LCOV - code coverage report
Current view: top level - src/support/allocators - pool.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 65 69 94.2 %
Date: 2023-09-26 12:08:55 Functions: 22 92 23.9 %

          Line data    Source code
       1             : // Copyright (c) 2022 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #ifndef BITCOIN_SUPPORT_ALLOCATORS_POOL_H
       6             : #define BITCOIN_SUPPORT_ALLOCATORS_POOL_H
       7             : 
       8             : #include <array>
       9             : #include <cassert>
      10             : #include <cstddef>
      11             : #include <list>
      12             : #include <memory>
      13             : #include <new>
      14             : #include <type_traits>
      15             : #include <utility>
      16             : 
      17             : /**
      18             :  * A memory resource similar to std::pmr::unsynchronized_pool_resource, but
      19             :  * optimized for node-based containers. It has the following properties:
      20             :  *
      21             :  * * Owns the allocated memory and frees it on destruction, even when deallocate
      22             :  *   has not been called on the allocated blocks.
      23             :  *
      24             :  * * Consists of a number of pools, each one for a different block size.
      25             :  *   Each pool holds blocks of uniform size in a freelist.
      26             :  *
      27             :  * * Exhausting memory in a freelist causes a new allocation of a fixed size chunk.
      28             :  *   This chunk is used to carve out blocks.
      29             :  *
      30             :  * * Block sizes or alignments that can not be served by the pools are allocated
      31             :  *   and deallocated by operator new().
      32             :  *
      33             :  * PoolResource is not thread-safe. It is intended to be used by PoolAllocator.
      34             :  *
      35             :  * @tparam MAX_BLOCK_SIZE_BYTES Maximum size to allocate with the pool. If larger
      36             :  *         sizes are requested, allocation falls back to new().
      37             :  *
      38             :  * @tparam ALIGN_BYTES Required alignment for the allocations.
      39             :  *
      40             :  * An example: If you create a PoolResource<128, 8>(262144) and perform a bunch of
      41             :  * allocations and deallocate 2 blocks with size 8 bytes, and 3 blocks with size 16,
      42             :  * the members will look like this:
      43             :  *
      44             :  *     m_free_lists                         m_allocated_chunks
      45             :  *        ┌───┐                                ┌───┐  ┌────────────-------──────┐
      46             :  *        │   │  blocks                        │   ├─►│    262144 B             │
      47             :  *        │   │  ┌─────┐  ┌─────┐              └─┬─┘  └────────────-------──────┘
      48             :  *        │ 1 ├─►│ 8 B ├─►│ 8 B │                │
      49             :  *        │   │  └─────┘  └─────┘                :
      50             :  *        │   │                                  │
      51             :  *        │   │  ┌─────┐  ┌─────┐  ┌─────┐       ▼
      52             :  *        │ 2 ├─►│16 B ├─►│16 B ├─►│16 B │     ┌───┐  ┌─────────────────────────┐
      53             :  *        │   │  └─────┘  └─────┘  └─────┘     │   ├─►│          ▲              │ ▲
      54             :  *        │   │                                └───┘  └──────────┬──────────────┘ │
      55             :  *        │ . │                                                  │    m_available_memory_end
      56             :  *        │ . │                                         m_available_memory_it
      57             :  *        │ . │
      58             :  *        │   │
      59             :  *        │   │
      60             :  *        │16 │
      61             :  *        └───┘
      62             :  *
      63             :  * Here m_free_lists[1] holds the 2 blocks of size 8 bytes, and m_free_lists[2]
      64             :  * holds the 3 blocks of size 16. The blocks came from the data stored in the
      65             :  * m_allocated_chunks list. Each chunk has bytes 262144. The last chunk has still
      66             :  * some memory available for the blocks, and when m_available_memory_it is at the
      67             :  * end, a new chunk will be allocated and added to the list.
      68             :  */
      69             : template <std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
      70             : class PoolResource final
      71             : {
      72             :     static_assert(ALIGN_BYTES > 0, "ALIGN_BYTES must be nonzero");
      73             :     static_assert((ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0, "ALIGN_BYTES must be a power of two");
      74             : 
      75             :     /**
      76             :      * In-place linked list of the allocations, used for the freelist.
