LCOV - code coverage report
Current view: top level - src - serialize.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 174 381 45.7 %
Date: 2023-09-26 12:08:55 Functions: 308 2714 11.3 %

          Line data    Source code
       1             : // Copyright (c) 2009-2010 Satoshi Nakamoto
       2             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #ifndef BITCOIN_SERIALIZE_H
       7             : #define BITCOIN_SERIALIZE_H
       8             : 
       9             : #include <attributes.h>
      10             : #include <compat/endian.h>
      11             : 
      12             : #include <algorithm>
      13             : #include <cstdint>
      14             : #include <cstring>
      15             : #include <ios>
      16             : #include <limits>
      17             : #include <map>
      18             : #include <memory>
      19             : #include <set>
      20             : #include <string>
      21             : #include <string.h>
      22             : #include <utility>
      23             : #include <vector>
      24             : 
      25             : #include <prevector.h>
      26             : #include <span.h>
      27             : 
      28             : /**
      29             :  * The maximum size of a serialized object in bytes or number of elements
      30             :  * (for eg vectors) when the size is encoded as CompactSize.
      31             :  */
      32             : static constexpr uint64_t MAX_SIZE = 0x02000000;
      33             : 
      34             : /** Maximum amount of memory (in bytes) to allocate at once when deserializing vectors. */
      35             : static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
      36             : 
      37             : /**
      38             :  * Dummy data type to identify deserializing constructors.
      39             :  *
      40             :  * By convention, a constructor of a type T with signature
      41             :  *
      42             :  *   template <typename Stream> T::T(deserialize_type, Stream& s)
      43             :  *
      44             :  * is a deserializing constructor, which builds the type by
      45             :  * deserializing it from s. If T contains const fields, this
      46             :  * is likely the only way to do so.
      47             :  */
      48             : struct deserialize_type {};
      49             : constexpr deserialize_type deserialize {};
      50             : 
      51             : /*
      52             :  * Lowest-level serialization and conversion.
      53             :  */
      54     2474756 : template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
      55             : {
      56     2474756 :     s.write(AsBytes(Span{&obj, 1}));
      57     2474756 : }
      58         510 : template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
      59             : {
      60         510 :     obj = htole16(obj);
      61         510 :     s.write(AsBytes(Span{&obj, 1}));
      62         510 : }
      63           0 : template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
      64             : {
      65           0 :     obj = htobe16(obj);
      66           0 :     s.write(AsBytes(Span{&obj, 1}));
      67           0 : }
      68     5743310 : template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
      69             : {
      70     5743310 :     obj = htole32(obj);
      71     5743310 :     s.write(AsBytes(Span{&obj, 1}));
      72     5743310 : }
      73           0 : template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
      74             : {
      75           0 :     obj = htobe32(obj);
      76           0 :     s.write(AsBytes(Span{&obj, 1}));
      77           0 : }
      78     3787673 : template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
      79             : {
      80     3787673 :     obj = htole64(obj);
      81     3787673 :     s.write(AsBytes(Span{&obj, 1}));
      82     3787673 : }
      83          85 : template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
      84             : {
      85             :     uint8_t obj;
      86          85 :     s.read(AsWritableBytes(Span{&obj, 1}));
      87          85 :     return obj;
      88             : }
      89           0 : template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
      90             : {
      91             :     uint16_t obj;
      92           0 :     s.read(AsWritableBytes(Span{&obj, 1}));
      93           0 :     return le16toh(obj);
      94             : }
      95           0 : template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
      96             : {
      97             :     uint16_t obj;
      98           0 :     s.read(AsWritableBytes(Span{&obj, 1}));
      99           0 :     return be16toh(obj);
     100             : }
     101       54491 : template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
     102             : {
     103             :     uint32_t obj;
     104       54491 :     s.read(AsWritableBytes(Span{&obj, 1}));
     105       54491 :     return le32toh(obj);
     106             : }
     107           0 : template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
     108             : {
     109             :     uint32_t obj;
     110           0 :     s.read(AsWritableBytes(Span{&obj, 1}));
     111           0 :     return be32toh(obj);
     112             : }
     113          17 : template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
     114             : {
     115             :     uint64_t obj;
     116          17 :     s.read(AsWritableBytes(Span{&obj, 1}));
     117          17 :     return le64toh(obj);
     118             : }
     119             : 
     120             : 
     121             : /////////////////////////////////////////////////////////////////
     122             : //
     123             : // Templates for serializing to anything that looks like a stream,
     124             : // i.e. anything that supports .read(Span<std::byte>) and .write(Span<const std::byte>)
     125             : //
     126             : 
     127             : class CSizeComputer;
     128             : 
     129             : enum
     130             : {
     131             :     // primary actions
     132             :     SER_NETWORK         = (1 << 0),
     133             :     SER_DISK            = (1 << 1),
     134             :     SER_GETHASH         = (1 << 2),
     135             : };
     136             : 
     137             : /**
     138             :  * Convert any argument to a reference to X, maintaining constness.
