LCOV - code coverage report
Current view: top level - src/test/fuzz - coinscache_sim.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 2 276 0.7 %
Date: 2023-09-26 12:08:55 Functions: 2 35 5.7 %

          Line data    Source code
       1             : // Copyright (c) 2023 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #include <coins.h>
       6             : #include <crypto/sha256.h>
       7             : #include <primitives/transaction.h>
       8             : #include <test/fuzz/fuzz.h>
       9             : #include <test/fuzz/FuzzedDataProvider.h>
      10             : #include <test/fuzz/util.h>
      11             : 
      12             : #include <assert.h>
      13             : #include <optional>
      14             : #include <memory>
      15             : #include <stdint.h>
      16             : #include <vector>
      17             : 
      18             : namespace {
      19             : 
      20             : /** Number of distinct COutPoint values used in this test. */
      21             : constexpr uint32_t NUM_OUTPOINTS = 256;
      22             : /** Number of distinct Coin values used in this test (ignoring nHeight). */
      23             : constexpr uint32_t NUM_COINS = 256;
      24             : /** Maximum number CCoinsViewCache objects used in this test. */
      25           2 : constexpr uint32_t MAX_CACHES = 4;
      26             : /** Data type large enough to hold NUM_COINS-1. */
      27             : using coinidx_type = uint8_t;
      28             : 
      29           0 : struct PrecomputedData
      30             : {
      31             :     //! Randomly generated COutPoint values.
      32             :     COutPoint outpoints[NUM_OUTPOINTS];
      33             : 
      34             :     //! Randomly generated Coin values.
      35             :     Coin coins[NUM_COINS];
      36             : 
      37           0 :     PrecomputedData()
      38             :     {
      39             :         static const uint8_t PREFIX_O[1] = {'o'}; /** Hash prefix for outpoint hashes. */
      40             :         static const uint8_t PREFIX_S[1] = {'s'}; /** Hash prefix for coins scriptPubKeys. */
      41             :         static const uint8_t PREFIX_M[1] = {'m'}; /** Hash prefix for coins nValue/fCoinBase. */
      42             : 
      43           0 :         for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) {
      44           0 :             uint32_t idx = (i * 1200U) >> 12; /* Map 3 or 4 entries to same txid. */
      45           0 :             const uint8_t ser[4] = {uint8_t(idx), uint8_t(idx >> 8), uint8_t(idx >> 16), uint8_t(idx >> 24)};
      46           0 :             CSHA256().Write(PREFIX_O, 1).Write(ser, sizeof(ser)).Finalize(outpoints[i].hash.begin());
      47           0 :             outpoints[i].n = i;
      48           0 :         }
      49             : 
      50           0 :         for (uint32_t i = 0; i < NUM_COINS; ++i) {
      51           0 :             const uint8_t ser[4] = {uint8_t(i), uint8_t(i >> 8), uint8_t(i >> 16), uint8_t(i >> 24)};
      52           0 :             uint256 hash;
      53           0 :             CSHA256().Write(PREFIX_S, 1).Write(ser, sizeof(ser)).Finalize(hash.begin());
      54             :             /* Convert hash to scriptPubkeys (of different lengths, so SanityCheck's cached memory
      55             :              * usage check has a chance to detect mismatches). */
      56           0 :             switch (i % 5U) {
      57             :             case 0: /* P2PKH */
      58           0 :                 coins[i].out.scriptPubKey.resize(25);
      59           0 :                 coins[i].out.scriptPubKey[0] = OP_DUP;
      60           0 :                 coins[i].out.scriptPubKey[1] = OP_HASH160;
      61           0 :                 coins[i].out.scriptPubKey[2] = 20;
      62           0 :                 std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 3);
      63           0 :                 coins[i].out.scriptPubKey[23] = OP_EQUALVERIFY;
      64           0 :                 coins[i].out.scriptPubKey[24] = OP_CHECKSIG;
      65           0 :                 break;
      66             :             case 1: /* P2SH */
      67           0 :                 coins[i].out.scriptPubKey.resize(23);
      68           0 :                 coins[i].out.scriptPubKey[0] = OP_HASH160;
