Line data Source code
1 : // Copyright (c) 2020-2022 The Bitcoin Core developers
2 : // Distributed under the MIT software license, see the accompanying
3 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 :
5 : #include <chainparams.h>
6 : #include <key.h>
7 : #include <key_io.h>
8 : #include <outputtype.h>
9 : #include <policy/policy.h>
10 : #include <pubkey.h>
11 : #include <rpc/util.h>
12 : #include <script/keyorigin.h>
13 : #include <script/script.h>
14 : #include <script/sign.h>
15 : #include <script/signingprovider.h>
16 : #include <script/solver.h>
17 2 : #include <streams.h>
18 2 : #include <test/fuzz/FuzzedDataProvider.h>
19 : #include <test/fuzz/fuzz.h>
20 : #include <test/fuzz/util.h>
21 : #include <util/chaintype.h>
22 : #include <util/strencodings.h>
23 :
24 : #include <array>
25 : #include <cassert>
26 : #include <cstddef>
27 2 : #include <cstdint>
28 : #include <numeric>
29 : #include <optional>
30 : #include <string>
31 : #include <vector>
32 :
33 0 : void initialize_key()
34 : {
35 0 : ECC_Start();
36 0 : SelectParams(ChainType::REGTEST);
37 0 : }
38 :
39 4 : FUZZ_TARGET(key, .init = initialize_key)
40 : {
41 0 : const CKey key = [&] {
42 0 : CKey k;
43 0 : k.Set(buffer.begin(), buffer.end(), true);
44 0 : return k;
45 0 : }();
46 0 : if (!key.IsValid()) {
47 0 : return;
48 : }
49 :
50 : {
51 0 : assert(key.begin() + key.size() == key.end());
52 0 : assert(key.IsCompressed());
53 0 : assert(key.size() == 32);
54 0 : assert(DecodeSecret(EncodeSecret(key)) == key);
55 : }
56 :
57 : {
58 0 : CKey invalid_key;
59 0 : assert(!(invalid_key == key));
60 0 : assert(!invalid_key.IsCompressed());
61 0 : assert(!invalid_key.IsValid());
62 0 : assert(invalid_key.size() == 0);
63 0 : }
64 :
65 : {
66 0 : CKey uncompressed_key;
67 0 : uncompressed_key.Set(buffer.begin(), buffer.end(), false);
68 0 : assert(!(uncompressed_key == key));
69 0 : assert(!uncompressed_key.IsCompressed());
70 0 : assert(key.size() == 32);
71 0 : assert(uncompressed_key.begin() + uncompressed_key.size() == uncompressed_key.end());
72 0 : assert(uncompressed_key.IsValid());
73 0 : }
74 2 :
75 : {
76 0 : CKey copied_key;
77 0 : copied_key.Set(key.begin(), key.end(), key.IsCompressed());
78 0 : assert(copied_key == key);
79 0 : }
80 :
81 : {
82 0 : CKey negated_key = key;
83 0 : negated_key.Negate();
84 0 : assert(negated_key.IsValid());
85 0 : assert(!(negated_key == key));
86 :
87 0 : negated_key.Negate();
88 0 : assert(negated_key == key);
89 0 : }
90 :
91 0 : const uint256 random_uint256 = Hash(buffer);
92 :
93 : {
94 0 : CKey child_key;
95 0 : ChainCode child_chaincode;
96 0 : const bool ok = key.Derive(child_key, child_chaincode, 0, random_uint256);
97 0 : assert(ok);
98 0 : assert(child_key.IsValid());
99 0 : assert(!(child_key == key));
100 0 : assert(child_chaincode != random_uint256);
101 0 : }
102 :
103 0 : const CPubKey pubkey = key.GetPubKey();
104 :
105 : {
106 0 : assert(pubkey.size() == 33);
107 0 : assert(key.VerifyPubKey(pubkey));
108 0 : assert(pubkey.GetHash() != random_uint256);
109 0 : assert(pubkey.begin() + pubkey.size() == pubkey.end());
110 0 : assert(pubkey.data() == pubkey.begin());
111 0 : assert(pubkey.IsCompressed());
112 0 : assert(pubkey.IsValid());
113 0 : assert(pubkey.IsFullyValid());
114 0 : assert(HexToPubKey(HexStr(pubkey)) == pubkey);
115 0 : assert(GetAllDestinationsForKey(pubkey).size() == 3);
116 : }
117 :
118 : {
119 0 : DataStream data_stream{};
120 0 : pubkey.Serialize(data_stream);
121 :
122 0 : CPubKey pubkey_deserialized;
