Line data Source code
1 : //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
2 : //
3 : // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 : // See https://llvm.org/LICENSE.txt for license information.
5 : // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 : //
7 : //===----------------------------------------------------------------------===//
8 : // A single header library providing an utility class to break up an array of
9 : // bytes. Whenever run on the same input, provides the same output, as long as
10 : // its methods are called in the same order, with the same arguments.
11 : //===----------------------------------------------------------------------===//
12 :
13 : #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
14 : #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
15 :
16 : #include <algorithm>
17 : #include <array>
18 : #include <climits>
19 : #include <cstddef>
20 : #include <cstdint>
21 : #include <cstring>
22 : #include <initializer_list>
23 : #include <limits>
24 : #include <string>
25 : #include <type_traits>
26 : #include <utility>
27 : #include <vector>
28 :
29 : // In addition to the comments below, the API is also briefly documented at
30 : // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
31 : class FuzzedDataProvider {
32 : public:
33 : // |data| is an array of length |size| that the FuzzedDataProvider wraps to
34 : // provide more granular access. |data| must outlive the FuzzedDataProvider.
35 49082 : FuzzedDataProvider(const uint8_t *data, size_t size)
36 49082 : : data_ptr_(data), remaining_bytes_(size) {}
37 : ~FuzzedDataProvider() = default;
38 :
39 : // See the implementation below (after the class definition) for more verbose
40 : // comments for each of the methods.
41 :
42 : // Methods returning std::vector of bytes. These are the most popular choice
43 : // when splitting fuzzing input into pieces, as every piece is put into a
44 : // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
45 : // will be released automatically.
46 : template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes);
47 : template <typename T>
48 : std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0);
49 : template <typename T> std::vector<T> ConsumeRemainingBytes();
50 :
51 : // Methods returning strings. Use only when you need a std::string or a null
52 : // terminated C-string. Otherwise, prefer the methods returning std::vector.
53 : std::string ConsumeBytesAsString(size_t num_bytes);
54 : std::string ConsumeRandomLengthString(size_t max_length);
55 : std::string ConsumeRandomLengthString();
56 : std::string ConsumeRemainingBytesAsString();
57 :
58 : // Methods returning integer values.
59 : template <typename T> T ConsumeIntegral();
60 : template <typename T> T ConsumeIntegralInRange(T min, T max);
61 :
62 : // Methods returning floating point values.
63 : template <typename T> T ConsumeFloatingPoint();
64 : template <typename T> T ConsumeFloatingPointInRange(T min, T max);
65 :
66 : // 0 <= return value <= 1.
67 : template <typename T> T ConsumeProbability();
68 :
69 : bool ConsumeBool();
70 :
71 : // Returns a value chosen from the given enum.
72 : template <typename T> T ConsumeEnum();
73 :
74 : // Returns a value from the given array.
75 : template <typename T, size_t size> T PickValueInArray(const T (&array)[size]);
76 : template <typename T, size_t size>
77 : T PickValueInArray(const std::array<T, size> &array);
78 : template <typename T> T PickValueInArray(std::initializer_list<const T> list);
79 :
80 : // Writes data to the given destination and returns number of bytes written.
81 : size_t ConsumeData(void *destination, size_t num_bytes);
82 :
83 : // Reports the remaining bytes available for fuzzed input.
84 0 : size_t remaining_bytes() { return remaining_bytes_; }
85 :
86 : private:
87 : FuzzedDataProvider(const FuzzedDataProvider &) = delete;
88 : FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
89 :
90 : void CopyAndAdvance(void *destination, size_t num_bytes);
91 :
92 : void Advance(size_t num_bytes);
93 :
94 : template <typename T>
95 : std::vector<T> ConsumeBytes(size_t size, size_t num_bytes);
96 :
97 : template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value);
98 :
99 : const uint8_t *data_ptr_;
100 : size_t remaining_bytes_;
101 : };
102 :
103 : // Returns a std::vector containing |num_bytes| of input data. If fewer than
104 : // |num_bytes| of data remain, returns a shorter std::vector containing all
105 : // of the data that's left. Can be used with any byte sized type, such as
106 : // char, unsigned char, uint8_t, etc.