      69           0 :                 coins[i].out.scriptPubKey[1] = 20;
      70           0 :                 std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2);
      71           0 :                 coins[i].out.scriptPubKey[12] = OP_EQUAL;
      72           0 :                 break;
      73             :             case 2: /* P2WPKH */
      74           0 :                 coins[i].out.scriptPubKey.resize(22);
      75           0 :                 coins[i].out.scriptPubKey[0] = OP_0;
      76           0 :                 coins[i].out.scriptPubKey[1] = 20;
      77           0 :                 std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2);
      78           0 :                 break;
      79             :             case 3: /* P2WSH */
      80           0 :                 coins[i].out.scriptPubKey.resize(34);
      81           0 :                 coins[i].out.scriptPubKey[0] = OP_0;
      82           0 :                 coins[i].out.scriptPubKey[1] = 32;
      83           0 :                 std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2);
      84           0 :                 break;
      85             :             case 4: /* P2TR */
      86           0 :                 coins[i].out.scriptPubKey.resize(34);
      87           0 :                 coins[i].out.scriptPubKey[0] = OP_1;
      88           0 :                 coins[i].out.scriptPubKey[1] = 32;
      89           0 :                 std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2);
      90           0 :                 break;
      91             :             }
      92             :             /* Hash again to construct nValue and fCoinBase. */
      93           0 :             CSHA256().Write(PREFIX_M, 1).Write(ser, sizeof(ser)).Finalize(hash.begin());
      94           0 :             coins[i].out.nValue = CAmount(hash.GetUint64(0) % MAX_MONEY);
      95           0 :             coins[i].fCoinBase = (hash.GetUint64(1) & 7) == 0;
      96           0 :             coins[i].nHeight = 0; /* Real nHeight used in simulation is set dynamically. */
      97           0 :         }
      98           0 :     }
      99             : };
     100             : 
     101             : enum class EntryType : uint8_t
     102             : {
     103             :     /* This entry in the cache does not exist (so we'd have to look in the parent cache). */
     104             :     NONE,
     105             : 
     106             :     /* This entry in the cache corresponds to an unspent coin. */
     107             :     UNSPENT,
     108             : 
     109             :     /* This entry in the cache corresponds to a spent coin. */
     110             :     SPENT,
     111             : };
     112             : 
     113             : struct CacheEntry
     114             : {
     115             :     /* Type of entry. */
     116             :     EntryType entrytype;
     117             : 
     118             :     /* Index in the coins array this entry corresponds to (only if entrytype == UNSPENT). */
     119             :     coinidx_type coinidx;
     120             : 
     121             :     /* nHeight value for this entry (so the coins[coinidx].nHeight value is ignored; only if entrytype == UNSPENT). */
     122             :     uint32_t height;
     123             : };
     124             : 
     125             : struct CacheLevel
     126             : {
     127             :     CacheEntry entry[NUM_OUTPOINTS];
     128             : 
     129           0 :     void Wipe() {
     130           0 :         for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) {
     131           0 :             entry[i].entrytype = EntryType::NONE;
     132           0 :         }
     133           0 :     }
     134             : };
     135             : 
     136             : /** Class for the base of the hierarchy (roughly simulating a memory-backed CCoinsViewDB).
     137             :  *
     138             :  * The initial state consists of the empty UTXO set, though coins whose output index
     139             :  * is 3 (mod 5) always have GetCoin() succeed (but returning an IsSpent() coin unless a UTXO
     140             :  * exists). Coins whose output index is 4 (mod 5) have GetCoin() always succeed after being spent.
     141             :  * This exercises code paths with spent, non-DIRTY cache entries.