      77             :      */
      78             :     struct ListNode {
      79             :         ListNode* m_next;
      80             : 
      81      136773 :         explicit ListNode(ListNode* next) : m_next(next) {}
      82             :     };
      83             :     static_assert(std::is_trivially_destructible_v<ListNode>, "Make sure we don't need to manually call a destructor");
      84             : 
      85             :     /**
      86             :      * Internal alignment value. The larger of the requested ALIGN_BYTES and alignof(FreeList).
      87             :      */
      88             :     static constexpr std::size_t ELEM_ALIGN_BYTES = std::max(alignof(ListNode), ALIGN_BYTES);
      89             :     static_assert((ELEM_ALIGN_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "ELEM_ALIGN_BYTES must be a power of two");
      90             :     static_assert(sizeof(ListNode) <= ELEM_ALIGN_BYTES, "Units of size ELEM_SIZE_ALIGN need to be able to store a ListNode");
      91             :     static_assert((MAX_BLOCK_SIZE_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "MAX_BLOCK_SIZE_BYTES needs to be a multiple of the alignment.");
      92             : 
      93             :     /**
      94             :      * Size in bytes to allocate per chunk
      95             :      */
      96             :     const size_t m_chunk_size_bytes;
      97             : 
      98             :     /**
      99             :      * Contains all allocated pools of memory, used to free the data in the destructor.
     100             :      */
     101       27435 :     std::list<std::byte*> m_allocated_chunks{};
     102             : 
     103             :     /**
     104             :      * Single linked lists of all data that came from deallocating.
     105             :      * m_free_lists[n] will serve blocks of size n*ELEM_ALIGN_BYTES.
     106             :      */
     107       27435 :     std::array<ListNode*, MAX_BLOCK_SIZE_BYTES / ELEM_ALIGN_BYTES + 1> m_free_lists{};
     108             : 
     109             :     /**
     110             :      * Points to the beginning of available memory for carving out allocations.
     111             :      */
     112       27435 :     std::byte* m_available_memory_it = nullptr;
     113             : 
     114             :     /**
     115             :      * Points to the end of available memory for carving out allocations.
     116             :      *
     117             :      * That member variable is redundant, and is always equal to `m_allocated_chunks.back() + m_chunk_size_bytes`
     118             :      * whenever it is accessed, but `m_available_memory_end` caches this for clarity and efficiency.
     119             :      */
     120       27435 :     std::byte* m_available_memory_end = nullptr;
     121             : 
     122             :     /**
     123             :      * How many multiple of ELEM_ALIGN_BYTES are necessary to fit bytes. We use that result directly as an index
     124             :      * into m_free_lists. Round up for the special case when bytes==0.
     125             :      */
     126      300981 :     [[nodiscard]] static constexpr std::size_t NumElemAlignBytes(std::size_t bytes)
     127             :     {
     128      300981 :         return (bytes + ELEM_ALIGN_BYTES - 1) / ELEM_ALIGN_BYTES + (bytes == 0);
     129             :     }
     130             : 
     131             :     /**
     132             :      * True when it is possible to make use of the freelist
     133             :      */
     134      280648 :     [[nodiscard]] static constexpr bool IsFreeListUsable(std::size_t bytes, std::size_t alignment)
     135             :     {
     136      280648 :         return alignment <= ELEM_ALIGN_BYTES && bytes <= MAX_BLOCK_SIZE_BYTES;
     137             :     }
     138             : 
     139             :     /**
     140             :      * Replaces node with placement constructed ListNode that points to the previous node
     141             :      */
     142      136773 :     void PlacementAddToList(void* p, ListNode*& node)
     143             :     {
     144      136773 :         node = new (p) ListNode{node};
     145      136773 :     }
     146             : 
     147             :     /**
     148             :      * Allocate one full memory chunk which will be used to carve out allocations.
     149             :      * Also puts any leftover bytes into the freelist.
     150             :      *
     151             :      * Precondition: leftover bytes are either 0 or few enough to fit into a place in the freelist
     152             :      */
     153       27435 :     void AllocateChunk()
     154             :     {
     155             :         // if there is still any available memory left, put it into the freelist.