123 0 : pubkey_deserialized.Unserialize(data_stream);
124 0 : assert(pubkey_deserialized == pubkey);
125 0 : }
126 :
127 : {
128 0 : const CScript tx_pubkey_script = GetScriptForRawPubKey(pubkey);
129 0 : assert(!tx_pubkey_script.IsPayToScriptHash());
130 0 : assert(!tx_pubkey_script.IsPayToWitnessScriptHash());
131 0 : assert(!tx_pubkey_script.IsPushOnly());
132 0 : assert(!tx_pubkey_script.IsUnspendable());
133 0 : assert(tx_pubkey_script.HasValidOps());
134 0 : assert(tx_pubkey_script.size() == 35);
135 :
136 0 : const CScript tx_multisig_script = GetScriptForMultisig(1, {pubkey});
137 0 : assert(!tx_multisig_script.IsPayToScriptHash());
138 0 : assert(!tx_multisig_script.IsPayToWitnessScriptHash());
139 0 : assert(!tx_multisig_script.IsPushOnly());
140 0 : assert(!tx_multisig_script.IsUnspendable());
141 0 : assert(tx_multisig_script.HasValidOps());
142 0 : assert(tx_multisig_script.size() == 37);
143 :
144 0 : FillableSigningProvider fillable_signing_provider;
145 0 : assert(!IsSegWitOutput(fillable_signing_provider, tx_pubkey_script));
146 0 : assert(!IsSegWitOutput(fillable_signing_provider, tx_multisig_script));
147 0 : assert(fillable_signing_provider.GetKeys().size() == 0);
148 0 : assert(!fillable_signing_provider.HaveKey(pubkey.GetID()));
149 :
150 0 : const bool ok_add_key = fillable_signing_provider.AddKey(key);
151 0 : assert(ok_add_key);
152 0 : assert(fillable_signing_provider.HaveKey(pubkey.GetID()));
153 :
154 0 : FillableSigningProvider fillable_signing_provider_pub;
155 0 : assert(!fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
156 :
157 0 : const bool ok_add_key_pubkey = fillable_signing_provider_pub.AddKeyPubKey(key, pubkey);
158 0 : assert(ok_add_key_pubkey);
159 0 : assert(fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
160 :
161 : TxoutType which_type_tx_pubkey;
162 0 : const bool is_standard_tx_pubkey = IsStandard(tx_pubkey_script, std::nullopt, which_type_tx_pubkey);
163 0 : assert(is_standard_tx_pubkey);
164 0 : assert(which_type_tx_pubkey == TxoutType::PUBKEY);
165 :
166 : TxoutType which_type_tx_multisig;
167 0 : const bool is_standard_tx_multisig = IsStandard(tx_multisig_script, std::nullopt, which_type_tx_multisig);
168 0 : assert(is_standard_tx_multisig);
169 0 : assert(which_type_tx_multisig == TxoutType::MULTISIG);
170 :
171 0 : std::vector<std::vector<unsigned char>> v_solutions_ret_tx_pubkey;
172 0 : const TxoutType outtype_tx_pubkey = Solver(tx_pubkey_script, v_solutions_ret_tx_pubkey);
173 0 : assert(outtype_tx_pubkey == TxoutType::PUBKEY);
174 0 : assert(v_solutions_ret_tx_pubkey.size() == 1);
175 0 : assert(v_solutions_ret_tx_pubkey[0].size() == 33);
176 :
177 0 : std::vector<std::vector<unsigned char>> v_solutions_ret_tx_multisig;
178 0 : const TxoutType outtype_tx_multisig = Solver(tx_multisig_script, v_solutions_ret_tx_multisig);
179 0 : assert(outtype_tx_multisig == TxoutType::MULTISIG);
180 0 : assert(v_solutions_ret_tx_multisig.size() == 3);
181 0 : assert(v_solutions_ret_tx_multisig[0].size() == 1);
182 0 : assert(v_solutions_ret_tx_multisig[1].size() == 33);
183 0 : assert(v_solutions_ret_tx_multisig[2].size() == 1);
184 :
185 0 : OutputType output_type{};
186 0 : const CTxDestination tx_destination = GetDestinationForKey(pubkey, output_type);
187 0 : assert(output_type == OutputType::LEGACY);
188 0 : assert(IsValidDestination(tx_destination));
189 0 : assert(PKHash{pubkey} == *std::get_if<PKHash>(&tx_destination));
190 :
191 0 : const CScript script_for_destination = GetScriptForDestination(tx_destination);