107 : template <typename T>
108 16200 : std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) {
109 16200 : num_bytes = std::min(num_bytes, remaining_bytes_);
110 16200 : return ConsumeBytes<T>(num_bytes, num_bytes);
111 : }
112 :
113 : // Similar to |ConsumeBytes|, but also appends the terminator value at the end
114 : // of the resulting vector. Useful, when a mutable null-terminated C-string is
115 : // needed, for example. But that is a rare case. Better avoid it, if possible,
116 : // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
117 : template <typename T>
118 : std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes,
119 : T terminator) {
120 : num_bytes = std::min(num_bytes, remaining_bytes_);
121 : std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
122 : result.back() = terminator;
123 : return result;
124 : }
125 :
126 : // Returns a std::vector containing all remaining bytes of the input data.
127 : template <typename T>
128 0 : std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() {
129 0 : return ConsumeBytes<T>(remaining_bytes_);
130 : }
131 :
132 : // Returns a std::string containing |num_bytes| of input data. Using this and
133 : // |.c_str()| on the resulting string is the best way to get an immutable
134 : // null-terminated C string. If fewer than |num_bytes| of data remain, returns
135 : // a shorter std::string containing all of the data that's left.
136 2187 : inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) {
137 : static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
138 : "ConsumeBytesAsString cannot convert the data to a string.");
139 :
140 2187 : num_bytes = std::min(num_bytes, remaining_bytes_);
141 4374 : std::string result(
142 2187 : reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes);
143 2187 : Advance(num_bytes);
144 2187 : return result;
145 2187 : }
146 :
147 : // Returns a std::string of length from 0 to |max_length|. When it runs out of
148 : // input data, returns what remains of the input. Designed to be more stable
149 : // with respect to a fuzzer inserting characters than just picking a random
150 : // length and then consuming that many bytes with |ConsumeBytes|.
151 : inline std::string
152 50462 : FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) {
153 : // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
154 : // followed by anything else to the end of the string. As a result of this
155 : // logic, a fuzzer can insert characters into the string, and the string
156 : // will be lengthened to include those new characters, resulting in a more
157 : // stable fuzzer than picking the length of a string independently from
158 : // picking its contents.
159 50462 : std::string result;
160 :
161 : // Reserve the anticipated capaticity to prevent several reallocations.
162 50462 : result.reserve(std::min(max_length, remaining_bytes_));
163 2206323 : for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
164 2197790 : char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
165 2197790 : Advance(1);
166 2197790 : if (next == '\\' && remaining_bytes_ != 0) {
167 46416 : next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
168 46416 : Advance(1);
169 46416 : if (next != '\\')
170 41929 : break;
171 4487 : }
172 2155861 : result += next;
173 2155861 : }
174 :
175 50462 : result.shrink_to_fit();
176 50462 : return result;
177 50462 : }
178 :
179 : // Returns a std::string of length from 0 to |remaining_bytes_|.
180 31902 : inline std::string FuzzedDataProvider::ConsumeRandomLengthString() {
181 31902 : return ConsumeRandomLengthString(remaining_bytes_);
182 : }
183 :
184 : // Returns a std::string containing all remaining bytes of the input data.
185 : // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
186 : // object.
187 1998 : inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() {
188 1998 : return ConsumeBytesAsString(remaining_bytes_);
189 : }
190 :
191 : // Returns a number in the range [Type's min, Type's max]. The value might
192 : // not be uniformly distributed in the given range. If there's no input data
193 : // left, always returns |min|.