     142             :  */
     143             : class CoinsViewBottom final : public CCoinsView
     144             : {
     145             :     std::map<COutPoint, Coin> m_data;
     146             : 
     147             : public:
     148           0 :     bool GetCoin(const COutPoint& outpoint, Coin& coin) const final
     149             :     {
     150           0 :         auto it = m_data.find(outpoint);
     151           0 :         if (it == m_data.end()) {
     152           0 :             if ((outpoint.n % 5) == 3) {
     153           0 :                 coin.Clear();
     154           0 :                 return true;
     155             :             }
     156           0 :             return false;
     157             :         } else {
     158           0 :             coin = it->second;
     159           0 :             return true;
     160             :         }
     161           0 :     }
     162             : 
     163           0 :     bool HaveCoin(const COutPoint& outpoint) const final
     164             :     {
     165           0 :         return m_data.count(outpoint);
     166             :     }
     167             : 
     168           0 :     uint256 GetBestBlock() const final { return {}; }
     169           0 :     std::vector<uint256> GetHeadBlocks() const final { return {}; }
     170           0 :     std::unique_ptr<CCoinsViewCursor> Cursor() const final { return {}; }
     171           0 :     size_t EstimateSize() const final { return m_data.size(); }
     172             : 
     173           0 :     bool BatchWrite(CCoinsMap& data, const uint256&, bool erase) final
     174             :     {
     175           0 :         for (auto it = data.begin(); it != data.end(); it = erase ? data.erase(it) : std::next(it)) {
     176           0 :             if (it->second.flags & CCoinsCacheEntry::DIRTY) {
     177           0 :                 if (it->second.coin.IsSpent() && (it->first.n % 5) != 4) {
     178           0 :                     m_data.erase(it->first);
     179           0 :                 } else if (erase) {
     180           0 :                     m_data[it->first] = std::move(it->second.coin);
     181           0 :                 } else {
     182           0 :                     m_data[it->first] = it->second.coin;
     183             :                 }
     184           0 :             } else {
     185             :                 /* For non-dirty entries being written, compare them with what we have. */
     186           0 :                 auto it2 = m_data.find(it->first);
     187           0 :                 if (it->second.coin.IsSpent()) {
     188           0 :                     assert(it2 == m_data.end() || it2->second.IsSpent());
     189           0 :                 } else {
     190           0 :                     assert(it2 != m_data.end());
     191           0 :                     assert(it->second.coin.out == it2->second.out);
     192           0 :                     assert(it->second.coin.fCoinBase == it2->second.fCoinBase);
     193           0 :                     assert(it->second.coin.nHeight == it2->second.nHeight);
     194             :                 }
     195             :             }
     196           0 :         }
     197           0 :         return true;
     198             :     }
     199             : };
     200             : 
     201             : } // namespace
     202             : 
     203           4 : FUZZ_TARGET(coinscache_sim)
     204             : {
     205             :     /** Precomputed COutPoint and CCoins values. */
     206           0 :     static const PrecomputedData data;
     207             : 
     208             :     /** Dummy coinsview instance (base of the hierarchy). */
     209           0 :     CoinsViewBottom bottom;
     210             :     /** Real CCoinsViewCache objects. */
     211           0 :     std::vector<std::unique_ptr<CCoinsViewCache>> caches;
     212             :     /** Simulated cache data (sim_caches[0] matches bottom, sim_caches[i+1] matches caches[i]). */
     213             :     CacheLevel sim_caches[MAX_CACHES + 1];
     214             :     /** Current height in the simulation. */
     215           0 :     uint32_t current_height = 1U;
     216             : 
     217             :     // Initialize bottom simulated cache.
