LCOV - code coverage report
Current view: top level - src - span.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 30 58 51.7 %
Date: 2023-09-26 12:08:55 Functions: 85 323 26.3 %

          Line data    Source code
       1             : // Copyright (c) 2018-2022 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #ifndef BITCOIN_SPAN_H
       6             : #define BITCOIN_SPAN_H
       7             : 
       8             : #include <algorithm>
       9             : #include <cassert>
      10             : #include <cstddef>
      11             : #include <type_traits>
      12             : 
      13             : #ifdef DEBUG
      14             : #define CONSTEXPR_IF_NOT_DEBUG
      15             : #define ASSERT_IF_DEBUG(x) assert((x))
      16             : #else
      17             : #define CONSTEXPR_IF_NOT_DEBUG constexpr
      18             : #define ASSERT_IF_DEBUG(x)
      19             : #endif
      20             : 
      21             : #if defined(__clang__)
      22             : #if __has_attribute(lifetimebound)
      23             : #define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]]
      24             : #else
      25             : #define SPAN_ATTR_LIFETIMEBOUND
      26             : #endif
      27             : #else
      28             : #define SPAN_ATTR_LIFETIMEBOUND
      29             : #endif
      30             : 
      31             : /** A Span is an object that can refer to a contiguous sequence of objects.
      32             :  *
      33             :  * This file implements a subset of C++20's std::span.  It can be considered
      34             :  * temporary compatibility code until C++20 and is designed to be a
      35             :  * self-contained abstraction without depending on other project files. For this
      36             :  * reason, Clang lifetimebound is defined here instead of including
      37             :  * <attributes.h>, which also defines it.
      38             :  *
      39             :  * Things to be aware of when writing code that deals with Spans:
      40             :  *
      41             :  * - Similar to references themselves, Spans are subject to reference lifetime
      42             :  *   issues. The user is responsible for making sure the objects pointed to by
      43             :  *   a Span live as long as the Span is used. For example:
      44             :  *
      45             :  *       std::vector<int> vec{1,2,3,4};
      46             :  *       Span<int> sp(vec);
      47             :  *       vec.push_back(5);
      48             :  *       printf("%i\n", sp.front()); // UB!
      49             :  *
      50             :  *   may exhibit undefined behavior, as increasing the size of a vector may
      51             :  *   invalidate references.
      52             :  *
      53             :  * - One particular pitfall is that Spans can be constructed from temporaries,
      54             :  *   but this is unsafe when the Span is stored in a variable, outliving the
      55             :  *   temporary. For example, this will compile, but exhibits undefined behavior:
      56             :  *
      57             :  *       Span<const int> sp(std::vector<int>{1, 2, 3});
      58             :  *       printf("%i\n", sp.front()); // UB!
      59             :  *
      60             :  *   The lifetime of the vector ends when the statement it is created in ends.
      61             :  *   Thus the Span is left with a dangling reference, and using it is undefined.
      62             :  *
      63             :  * - Due to Span's automatic creation from range-like objects (arrays, and data
      64             :  *   types that expose a data() and size() member function), functions that
      65             :  *   accept a Span as input parameter can be called with any compatible
      66             :  *   range-like object. For example, this works:
      67             :  *
      68             :  *       void Foo(Span<const int> arg);
      69             :  *
      70             :  *       Foo(std::vector<int>{1, 2, 3}); // Works
      71             :  *
      72             :  *   This is very useful in cases where a function truly does not care about the
      73             :  *   container, and only about having exactly a range of elements. However it
      74             :  *   may also be surprising to see automatic conversions in this case.
      75             :  *
      76             :  *   When a function accepts a Span with a mutable element type, it will not
      77             :  *   accept temporaries; only variables or other references. For example:
      78             :  *
      79             :  *       void FooMut(Span<int> arg);
      80             :  *
      81             :  *       FooMut(std::vector<int>{1, 2, 3}); // Does not compile
      82             :  *       std::vector<int> baz{1, 2, 3};
      83             :  *       FooMut(baz); // Works
      84             :  *
      85             :  *   This is similar to how functions that take (non-const) lvalue references
      86             :  *   as input cannot accept temporaries. This does not work either:
      87             :  *
      88             :  *       void FooVec(std::vector<int>& arg);
      89             :  *       FooVec(std::vector<int>{1, 2, 3}); // Does not compile
      90             :  *
      91             :  *   The idea is that if a function accepts a mutable reference, a meaningful
      92             :  *   result will be present in that variable after the call. Passing a temporary
      93             :  *   is useless in that context.