194 2015643 : template <typename T> T FuzzedDataProvider::ConsumeIntegral() {
195 4031286 : return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
196 2015643 : std::numeric_limits<T>::max());
197 : }
198 :
199 : // Returns a number in the range [min, max] by consuming bytes from the
200 : // input data. The value might not be uniformly distributed in the given
201 : // range. If there's no input data left, always returns |min|. |min| must
202 : // be less than or equal to |max|.
203 : template <typename T>
204 4574931 : T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) {
205 : static_assert(std::is_integral<T>::value, "An integral type is required.");
206 : static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
207 :
208 4574931 : if (min > max)
209 0 : abort();
210 :
211 : // Use the biggest type possible to hold the range and the result.
212 4574931 : uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min);
213 4574931 : uint64_t result = 0;
214 4574931 : size_t offset = 0;
215 :
216 12679292 : while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
217 5307267 : remaining_bytes_ != 0) {
218 : // Pull bytes off the end of the seed data. Experimentally, this seems to
219 : // allow the fuzzer to more easily explore the input space. This makes
220 : // sense, since it works by modifying inputs that caused new code to run,
221 : // and this data is often used to encode length of data read by
222 : // |ConsumeBytes|. Separating out read lengths makes it easier modify the
223 : // contents of the data that is actually read.
224 3547785 : --remaining_bytes_;
225 3547785 : result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
226 3547785 : offset += CHAR_BIT;
227 : }
228 :
229 : // Avoid division by 0, in case |range + 1| results in overflow.
230 4574931 : if (range != std::numeric_limits<decltype(range)>::max())
231 4545679 : result = result % (range + 1);
232 :
233 4574931 : return static_cast<T>(static_cast<uint64_t>(min) + result);
234 : }
235 :
236 : // Returns a floating point value in the range [Type's lowest, Type's max] by
237 : // consuming bytes from the input data. If there's no input data left, always
238 : // returns approximately 0.
239 0 : template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() {
240 0 : return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
241 0 : std::numeric_limits<T>::max());
242 : }
243 :
244 : // Returns a floating point value in the given range by consuming bytes from
245 : // the input data. If there's no input data left, returns |min|. Note that
246 : // |min| must be less than or equal to |max|.
247 : template <typename T>
248 0 : T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) {
249 0 : if (min > max)
250 0 : abort();
251 :
252 0 : T range = .0;
253 0 : T result = min;
254 0 : constexpr T zero(.0);
255 0 : if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
256 : // The diff |max - min| would overflow the given floating point type. Use
257 : // the half of the diff as the range and consume a bool to decide whether
258 : // the result is in the first of the second part of the diff.
259 0 : range = (max / 2.0) - (min / 2.0);
260 0 : if (ConsumeBool()) {
261 0 : result += range;
262 0 : }
263 0 : } else {
264 0 : range = max - min;
265 : }
266 :
267 0 : return result + range * ConsumeProbability<T>();
268 : }
269 :
270 : // Returns a floating point number in the range [0.0, 1.0]. If there's no
271 : // input data left, always returns 0.
272 0 : template <typename T> T FuzzedDataProvider::ConsumeProbability() {
273 : static_assert(std::is_floating_point<T>::value,
274 : "A floating point type is required.");
275 :
276 : // Use different integral types for different floating point types in order
277 : // to provide better density of the resulting values.
278 : using IntegralType =
279 : typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
280 : uint64_t>::type;
281 :
282 0 : T result = static_cast<T>(ConsumeIntegral<IntegralType>());
283 0 : result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
284 0 : return result;
285 : }
286 :
287 : // Reads one byte and returns a bool, or false when no data remains.
288 1400182 : inline bool FuzzedDataProvider::ConsumeBool() {
289 1400182 : return 1 & ConsumeIntegral<uint8_t>();
290 : }
291 :
292 : // Returns an enum value. The enum must start at 0 and be contiguous. It must
293 : // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
294 : // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
295 : template <typename T> T FuzzedDataProvider::ConsumeEnum() {
296 : static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
297 : return static_cast<T>(
298 : ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue)));
299 : }
300 :
301 : // Returns a copy of the value selected from the given fixed-size |array|.