192 0 : assert(script_for_destination.size() == 25);
193 :
194 0 : const std::string destination_address = EncodeDestination(tx_destination);
195 0 : assert(DecodeDestination(destination_address) == tx_destination);
196 :
197 0 : const CPubKey pubkey_from_address_string = AddrToPubKey(fillable_signing_provider, destination_address);
198 0 : assert(pubkey_from_address_string == pubkey);
199 :
200 0 : CKeyID key_id = pubkey.GetID();
201 0 : assert(!key_id.IsNull());
202 0 : assert(key_id == CKeyID{key_id});
203 0 : assert(key_id == GetKeyForDestination(fillable_signing_provider, tx_destination));
204 :
205 0 : CPubKey pubkey_out;
206 0 : const bool ok_get_pubkey = fillable_signing_provider.GetPubKey(key_id, pubkey_out);
207 0 : assert(ok_get_pubkey);
208 :
209 0 : CKey key_out;
210 0 : const bool ok_get_key = fillable_signing_provider.GetKey(key_id, key_out);
211 0 : assert(ok_get_key);
212 0 : assert(fillable_signing_provider.GetKeys().size() == 1);
213 0 : assert(fillable_signing_provider.HaveKey(key_id));
214 :
215 0 : KeyOriginInfo key_origin_info;
216 0 : const bool ok_get_key_origin = fillable_signing_provider.GetKeyOrigin(key_id, key_origin_info);
217 0 : assert(!ok_get_key_origin);
218 0 : }
219 :
220 : {
221 0 : const std::vector<unsigned char> vch_pubkey{pubkey.begin(), pubkey.end()};
222 0 : assert(CPubKey::ValidSize(vch_pubkey));
223 0 : assert(!CPubKey::ValidSize({pubkey.begin(), pubkey.begin() + pubkey.size() - 1}));
224 :
225 0 : const CPubKey pubkey_ctor_1{vch_pubkey};
226 0 : assert(pubkey == pubkey_ctor_1);
227 :
228 0 : const CPubKey pubkey_ctor_2{vch_pubkey.begin(), vch_pubkey.end()};
229 0 : assert(pubkey == pubkey_ctor_2);
230 :
231 0 : CPubKey pubkey_set;
232 0 : pubkey_set.Set(vch_pubkey.begin(), vch_pubkey.end());
233 0 : assert(pubkey == pubkey_set);
234 0 : }
235 :
236 : {
237 0 : const CPubKey invalid_pubkey{};
238 0 : assert(!invalid_pubkey.IsValid());
239 0 : assert(!invalid_pubkey.IsFullyValid());
240 0 : assert(!(pubkey == invalid_pubkey));
241 0 : assert(pubkey != invalid_pubkey);
242 0 : assert(pubkey < invalid_pubkey);
243 : }
244 :
245 : {
246 : // Cover CPubKey's operator[](unsigned int pos)
247 0 : unsigned int sum = 0;
248 0 : for (size_t i = 0; i < pubkey.size(); ++i) {
249 0 : sum += pubkey[i];
250 0 : }
251 0 : assert(std::accumulate(pubkey.begin(), pubkey.end(), 0U) == sum);
252 : }
253 :
254 : {
255 0 : CPubKey decompressed_pubkey = pubkey;
256 0 : assert(decompressed_pubkey.IsCompressed());
257 :
258 0 : const bool ok = decompressed_pubkey.Decompress();
259 0 : assert(ok);
260 0 : assert(!decompressed_pubkey.IsCompressed());
261 0 : assert(decompressed_pubkey.size() == 65);
262 : }
263 :
264 : {
265 0 : std::vector<unsigned char> vch_sig;
266 0 : const bool ok = key.Sign(random_uint256, vch_sig, false);
267 0 : assert(ok);
268 0 : assert(pubkey.Verify(random_uint256, vch_sig));
269 0 : assert(CPubKey::CheckLowS(vch_sig));
270 :
271 0 : const std::vector<unsigned char> vch_invalid_sig{vch_sig.begin(), vch_sig.begin() + vch_sig.size() - 1};
272 0 : assert(!pubkey.Verify(random_uint256, vch_invalid_sig));
273 0 : assert(!CPubKey::CheckLowS(vch_invalid_sig));
274 0 : }
275 :
276 : {
277 0 : std::vector<unsigned char> vch_compact_sig;
278 0 : const bool ok_sign_compact = key.SignCompact(random_uint256, vch_compact_sig);
279 0 : assert(ok_sign_compact);
280 :
281 0 : CPubKey recover_pubkey;
282 0 : const bool ok_recover_compact = recover_pubkey.RecoverCompact(random_uint256, vch_compact_sig);
283 0 : assert(ok_recover_compact);
284 0 : assert(recover_pubkey == pubkey);