     139             :  *
     140             :  * This can be used in serialization code to invoke a base class's
     141             :  * serialization routines.
     142             :  *
     143             :  * Example use:
     144             :  *   class Base { ... };
     145             :  *   class Child : public Base {
     146             :  *     int m_data;
     147             :  *   public:
     148             :  *     SERIALIZE_METHODS(Child, obj) {
     149             :  *       READWRITE(AsBase<Base>(obj), obj.m_data);
     150             :  *     }
     151             :  *   };
     152             :  *
     153             :  * static_cast cannot easily be used here, as the type of Obj will be const Child&
     154             :  * during serialization and Child& during deserialization. AsBase will convert to
     155             :  * const Base& and Base& appropriately.
     156             :  */
     157             : template <class Out, class In>
     158           3 : Out& AsBase(In& x)
     159             : {
     160             :     static_assert(std::is_base_of_v<Out, In>);
     161           3 :     return x;
     162             : }
     163             : template <class Out, class In>
     164     6341153 : const Out& AsBase(const In& x)
     165             : {
     166             :     static_assert(std::is_base_of_v<Out, In>);
     167     6341153 :     return x;
     168             : }
     169             : 
     170             : #define READWRITE(...) (ser_action.SerReadWriteMany(s, __VA_ARGS__))
     171             : #define SER_READ(obj, code) ser_action.SerRead(s, obj, [&](Stream& s, typename std::remove_const<Type>::type& obj) { code; })
     172             : #define SER_WRITE(obj, code) ser_action.SerWrite(s, obj, [&](Stream& s, const Type& obj) { code; })
     173             : 
     174             : /**
     175             :  * Implement the Ser and Unser methods needed for implementing a formatter (see Using below).
     176             :  *
     177             :  * Both Ser and Unser are delegated to a single static method SerializationOps, which is polymorphic
     178             :  * in the serialized/deserialized type (allowing it to be const when serializing, and non-const when
     179             :  * deserializing).
     180             :  *
     181             :  * Example use:
     182             :  *   struct FooFormatter {
     183             :  *     FORMATTER_METHODS(Class, obj) { READWRITE(obj.val1, VARINT(obj.val2)); }
     184             :  *   }
     185             :  *   would define a class FooFormatter that defines a serialization of Class objects consisting
     186             :  *   of serializing its val1 member using the default serialization, and its val2 member using
     187             :  *   VARINT serialization. That FooFormatter can then be used in statements like
     188             :  *   READWRITE(Using<FooFormatter>(obj.bla)).
     189             :  */
     190             : #define FORMATTER_METHODS(cls, obj) \
     191             :     template<typename Stream> \
     192             :     static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, ActionSerialize{}); } \
     193             :     template<typename Stream> \
     194             :     static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, ActionUnserialize{}); } \
     195             :     template<typename Stream, typename Type, typename Operation> \
     196             :     static void SerializationOps(Type& obj, Stream& s, Operation ser_action)
     197             : 
     198             : /**
     199             :  * Variant of FORMATTER_METHODS that supports a declared parameter type.
     200             :  *
     201             :  * If a formatter has a declared parameter type, it must be invoked directly or
     202             :  * indirectly with a parameter of that type. This permits making serialization
     203             :  * depend on run-time context in a type-safe way.
     204             :  *
     205             :  * Example use:
     206             :  *   struct BarParameter { bool fancy; ... };
     207             :  *   struct Bar { ... };
     208             :  *   struct FooFormatter {
     209             :  *     FORMATTER_METHODS(Bar, obj, BarParameter, param) {
     210             :  *       if (param.fancy) {
     211             :  *         READWRITE(VARINT(obj.value));
     212             :  *       } else {
     213             :  *         READWRITE(obj.value);
     214             :  *       }
     215             :  *     }
     216             :  *   };
     217             :  * which would then be invoked as
     218             :  *   READWRITE(WithParams(BarParameter{...}, Using<FooFormatter>(obj.foo)))
     219             :  *
     220             :  * WithParams(parameter, obj) can be invoked anywhere in the call stack; it is
     221             :  * passed down recursively into all serialization code, until another
     222             :  * WithParams overrides it.
     223             :  *
     224             :  * Parameters will be implicitly converted where appropriate. This means that
     225             :  * "parent" serialization code can use a parameter that derives from, or is
     226             :  * convertible to, a "child" formatter's parameter type.
     227             :  *
     228             :  * Compilation will fail in any context where serialization is invoked but
     229             :  * no parameter of a type convertible to BarParameter is provided.