     218           0 :     sim_caches[0].Wipe();
     219             : 
     220             :     /** Helper lookup function in the simulated cache stack. */
     221           0 :     auto lookup = [&](uint32_t outpointidx, int sim_idx = -1) -> std::optional<std::pair<coinidx_type, uint32_t>> {
     222           0 :         uint32_t cache_idx = sim_idx == -1 ? caches.size() : sim_idx;
     223           0 :         while (true) {
     224           0 :             const auto& entry = sim_caches[cache_idx].entry[outpointidx];
     225           0 :             if (entry.entrytype == EntryType::UNSPENT) {
     226           0 :                 return {{entry.coinidx, entry.height}};
     227           0 :             } else if (entry.entrytype == EntryType::SPENT) {
     228           0 :                 return std::nullopt;
     229             :             };
     230           0 :             if (cache_idx == 0) break;
     231           0 :             --cache_idx;
     232             :         }
     233           0 :         return std::nullopt;
     234           0 :     };
     235             : 
     236             :     /** Flush changes in top cache to the one below. */
     237           0 :     auto flush = [&]() {
     238           0 :         assert(caches.size() >= 1);
     239           0 :         auto& cache = sim_caches[caches.size()];
     240           0 :         auto& prev_cache = sim_caches[caches.size() - 1];
     241           0 :         for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) {
     242           0 :             if (cache.entry[outpointidx].entrytype != EntryType::NONE) {
     243           0 :                 prev_cache.entry[outpointidx] = cache.entry[outpointidx];
     244           0 :                 cache.entry[outpointidx].entrytype = EntryType::NONE;
     245           0 :             }
     246           0 :         }
     247           0 :     };
     248             : 
     249             :     // Main simulation loop: read commands from the fuzzer input, and apply them
     250             :     // to both the real cache stack and the simulation.
     251           0 :     FuzzedDataProvider provider(buffer.data(), buffer.size());
     252           0 :     LIMITED_WHILE(provider.remaining_bytes(), 10000) {
     253             :         // Every operation (except "Change height") moves current height forward,
     254             :         // so it functions as a kind of epoch, making ~all UTXOs unique.
     255           0 :         ++current_height;
     256             :         // Make sure there is always at least one CCoinsViewCache.
     257           0 :         if (caches.empty()) {
     258           0 :             caches.emplace_back(new CCoinsViewCache(&bottom, /*deterministic=*/true));
     259           0 :             sim_caches[caches.size()].Wipe();
     260           0 :         }
     261             : 
     262             :         // Execute command.
     263           0 :         CallOneOf(
     264             :             provider,
     265             : 
     266           0 :             [&]() { // GetCoin
     267           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     268             :                 // Look up in simulation data.
     269           0 :                 auto sim = lookup(outpointidx);
     270             :                 // Look up in real caches.
     271           0 :                 Coin realcoin;
     272           0 :                 auto real = caches.back()->GetCoin(data.outpoints[outpointidx], realcoin);
     273             :                 // Compare results.
     274           0 :                 if (!sim.has_value()) {
     275           0 :                     assert(!real || realcoin.IsSpent());
     276           0 :                 } else {
     277           0 :                     assert(real && !realcoin.IsSpent());
     278           0 :                     const auto& simcoin = data.coins[sim->first];
     279           0 :                     assert(realcoin.out == simcoin.out);
     280           0 :                     assert(realcoin.fCoinBase == simcoin.fCoinBase);
     281           0 :                     assert(realcoin.nHeight == sim->second);
     282             :                 }
     283           0 :             },
     284             : 
     285           0 :             [&]() { // HaveCoin
     286           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     287             :                 // Look up in simulation data.
     288           0 :                 auto sim = lookup(outpointidx);
     289             :                 // Look up in real caches.
     290           0 :                 auto real = caches.back()->HaveCoin(data.outpoints[outpointidx]);
     291             :                 // Compare results.
     292           0 :                 assert(sim.has_value() == real);
     293           0 :             },
     294             : 
     295           0 :             [&]() { // HaveCoinInCache
     296           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     297             :                 // Invoke on real cache (there is no equivalent in simulation, so nothing to compare result with).
     298           0 :                 (void)caches.back()->HaveCoinInCache(data.outpoints[outpointidx]);
     299           0 :             },
     300             : 
     301           0 :             [&]() { // AccessCoin
     302           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     303             :                 // Look up in simulation data.
     304           0 :                 auto sim = lookup(outpointidx);
     305             :                 // Look up in real caches.
     306           0 :                 const auto& realcoin = caches.back()->AccessCoin(data.outpoints[outpointidx]);
     307             :                 // Compare results.