285 0 : }
286 :
287 : {
288 0 : CPubKey child_pubkey;
289 0 : ChainCode child_chaincode;
290 0 : const bool ok = pubkey.Derive(child_pubkey, child_chaincode, 0, random_uint256);
291 0 : assert(ok);
292 0 : assert(child_pubkey != pubkey);
293 0 : assert(child_pubkey.IsCompressed());
294 0 : assert(child_pubkey.IsFullyValid());
295 0 : assert(child_pubkey.IsValid());
296 0 : assert(child_pubkey.size() == 33);
297 0 : assert(child_chaincode != random_uint256);
298 : }
299 :
300 0 : const CPrivKey priv_key = key.GetPrivKey();
301 :
302 : {
303 0 : for (const bool skip_check : {true, false}) {
304 0 : CKey loaded_key;
305 0 : const bool ok = loaded_key.Load(priv_key, pubkey, skip_check);
306 0 : assert(ok);
307 0 : assert(key == loaded_key);
308 0 : }
309 : }
310 0 : }
311 :
312 4 : FUZZ_TARGET(ellswift_roundtrip, .init = initialize_key)
313 : {
314 0 : FuzzedDataProvider fdp{buffer.data(), buffer.size()};
315 :
316 0 : CKey key = ConsumePrivateKey(fdp, /*compressed=*/true);
317 0 : if (!key.IsValid()) return;
318 :
319 0 : auto ent32 = fdp.ConsumeBytes<std::byte>(32);
320 0 : ent32.resize(32);
321 :
322 0 : auto encoded_ellswift = key.EllSwiftCreate(ent32);
323 0 : auto decoded_pubkey = encoded_ellswift.Decode();
324 :
325 0 : assert(key.VerifyPubKey(decoded_pubkey));
326 0 : }
327 :
328 4 : FUZZ_TARGET(bip324_ecdh, .init = initialize_key)
329 : {
330 0 : FuzzedDataProvider fdp{buffer.data(), buffer.size()};
331 :
332 : // We generate private key, k1.
333 0 : CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true);
334 0 : if (!k1.IsValid()) return;
335 :
336 : // They generate private key, k2.
337 0 : CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true);
338 0 : if (!k2.IsValid()) return;
339 :
340 : // We construct an ellswift encoding for our key, k1_ellswift.
341 0 : auto ent32_1 = fdp.ConsumeBytes<std::byte>(32);
342 0 : ent32_1.resize(32);
343 0 : auto k1_ellswift = k1.EllSwiftCreate(ent32_1);
344 :
345 : // They construct an ellswift encoding for their key, k2_ellswift.
346 0 : auto ent32_2 = fdp.ConsumeBytes<std::byte>(32);
347 0 : ent32_2.resize(32);
348 0 : auto k2_ellswift = k2.EllSwiftCreate(ent32_2);
349 :
350 : // They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad.
351 0 : auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32);
352 0 : ent32_2_bad.resize(32);
353 0 : auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad);
354 0 : assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift));
355 :
356 : // Determine who is who.
357 0 : bool initiating = fdp.ConsumeBool();
358 :
359 : // We compute our shared secret using our key and their public key.
360 0 : auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating);
361 : // They compute their shared secret using their key and our public key.
362 0 : auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating);
363 : // Those must match, as everyone is behaving correctly.
364 0 : assert(ecdh_secret_1 == ecdh_secret_2);
365 :
366 0 : if (k1_ellswift != k2_ellswift) {
367 : // Unless the two keys are exactly identical, acting as the wrong party breaks things.
368 0 : auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating);
369 0 : assert(ecdh_secret_bad != ecdh_secret_1);
370 0 : }
371 :
372 0 : if (k2_ellswift_bad != k2_ellswift) {
373 : // Unless both encodings created by them are identical, using the second one breaks things.
374 0 : auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating);
375 0 : assert(ecdh_secret_bad != ecdh_secret_1);
376 0 : }
377 0 : }
|