     156       27435 :         size_t remaining_available_bytes = std::distance(m_available_memory_it, m_available_memory_end);
     157       27435 :         if (0 != remaining_available_bytes) {
     158           0 :             PlacementAddToList(m_available_memory_it, m_free_lists[remaining_available_bytes / ELEM_ALIGN_BYTES]);
     159           0 :         }
     160             : 
     161       27435 :         void* storage = ::operator new (m_chunk_size_bytes, std::align_val_t{ELEM_ALIGN_BYTES});
     162       27435 :         m_available_memory_it = new (storage) std::byte[m_chunk_size_bytes];
     163       27435 :         m_available_memory_end = m_available_memory_it + m_chunk_size_bytes;
     164       27435 :         m_allocated_chunks.emplace_back(m_available_memory_it);
     165       27435 :     }
     166             : 
     167             :     /**
     168             :      * Access to internals for testing purpose only
     169             :      */
     170             :     friend class PoolResourceTester;
     171             : 
     172             : public:
     173             :     /**
     174             :      * Construct a new PoolResource object which allocates the first chunk.
     175             :      * chunk_size_bytes will be rounded up to next multiple of ELEM_ALIGN_BYTES.
     176             :      */
     177       27435 :     explicit PoolResource(std::size_t chunk_size_bytes)
     178       27435 :         : m_chunk_size_bytes(NumElemAlignBytes(chunk_size_bytes) * ELEM_ALIGN_BYTES)
     179             :     {
     180       27435 :         assert(m_chunk_size_bytes >= MAX_BLOCK_SIZE_BYTES);
     181       27435 :         AllocateChunk();
     182       27435 :     }
     183             : 
     184             :     /**
     185             :      * Construct a new Pool Resource object, defaults to 2^18=262144 chunk size.
     186             :      */
     187       27435 :     PoolResource() : PoolResource(262144) {}
     188             : 
     189             :     /**
     190             :      * Disable copy & move semantics, these are not supported for the resource.
     191             :      */
     192             :     PoolResource(const PoolResource&) = delete;
     193             :     PoolResource& operator=(const PoolResource&) = delete;
     194             :     PoolResource(PoolResource&&) = delete;
     195             :     PoolResource& operator=(PoolResource&&) = delete;
     196             : 
     197             :     /**
     198             :      * Deallocates all memory allocated associated with the memory resource.
     199             :      */
     200       27435 :     ~PoolResource()
     201             :     {
     202       54870 :         for (std::byte* chunk : m_allocated_chunks) {
     203       27435 :             std::destroy(chunk, chunk + m_chunk_size_bytes);
     204       27435 :             ::operator delete ((void*)chunk, std::align_val_t{ELEM_ALIGN_BYTES});
     205             :         }
     206       27435 :     }
     207             : 
     208             :     /**
     209             :      * Allocates a block of bytes. If possible the freelist is used, otherwise allocation
     210             :      * is forwarded to ::operator new().
     211             :      */
     212      140324 :     void* Allocate(std::size_t bytes, std::size_t alignment)
     213             :     {
     214      140324 :         if (IsFreeListUsable(bytes, alignment)) {
     215      136773 :             const std::size_t num_alignments = NumElemAlignBytes(bytes);
     216      136773 :             if (nullptr != m_free_lists[num_alignments]) {
     217             :                 // we've already got data in the pool's freelist, unlink one element and return the pointer
     218             :                 // to the unlinked memory. Since FreeList is trivially destructible we can just treat it as
     219             :                 // uninitialized memory.
     220        5095 :                 return std::exchange(m_free_lists[num_alignments], m_free_lists[num_alignments]->m_next);
     221             :             }
     222             : 
     223             :             // freelist is empty: get one allocation from allocated chunk memory.
     224      131678 :             const std::ptrdiff_t round_bytes = static_cast<std::ptrdiff_t>(num_alignments * ELEM_ALIGN_BYTES);
     225      131678 :             if (round_bytes > m_available_memory_end - m_available_memory_it) {
     226             :                 // slow path, only happens when a new chunk needs to be allocated
     227           0 :                 AllocateChunk();
     228           0 :             }
     229             : 
     230             :             // Make sure we use the right amount of bytes for that freelist (might be rounded up),
     231      131678 :             return std::exchange(m_available_memory_it, m_available_memory_it + round_bytes);
     232             :         }
     233             : 
     234             :         // Can't use the pool => use operator new()
     235        3551 :         return ::operator new (bytes, std::align_val_t{alignment});
     236      140324 :     }
     237             : 
     238             :     /**
     239             :      * Returns a block to the freelists, or deletes the block when it did not come from the chunks.