     308           0 :                 if (!sim.has_value()) {
     309           0 :                     assert(realcoin.IsSpent());
     310           0 :                 } else {
     311           0 :                     assert(!realcoin.IsSpent());
     312           0 :                     const auto& simcoin = data.coins[sim->first];
     313           0 :                     assert(simcoin.out == realcoin.out);
     314           0 :                     assert(simcoin.fCoinBase == realcoin.fCoinBase);
     315           0 :                     assert(realcoin.nHeight == sim->second);
     316             :                 }
     317           0 :             },
     318             : 
     319           0 :             [&]() { // AddCoin (only possible_overwrite if necessary)
     320           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     321           0 :                 uint32_t coinidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_COINS - 1);
     322             :                 // Look up in simulation data (to know whether we must set possible_overwrite or not).
     323           0 :                 auto sim = lookup(outpointidx);
     324             :                 // Invoke on real caches.
     325           0 :                 Coin coin = data.coins[coinidx];
     326           0 :                 coin.nHeight = current_height;
     327           0 :                 caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), sim.has_value());
     328             :                 // Apply to simulation data.
     329           0 :                 auto& entry = sim_caches[caches.size()].entry[outpointidx];
     330           0 :                 entry.entrytype = EntryType::UNSPENT;
     331           0 :                 entry.coinidx = coinidx;
     332           0 :                 entry.height = current_height;
     333           0 :             },
     334             : 
     335           0 :             [&]() { // AddCoin (always possible_overwrite)
     336           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     337           0 :                 uint32_t coinidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_COINS - 1);
     338             :                 // Invoke on real caches.
     339           0 :                 Coin coin = data.coins[coinidx];
     340           0 :                 coin.nHeight = current_height;
     341           0 :                 caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), true);
     342             :                 // Apply to simulation data.
     343           0 :                 auto& entry = sim_caches[caches.size()].entry[outpointidx];
     344           0 :                 entry.entrytype = EntryType::UNSPENT;
     345           0 :                 entry.coinidx = coinidx;
     346           0 :                 entry.height = current_height;
     347           0 :             },
     348             : 
     349           0 :             [&]() { // SpendCoin (moveto = nullptr)
     350           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     351             :                 // Invoke on real caches.
     352           0 :                 caches.back()->SpendCoin(data.outpoints[outpointidx], nullptr);
     353             :                 // Apply to simulation data.
     354           0 :                 sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT;
     355           0 :             },
     356             : 
     357           0 :             [&]() { // SpendCoin (with moveto)
     358           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     359             :                 // Look up in simulation data (to compare the returned *moveto with).
     360           0 :                 auto sim = lookup(outpointidx);
     361             :                 // Invoke on real caches.
     362           0 :                 Coin realcoin;
     363           0 :                 caches.back()->SpendCoin(data.outpoints[outpointidx], &realcoin);
     364             :                 // Apply to simulation data.
     365           0 :                 sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT;
     366             :                 // Compare *moveto with the value expected based on simulation data.
     367           0 :                 if (!sim.has_value()) {
     368           0 :                     assert(realcoin.IsSpent());
     369           0 :                 } else {
     370           0 :                     assert(!realcoin.IsSpent());
     371           0 :                     const auto& simcoin = data.coins[sim->first];
     372           0 :                     assert(simcoin.out == realcoin.out);
     373           0 :                     assert(simcoin.fCoinBase == realcoin.fCoinBase);
     374           0 :                     assert(realcoin.nHeight == sim->second);
     375             :                 }
     376           0 :             },
     377             : 
     378           0 :             [&]() { // Uncache
     379           0 :                 uint32_t outpointidx = provider.ConsumeIntegralInRange<uint32_t>(0, NUM_OUTPOINTS - 1);
     380             :                 // Apply to real caches (there is no equivalent in our simulation).
     381           0 :                 caches.back()->Uncache(data.outpoints[outpointidx]);
     382           0 :             },
     383             : 
     384           0 :             [&]() { // Add a cache level (if not already at the max).
     385           0 :                 if (caches.size() != MAX_CACHES) {
     386             :                     // Apply to real caches.
     387           0 :                     caches.emplace_back(new CCoinsViewCache(&*caches.back(), /*deterministic=*/true));
     388             :                     // Apply to simulation data.
     389           0 :                     sim_caches[caches.size()].Wipe();
     390           0 :                 }
     391           0 :             },
     392             : 
     393           0 :             [&]() { // Remove a cache level.