302 : template <typename T, size_t size>
303 0 : T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) {
304 : static_assert(size > 0, "The array must be non empty.");
305 0 : return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
306 : }
307 :
308 : template <typename T, size_t size>
309 0 : T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) {
310 : static_assert(size > 0, "The array must be non empty.");
311 0 : return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
312 : }
313 :
314 : template <typename T>
315 75981 : T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) {
316 : // TODO(Dor1s): switch to static_assert once C++14 is allowed.
317 75981 : if (!list.size())
318 0 : abort();
319 :
320 75981 : return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
321 : }
322 :
323 : // Writes |num_bytes| of input data to the given destination pointer. If there
324 : // is not enough data left, writes all remaining bytes. Return value is the
325 : // number of bytes written.
326 : // In general, it's better to avoid using this function, but it may be useful
327 : // in cases when it's necessary to fill a certain buffer or object with
328 : // fuzzing data.
329 0 : inline size_t FuzzedDataProvider::ConsumeData(void *destination,
330 : size_t num_bytes) {
331 0 : num_bytes = std::min(num_bytes, remaining_bytes_);
332 0 : CopyAndAdvance(destination, num_bytes);
333 0 : return num_bytes;
334 : }
335 :
336 : // Private methods.
337 22693 : inline void FuzzedDataProvider::CopyAndAdvance(void *destination,
338 : size_t num_bytes) {
339 22693 : std::memcpy(destination, data_ptr_, num_bytes);
340 22693 : Advance(num_bytes);
341 22693 : }
342 :
343 2269086 : inline void FuzzedDataProvider::Advance(size_t num_bytes) {
344 2269086 : if (num_bytes > remaining_bytes_)
345 0 : abort();
346 :
347 2269086 : data_ptr_ += num_bytes;
348 2269086 : remaining_bytes_ -= num_bytes;
349 2269086 : }
350 :
351 : template <typename T>
352 16200 : std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) {
353 : static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
354 :
355 : // The point of using the size-based constructor below is to increase the
356 : // odds of having a vector object with capacity being equal to the length.
357 : // That part is always implementation specific, but at least both libc++ and
358 : // libstdc++ allocate the requested number of bytes in that constructor,
359 : // which seems to be a natural choice for other implementations as well.
360 : // To increase the odds even more, we also call |shrink_to_fit| below.
361 16200 : std::vector<T> result(size);
362 16200 : if (size == 0) {
363 1044 : if (num_bytes != 0)
364 0 : abort();
365 1044 : return result;
366 : }
367 :
368 15156 : CopyAndAdvance(result.data(), num_bytes);
369 :
370 : // Even though |shrink_to_fit| is also implementation specific, we expect it
371 : // to provide an additional assurance in case vector's constructor allocated
372 : // a buffer which is larger than the actual amount of data we put inside it.
373 15156 : result.shrink_to_fit();
374 15156 : return result;
375 16200 : }
376 :
377 : template <typename TS, typename TU>
378 2244206 : TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) {
379 : static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
380 : static_assert(!std::numeric_limits<TU>::is_signed,
381 : "Source type must be unsigned.");
382 :
383 : // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
384 : if (std::numeric_limits<TS>::is_modulo)
385 : return static_cast<TS>(value);
386 :
387 : // Avoid using implementation-defined unsigned to signed conversions.
388 : // To learn more, see https://stackoverflow.com/questions/13150449.
389 2244206 : if (value <= std::numeric_limits<TS>::max()) {
390 1609236 : return static_cast<TS>(value);
391 : } else {
392 634970 : constexpr auto TS_min = std::numeric_limits<TS>::min();
393 634970 : return TS_min + static_cast<TS>(value - TS_min);
394 : }
395 2244206 : }
396 :
397 : #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|