     240             :      */
     241      140324 :     void Deallocate(void* p, std::size_t bytes, std::size_t alignment) noexcept
     242             :     {
     243      140324 :         if (IsFreeListUsable(bytes, alignment)) {
     244      136773 :             const std::size_t num_alignments = NumElemAlignBytes(bytes);
     245             :             // put the memory block into the linked list. We can placement construct the FreeList
     246             :             // into the memory since we can be sure the alignment is correct.
     247      136773 :             PlacementAddToList(p, m_free_lists[num_alignments]);
     248      136773 :         } else {
     249             :             // Can't use the pool => forward deallocation to ::operator delete().
     250        3551 :             ::operator delete (p, std::align_val_t{alignment});
     251             :         }
     252      140324 :     }
     253             : 
     254             :     /**
     255             :      * Number of allocated chunks
     256             :      */
     257       64190 :     [[nodiscard]] std::size_t NumAllocatedChunks() const
     258             :     {
     259       64190 :         return m_allocated_chunks.size();
     260             :     }
     261             : 
     262             :     /**
     263             :      * Size in bytes to allocate per chunk, currently hardcoded to a fixed size.
     264             :      */
     265       32095 :     [[nodiscard]] size_t ChunkSizeBytes() const
     266             :     {
     267       32095 :         return m_chunk_size_bytes;
     268             :     }
     269             : };
     270             : 
     271             : 
     272             : /**
     273             :  * Forwards all allocations/deallocations to the PoolResource.
     274             :  */
     275             : template <class T, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
     276             : class PoolAllocator
     277             : {
     278             :     PoolResource<MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>* m_resource;
     279             : 
     280             :     template <typename U, std::size_t M, std::size_t A>
     281             :     friend class PoolAllocator;
     282             : 
     283             : public:
     284             :     using value_type = T;
     285             :     using ResourceType = PoolResource<MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>;
     286             : 
     287             :     /**
     288             :      * Not explicit so we can easily construct it with the correct resource
     289             :      */
     290       27435 :     PoolAllocator(ResourceType* resource) noexcept
     291       27435 :         : m_resource(resource)
     292             :     {
     293       27435 :     }
     294             : 
     295             :     PoolAllocator(const PoolAllocator& other) noexcept = default;
     296             :     PoolAllocator& operator=(const PoolAllocator& other) noexcept = default;
     297             : 
     298             :     template <class U>
     299       90812 :     PoolAllocator(const PoolAllocator<U, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& other) noexcept
     300       90812 :         : m_resource(other.resource())
     301             :     {
     302       90812 :     }
     303             : 
     304             :     /**
     305             :      * The rebind struct here is mandatory because we use non type template arguments for
     306             :      * PoolAllocator. See https://en.cppreference.com/w/cpp/named_req/Allocator#cite_note-2
     307             :      */
     308             :     template <typename U>
     309             :     struct rebind {
     310             :         using other = PoolAllocator<U, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>;
     311             :     };
     312             : 
     313             :     /**
     314             :      * Forwards each call to the resource.
     315             :      */
     316      140324 :     T* allocate(size_t n)
     317             :     {
     318      140324 :         return static_cast<T*>(m_resource->Allocate(n * sizeof(T), alignof(T)));
     319             :     }
     320             : 
     321             :     /**
     322             :      * Forwards each call to the resource.
     323             :      */
     324      140324 :     void deallocate(T* p, size_t n) noexcept
     325             :     {
     326      140324 :         m_resource->Deallocate(p, n * sizeof(T), alignof(T));
     327      140324 :     }
     328             : 
     329      122907 :     ResourceType* resource() const noexcept
     330             :     {
     331      122907 :         return m_resource;
     332             :     }
     333             : };
     334             : 
     335             : template <class T1, class T2, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
     336             : bool operator==(const PoolAllocator<T1, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& a,
     337             :                 const PoolAllocator<T2, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& b) noexcept
     338             : {
     339             :     return a.resource() == b.resource();
     340             : }
     341             : 
     342             : template <class T1, class T2, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
     343             : bool operator!=(const PoolAllocator<T1, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& a,
     344             :                 const PoolAllocator<T2, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& b) noexcept
     345             : {
     346             :     return !(a == b);
     347             : }
     348             : 
     349             : #endif // BITCOIN_SUPPORT_ALLOCATORS_POOL_H

Generated by: LCOV version 1.14