from the fuzz
141 : // data.
142 0 : std::string ret;
143 0 : while (ret.size() < CMessageHeader::COMMAND_SIZE) {
144 0 : char c = provider.ConsumeIntegral<char>();
145 : // Match the allowed characters in CMessageHeader::IsCommandValid(). Any other
146 : // character is interpreted as end.
147 0 : if (c < ' ' || c > 0x7E) break;
148 0 : ret += c;
149 : }
150 0 : return ret;
151 0 : } else {
152 : // Otherwise, use it as index into the list of known messages.
153 0 : return g_all_messages[v % g_all_messages.size()];
154 : }
155 0 : };
156 :
157 : // Function to construct a CSerializedNetMsg to send.
158 0 : auto make_msg_fn = [&](bool first) {
159 0 : CSerializedNetMsg msg;
160 0 : if (first) {
161 : // Always send a "version" message as first one.
162 0 : msg.m_type = "version";
163 0 : } else {
164 0 : msg.m_type = msg_type_fn();
165 : }
166 : // Determine size of message to send (limited to 75 kB for performance reasons).
167 0 : size_t size = provider.ConsumeIntegralInRange<uint32_t>(0, 75000);
168 : // Get payload of message from RNG.
169 0 : msg.data.resize(size);
170 0 : for (auto& v : msg.data) v = uint8_t(rng());
171 : // Return.
172 0 : return msg;
173 0 : };
174 :
175 : // The next message to be sent (initially version messages, but will be replaced once sent).
176 0 : std::array<CSerializedNetMsg, 2> next_msg = {
177 0 : make_msg_fn(/*first=*/true),
178 0 : make_msg_fn(/*first=*/true)
179 : };
180 :
181 : // Wrapper around transport[i]->GetBytesToSend() that performs sanity checks.
182 0 : auto bytes_to_send_fn = [&](int side) -> Transport::BytesToSend {
183 : // Invoke GetBytesToSend twice (for have_next_message = {false, true}). This function does
184 : // not modify state (it's const), and only the "more" return value should differ between
185 : // the calls.
186 0 : const auto& [bytes, more_nonext, msg_type] = transports[side]->GetBytesToSend(false);
187 0 : const auto& [bytes_next, more_next, msg_type_next] = transports[side]->GetBytesToSend(true);
188 : // Compare with expected more.
189 0 : if (expect_more[side].has_value()) assert(!bytes.empty() == *expect_more[side]);
190 : // Verify consistency between the two results.
191 0 : assert(bytes == bytes_next);
192 0 : assert(msg_type == msg_type_next);
193 0 : if (more_nonext) assert(more_next);
194 : // Compare with previously reported output.
195 0 : assert(to_send[side].size() <= bytes.size());
196 0 : assert(to_send[side] == Span{bytes}.first(to_send[side].size()));
197 0 : to_send[side].resize(bytes.size());
198 0 : std::copy(bytes.begin(), bytes.end(), to_send[side].begin());
199 : // Remember 'more' results.
200 0 : last_more[side] = {more_nonext};
201 0 : last_more_next[side] = {more_next};
202 : // Return.
203 0 : return {bytes, more_nonext, msg_type};
204 : };
205 :
206 : // Function to make side send a new message.
207 0 : auto new_msg_fn = [&](int side) {
208 : // Don't do anything if there are too many unreceived messages already.
209 0 : if (expected[side].size() >= 16) return;
210 : // Try to send (a copy of) the message in next_msg[side].
211 0 : CSerializedNetMsg msg = next_msg[side].Copy();
212 0 : bool queued = transports[side]->SetMessageToSend(msg);
213 : // Update expected more data.
214 0 : expect_more[side] = expect_more_next[side];
215 0 : expect_more_next[side] = std::nullopt;
216 : // Verify consistency of GetBytesToSend after SetMessageToSend
217 0 : bytes_to_send_fn(/*side=*/side);
218 0 : if (queued) {
219 : // Remember that this message is now expected by the receiver.
220 0 : expected[side].emplace_back(std::move(next_msg[side]));
221 : // Construct a new next message to send.
222 0 : next_msg[side] = make_msg_fn(/*first=*/false);
223 0 : }
224 0 : };
225 :
226 : // Function to make side send out bytes (if any).
227 0 : auto send_fn = [&](int side, bool everything = false) {
228 0 : const auto& [bytes, more, msg_type] = bytes_to_send_fn(/*side=*/side);
229 : // Don't do anything if no bytes to send.