     394             :                 // Apply to real caches (this reduces caches.size(), implicitly doing the same on the simulation data).
     395           0 :                 caches.back()->SanityCheck();
     396           0 :                 caches.pop_back();
     397           0 :             },
     398             : 
     399           0 :             [&]() { // Flush.
     400             :                 // Apply to simulation data.
     401           0 :                 flush();
     402             :                 // Apply to real caches.
     403           0 :                 caches.back()->Flush();
     404           0 :             },
     405             : 
     406           0 :             [&]() { // Sync.
     407             :                 // Apply to simulation data (note that in our simulation, syncing and flushing is the same thing).
     408           0 :                 flush();
     409             :                 // Apply to real caches.
     410           0 :                 caches.back()->Sync();
     411           0 :             },
     412             : 
     413           0 :             [&]() { // Flush + ReallocateCache.
     414             :                 // Apply to simulation data.
     415           0 :                 flush();
     416             :                 // Apply to real caches.
     417           0 :                 caches.back()->Flush();
     418           0 :                 caches.back()->ReallocateCache();
     419           0 :             },
     420             : 
     421           0 :             [&]() { // GetCacheSize
     422           0 :                 (void)caches.back()->GetCacheSize();
     423           0 :             },
     424             : 
     425           0 :             [&]() { // DynamicMemoryUsage
     426           0 :                 (void)caches.back()->DynamicMemoryUsage();
     427           0 :             },
     428             : 
     429           0 :             [&]() { // Change height
     430           0 :                 current_height = provider.ConsumeIntegralInRange<uint32_t>(1, current_height - 1);
     431           0 :             }
     432             :         );
     433           0 :     }
     434             : 
     435             :     // Sanity check all the remaining caches
     436           0 :     for (const auto& cache : caches) {
     437           0 :         cache->SanityCheck();
     438             :     }
     439             : 
     440             :     // Full comparison between caches and simulation data, from bottom to top,
     441             :     // as AccessCoin on a higher cache may affect caches below it.
     442           0 :     for (unsigned sim_idx = 1; sim_idx <= caches.size(); ++sim_idx) {
     443           0 :         auto& cache = *caches[sim_idx - 1];
     444           0 :         size_t cache_size = 0;
     445             : 
     446           0 :         for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) {
     447           0 :             cache_size += cache.HaveCoinInCache(data.outpoints[outpointidx]);
     448           0 :             const auto& real = cache.AccessCoin(data.outpoints[outpointidx]);
     449           0 :             auto sim = lookup(outpointidx, sim_idx);
     450           0 :             if (!sim.has_value()) {
     451           0 :                 assert(real.IsSpent());
     452           0 :             } else {
     453           0 :                 assert(!real.IsSpent());
     454           0 :                 assert(real.out == data.coins[sim->first].out);
     455           0 :                 assert(real.fCoinBase == data.coins[sim->first].fCoinBase);
     456           0 :                 assert(real.nHeight == sim->second);
     457             :             }
     458           0 :         }
     459             : 
     460             :         // HaveCoinInCache ignores spent coins, so GetCacheSize() may exceed it. */
     461           0 :         assert(cache.GetCacheSize() >= cache_size);
     462           0 :     }
     463             : 
     464             :     // Compare the bottom coinsview (not a CCoinsViewCache) with sim_cache[0].
     465           0 :     for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) {
     466           0 :         Coin realcoin;
     467           0 :         bool real = bottom.GetCoin(data.outpoints[outpointidx], realcoin);
     468           0 :         auto sim = lookup(outpointidx, 0);
     469           0 :         if (!sim.has_value()) {
     470           0 :             assert(!real || realcoin.IsSpent());
     471           0 :         } else {
     472           0 :             assert(real && !realcoin.IsSpent());
     473           0 :             assert(realcoin.out == data.coins[sim->first].out);
     474           0 :             assert(realcoin.fCoinBase == data.coins[sim->first].fCoinBase);
     475           0 :             assert(realcoin.nHeight == sim->second);
     476             :         }
     477           0 :     }
     478           0 : }

Generated by: LCOV version 1.14