      94             :  */
      95             : template<typename C>
      96             : class Span
      97             : {
      98             :     C* m_data;
      99           0 :     std::size_t m_size{0};
     100             : 
     101             :     template <class T>
     102             :     struct is_Span_int : public std::false_type {};
     103             :     template <class T>
     104             :     struct is_Span_int<Span<T>> : public std::true_type {};
     105             :     template <class T>
     106             :     struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{};
     107             : 
     108             : 
     109             : public:
     110           0 :     constexpr Span() noexcept : m_data(nullptr) {}
     111             : 
     112             :     /** Construct a span from a begin pointer and a size.
     113             :      *
     114             :      * This implements a subset of the iterator-based std::span constructor in C++20,
     115             :      * which is hard to implement without std::address_of.
     116             :      */
     117             :     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
     118    58679416 :     constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
     119             : 
     120             :     /** Construct a span from a begin and end pointer.
     121             :      *
     122             :      * This implements a subset of the iterator-based std::span constructor in C++20,
     123             :      * which is hard to implement without std::address_of.
     124             :      */
     125             :     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
     126           0 :     CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
     127             :     {
     128             :         ASSERT_IF_DEBUG(end >= begin);
     129           0 :     }
     130             : 
     131             :     /** Implicit conversion of spans between compatible types.
     132             :      *
     133             :      *  Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
     134             :      *  C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
     135             :      *  C++20 std::span constructor.
     136             :      *
     137             :      *  For example this means that a Span<T> can be converted into a Span<const T>.
     138             :      */
     139             :     template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
     140           0 :     constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
     141             : 
     142             :     /** Default copy constructor. */
     143             :     constexpr Span(const Span&) noexcept = default;
     144             : 
     145             :     /** Default assignment operator. */
     146             :     Span& operator=(const Span& other) noexcept = default;
     147             : 
     148             :     /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
     149             :     template <int N>
     150        3436 :     constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
     151             : 
     152             :     /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
     153             :      *
     154             :      * This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
     155             :      *
     156             :      * To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
     157             :      * Note that this restriction does not exist when converting arrays or other Spans (see above).
     158             :      */
     159             :     template <typename V>
     160      785714 :     constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND,
     161             :         typename std::enable_if<!is_Span<V>::value &&
     162             :                                 std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value &&
     163             :                                 std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
     164      785714 :         : m_data(other.data()), m_size(other.size()){}
     165             : 
     166             :     template <typename V>
     167     9084314 :     constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND,
     168             :         typename std::enable_if<!is_Span<V>::value &&
     169             :                                 std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value &&
     170             :                                 std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
     171     9084314 :         : m_data(other.data()), m_size(other.size()){}
     172             : 
     173    64117358 :     constexpr C* data() const noexcept { return m_data; }
     174     1682213 :     constexpr C* begin() const noexcept { return m_data; }
     175      879345 :     constexpr C* end() const noexcept { return m_data + m_size; }
     176           0 :     CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
     177             :     {
     178             :         ASSERT_IF_DEBUG(size() > 0);
     179           0 :         return m_data[0];
     180             :     }
     181           0 :     CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
     182             :     {
     183             :         ASSERT_IF_DEBUG(size() > 0);
     184           0 :         return m_data[m_size - 1];
     185             :     }
     186    48296277 :     constexpr std::size_t size() const noexcept { return m_size; }
     187    36298416 :     constexpr std::size_t size_bytes() const noexcept { return sizeof(C) * m_size; }
     188      354186 :     constexpr bool empty() const noexcept { return size() == 0; }
     189        8928 :     CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
     190             :     {
     191             :         ASSERT_IF_DEBUG(size() > pos);
     192        8928 :         return m_data[pos];
     193             :     }
     194           0 :     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
     195             :     {
     196             :         ASSERT_IF_DEBUG(size() >= offset);
     197           0 :         return Span<C>(m_data + offset, m_size - offset);
     198             :     }
     199           0 :     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
     200             :     {
     201             :         ASSERT_IF_DEBUG(size() >= offset + count);
     202           0 :         return Span<C>(m_data + offset, count);
     203             :     }
     204           0 :     CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
     205             :     {
     206             :         ASSERT_IF_DEBUG(size() >= count);
     207           0 :         return Span<C>(m_data, count);
     208             :     }
     209           0 :     CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
     210             :     {
     211             :          ASSERT_IF_DEBUG(size() >= count);
     212           0 :          return Span<C>(m_data + m_size - count, count);
     213             :     }
     214             : 
     215           0 :     friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
     216           0 :     friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
     217           0 :     friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
     218           0 :     friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
     219           0 :     friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
     220           0 :     friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
     221             : 
     222             :     template <typename O> friend class Span;
     223             : };
     224             : 
     225             : // Deduction guides for Span
     226             : // For the pointer/size based and iterator based constructor:
     227             : template <typename T, typename EndOrSize> Span(T*, EndOrSize) -> Span<T>;
     228             : // For the array constructor:
     229             : template <typename T, std::size_t N> Span(T (&)[N]) -> Span<T>;
     230             : // For the temporaries/rvalue references constructor, only supporting const output.