230 0 : if (bytes.empty()) return false;
231 0 : size_t send_now = everything ? bytes.size() : provider.ConsumeIntegralInRange<size_t>(0, bytes.size());
232 0 : if (send_now == 0) return false;
233 : // Add bytes to the in-flight queue, and mark those bytes as consumed.
234 0 : in_flight[side].insert(in_flight[side].end(), bytes.begin(), bytes.begin() + send_now);
235 0 : transports[side]->MarkBytesSent(send_now);
236 : // If all to-be-sent bytes were sent, move last_more data to expect_more data.
237 0 : if (send_now == bytes.size()) {
238 0 : expect_more[side] = last_more[side];
239 0 : expect_more_next[side] = last_more_next[side];
240 0 : }
241 : // Remove the bytes from the last reported to-be-sent vector.
242 0 : assert(to_send[side].size() >= send_now);
243 0 : to_send[side].erase(to_send[side].begin(), to_send[side].begin() + send_now);
244 : // Verify that GetBytesToSend gives a result consistent with earlier.
245 0 : bytes_to_send_fn(/*side=*/side);
246 : // Return whether anything was sent.
247 0 : return send_now > 0;
248 0 : };
249 :
250 : // Function to make !side receive bytes (if any).
251 0 : auto recv_fn = [&](int side, bool everything = false) {
252 : // Don't do anything if no bytes in flight.
253 0 : if (in_flight[side].empty()) return false;
254 : // Decide span to receive
255 0 : size_t to_recv_len = in_flight[side].size();
256 0 : if (!everything) to_recv_len = provider.ConsumeIntegralInRange<size_t>(0, to_recv_len);
257 0 : Span<const uint8_t> to_recv = Span{in_flight[side]}.first(to_recv_len);
258 : // Process those bytes
259 0 : while (!to_recv.empty()) {
260 0 : size_t old_len = to_recv.size();
261 0 : bool ret = transports[!side]->ReceivedBytes(to_recv);
262 : // Bytes must always be accepted, as this test does not introduce any errors in
263 : // communication.
264 0 : assert(ret);
265 : // Clear cached expected 'more' information: if certainly no more data was to be sent
266 : // before, receiving bytes makes this uncertain.
267 0 : if (expect_more[!side] == false) expect_more[!side] = std::nullopt;
268 0 : if (expect_more_next[!side] == false) expect_more_next[!side] = std::nullopt;
269 : // Verify consistency of GetBytesToSend after ReceivedBytes
270 0 : bytes_to_send_fn(/*side=*/!side);
271 0 : bool progress = to_recv.size() < old_len;
272 0 : if (transports[!side]->ReceivedMessageComplete()) {
273 0 : bool reject{false};
274 0 : auto received = transports[!side]->GetReceivedMessage({}, reject);
275 : // Receiving must succeed.
276 0 : assert(!reject);
277 : // There must be a corresponding expected message.
278 0 : assert(!expected[side].empty());
279 : // The m_message_size field must be correct.
280 0 : assert(received.m_message_size == received.m_recv.size());
281 : // The m_type must match what is expected.
282 0 : assert(received.m_type == expected[side].front().m_type);
283 : // The data must match what is expected.
284 0 : assert(MakeByteSpan(received.m_recv) == MakeByteSpan(expected[side].front().data));
285 0 : expected[side].pop_front();
286 0 : progress = true;
287 0 : }
288 : // Progress must be made (by processing incoming bytes and/or returning complete
289 : // messages) until all received bytes are processed.
290 0 : assert(progress);
291 : }
292 : // Remove the processed bytes from the in_flight buffer.
293 0 : in_flight[side].erase(in_flight[side].begin(), in_flight[side].begin() + to_recv_len);
294 : // Return whether anything was received.
295 0 : return to_recv_len > 0;
296 0 : };
297 :
298 : // Main loop, interleaving new messages, sends, and receives.
299 0 : LIMITED_WHILE(provider.remaining_bytes(), 1000) {
300 0 : CallOneOf(provider,
301 : // (Try to) give the next message to the transport.
302 0 : [&] { new_msg_fn(/*side=*/0); },
303 0 : [&] { new_msg_fn(/*side=*/1); },
304 : // (Try to) send some bytes from the transport to the network.
305 0 : [&] { send_fn(/*side=*/0); },
306 0 : [&] { send_fn(/*side=*/1); },
307 : // (Try to) receive bytes from the network, converting to messages.
308 0 : [&] { recv_fn(/*side=*/0); },
309 0 : [&] { recv_fn(/*side=*/1); }
310 : );
311 0 : }
312 :
313 : // When we're done, perform sends and receives of existing messages to flush anything already
314 : // in flight.
315 0 : while (true) {
316 0 : bool any = false;
317 0 : if (send_fn(/*side=*/0, /*everything=*/true)) any = true;
318 0 : if (send_fn(/*side=*/1, /*everything=*/true)) any = true;
319 0 : if (recv_fn(/*side=*/0, /*everything=*/true)) any = true;
320 0 : if (recv_fn(/*side=*/1, /*everything=*/true)) any = true;
321 0 : if (!any) break;
322 : }
323 :
324 : // Make sure nothing is left in flight.
325 0 : assert(in_flight[0].empty());
326 0 : assert(in_flight[1].empty());
327 :
328 : // Make sure all expected messages were received.
329 0 : assert(expected[0].empty());
330 0 : assert(expected[1].empty());
331 0 : }
332 :
333 0 : std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
334 : {
335 0 : return std::make_unique<V1Transport>(nodeid, SER_NETWORK, INIT_PROTO_VERSION);
336 : }
337 :
338 : template<typename RNG>
339 0 : std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
340 : {
341 : // Retrieve key
342 0 : auto key = ConsumePrivateKey(provider);
343 0 : if (!key.IsValid()) return {};
344 : // Construct garbage
345 0 : size_t garb_len = provider.ConsumeIntegralInRange<size_t>(0, V2Transport::MAX_GARBAGE_LEN);
346 0 : std::vector<uint8_t> garb;
347 0 : if (garb_len <= 64) {
348 : // When the garbage length is up to 64 bytes, read it directly from the fuzzer input.
349 0 : garb = provider.ConsumeBytes<uint8_t>(garb_len);
350 0 : garb.resize(garb_len);
351 0 : } else {
352 : // If it's longer, generate it from the RNG. This avoids having large amounts of
353 : // (hopefully) irrelevant data needing to be stored in the fuzzer data.
354 0 : for (auto& v : garb) v = uint8_t(rng());
355 : }
356 : // Retrieve entropy
357 0 : auto ent = provider.ConsumeBytes<std::byte>(32);
358 0 : ent.resize(32);
359 : // Use as entropy SHA256(ent || garbage). This prevents a situation where the fuzzer manages to
360 : // include the garbage terminator (which is a function of both ellswift keys) in the garbage.
361 : // This is extremely unlikely (~2^-116) with random keys/garbage, but the fuzzer can choose
362 : // both non-randomly and dependently. Since the entropy is hashed anyway inside the ellswift
363 : // computation, no coverage should be lost by using a hash as entropy, and it removes the
364 : // possibility of garbage that happens to contain what is effectively a hash of the keys.
365 0 : CSHA256().Write(UCharCast(ent.data()), ent.size())
366 0 : .Write(garb.data(), garb.size())
367 0 : .Finalize(UCharCast(ent.data()));
368 :
369 0 : return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, std::move(garb));
370 0 : }
371 :
372 : } // namespace
373 :
374 4 : FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serialization)
375 : {
376 : // Test with two V1 transports talking to each other.
377 0 : FuzzedDataProvider provider{buffer.data(), buffer.size()};
378 0 : XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
379 0 : auto t1 = MakeV1Transport(NodeId{0});
380 0 : auto t2 = MakeV1Transport(NodeId{1});
381 0 : if (!t1 || !t2) return;
382 0 : SimulationTest(*t1, *t2, rng, provider);
383 0 : }
384 :
385 4 : FUZZ_TARGET(p2p_transport_bidirectional_v2, .init = initialize_p2p_transport_serialization)
386 : {
387 : // Test with two V2 transports talking to each other.
388 0 : FuzzedDataProvider provider{buffer.data(), buffer.size()};
389 0 : XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
390 0 : auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
391 0 : auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
392 0 : if (!t1 || !t2) return;
393 0 : SimulationTest(*t1, *t2, rng, provider);
394 0 : }
395 :
396 4 : FUZZ_TARGET(p2p_transport_bidirectional_v1v2, .init = initialize_p2p_transport_serialization)
397 : {
398 : // Test with a V1 initiator talking to a V2 responder.
399 0 : FuzzedDataProvider provider{buffer.data(), buffer.size()};
400 0 : XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
401 0 : auto t1 = MakeV1Transport(NodeId{0});
402 0 : auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
403 0 : if (!t1 || !t2) return;
404 0 : SimulationTest(*t1, *t2, rng, provider);
405 0 : }
|