     231             : template <typename T> Span(T&&) -> Span<std::enable_if_t<!std::is_lvalue_reference_v<T>, const std::remove_pointer_t<decltype(std::declval<T&&>().data())>>>;
     232             : // For (lvalue) references, supporting mutable output.
     233             : template <typename T> Span(T&) -> Span<std::remove_pointer_t<decltype(std::declval<T&>().data())>>;
     234             : 
     235             : /** Pop the last element off a span, and return a reference to that element. */
     236             : template <typename T>
     237        8910 : T& SpanPopBack(Span<T>& span)
     238             : {
     239        8910 :     size_t size = span.size();
     240             :     ASSERT_IF_DEBUG(size > 0);
     241        8910 :     T& back = span[size - 1];
     242        8910 :     span = Span<T>(span.data(), size - 1);
     243        8910 :     return back;
     244             : }
     245             : 
     246             : // From C++20 as_bytes and as_writeable_bytes
     247             : template <typename T>
     248    27217229 : Span<const std::byte> AsBytes(Span<T> s) noexcept
     249             : {
     250    27217229 :     return {reinterpret_cast<const std::byte*>(s.data()), s.size_bytes()};
     251             : }
     252             : template <typename T>
     253      177668 : Span<std::byte> AsWritableBytes(Span<T> s) noexcept
     254             : {
     255      177668 :     return {reinterpret_cast<std::byte*>(s.data()), s.size_bytes()};
     256             : }
     257             : 
     258             : template <typename V>
     259     4957994 : Span<const std::byte> MakeByteSpan(V&& v) noexcept
     260             : {
     261     4957994 :     return AsBytes(Span{std::forward<V>(v)});
     262             : }
     263             : template <typename V>
     264       27145 : Span<std::byte> MakeWritableByteSpan(V&& v) noexcept
     265             : {
     266       27145 :     return AsWritableBytes(Span{std::forward<V>(v)});
     267             : }
     268             : 
     269             : // Helper functions to safely cast to unsigned char pointers.
     270           0 : inline unsigned char* UCharCast(char* c) { return reinterpret_cast<unsigned char*>(c); }
     271           0 : inline unsigned char* UCharCast(unsigned char* c) { return c; }
     272      354184 : inline unsigned char* UCharCast(std::byte* c) { return reinterpret_cast<unsigned char*>(c); }
     273           0 : inline const unsigned char* UCharCast(const char* c) { return reinterpret_cast<const unsigned char*>(c); }
     274     2637898 : inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
     275     9497580 : inline const unsigned char* UCharCast(const std::byte* c) { return reinterpret_cast<const unsigned char*>(c); }
     276             : 
     277             : // Helper function to safely convert a Span to a Span<[const] unsigned char>.
     278           0 : template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
     279             : 
     280             : /** Like the Span constructor, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
     281           0 : template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(Span{std::forward<V>(v)})) { return UCharSpanCast(Span{std::forward<V>(v)}); }
     282             : 
     283             : #endif // BITCOIN_SPAN_H

Generated by: LCOV version 1.14