     230             :  */
     231             : #define FORMATTER_METHODS_PARAMS(cls, obj, paramcls, paramobj)                                                 \
     232             :     template <typename Stream>                                                                                 \
     233             :     static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, ActionSerialize{}, s.GetParams()); } \
     234             :     template <typename Stream>                                                                                 \
     235             :     static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, ActionUnserialize{}, s.GetParams()); }   \
     236             :     template <typename Stream, typename Type, typename Operation>                                              \
     237             :     static void SerializationOps(Type& obj, Stream& s, Operation ser_action, const paramcls& paramobj)
     238             : 
     239             : #define BASE_SERIALIZE_METHODS(cls)                                                                 \
     240             :     template <typename Stream>                                                                      \
     241             :     void Serialize(Stream& s) const                                                                 \
     242             :     {                                                                                               \
     243             :         static_assert(std::is_same<const cls&, decltype(*this)>::value, "Serialize type mismatch"); \
     244             :         Ser(s, *this);                                                                              \
     245             :     }                                                                                               \
     246             :     template <typename Stream>                                                                      \
     247             :     void Unserialize(Stream& s)                                                                     \
     248             :     {                                                                                               \
     249             :         static_assert(std::is_same<cls&, decltype(*this)>::value, "Unserialize type mismatch");     \
     250             :         Unser(s, *this);                                                                            \
     251             :     }
     252             : 
     253             : /**
     254             :  * Implement the Serialize and Unserialize methods by delegating to a single templated
     255             :  * static method that takes the to-be-(de)serialized object as a parameter. This approach
     256             :  * has the advantage that the constness of the object becomes a template parameter, and
     257             :  * thus allows a single implementation that sees the object as const for serializing
     258             :  * and non-const for deserializing, without casts.
     259             :  */
     260             : #define SERIALIZE_METHODS(cls, obj) \
     261             :     BASE_SERIALIZE_METHODS(cls)     \
     262             :     FORMATTER_METHODS(cls, obj)
     263             : 
     264             : /**
     265             :  * Variant of SERIALIZE_METHODS that supports a declared parameter type.
     266             :  *
     267             :  *  See FORMATTER_METHODS_PARAMS for more information on parameters.
     268             :  */
     269             : #define SERIALIZE_METHODS_PARAMS(cls, obj, paramcls, paramobj) \
     270             :     BASE_SERIALIZE_METHODS(cls)                                \
     271             :     FORMATTER_METHODS_PARAMS(cls, obj, paramcls, paramobj)
     272             : 
     273             : // clang-format off
     274             : #ifndef CHAR_EQUALS_INT8
     275             : template <typename Stream> void Serialize(Stream&, char) = delete; // char serialization forbidden. Use uint8_t or int8_t
     276             : #endif
     277             : template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
     278           0 : template<typename Stream> inline void Serialize(Stream& s, int8_t a  ) { ser_writedata8(s, a); }
     279      112305 : template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
     280           0 : template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
     281           0 : template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
     282      294856 : template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
     283     5448454 : template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
     284     3787673 : template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
     285           0 : template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
     286           0 : template<typename Stream, int N> inline void Serialize(Stream& s, const char (&a)[N]) { s.write(MakeByteSpan(a)); }
     287           0 : template<typename Stream, int N> inline void Serialize(Stream& s, const unsigned char (&a)[N]) { s.write(MakeByteSpan(a)); }
     288         401 : template <typename Stream, typename B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { (void)/* force byte-type */UCharCast(a.data()); s.write(MakeByteSpan(a)); }
     289     2640542 : template <typename Stream, typename B> void Serialize(Stream& s, Span<B> span) { (void)/* force byte-type */UCharCast(span.data()); s.write(AsBytes(span)); }
     290             : 
     291             : #ifndef CHAR_EQUALS_INT8
     292             : template <typename Stream> void Unserialize(Stream&, char) = delete; // char serialization forbidden. Use uint8_t or int8_t
     293             : #endif
     294             : template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
     295           0 : template<typename Stream> inline void Unserialize(Stream& s, int8_t& a  ) { a = ser_readdata8(s); }
     296           0 : template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
     297           0 : template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
     298           0 : template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
     299          34 : template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
     300       39872 : template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
     301          17 : template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
     302           0 : template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
     303           0 : template<typename Stream, int N> inline void Unserialize(Stream& s, char (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
     304           0 : template<typename Stream, int N> inline void Unserialize(Stream& s, unsigned char (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
     305           0 : template <typename Stream, typename B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { (void)/* force byte-type */UCharCast(a.data()); s.read(MakeWritableByteSpan(a)); }
     306           0 : template <typename Stream, typename B> void Unserialize(Stream& s, Span<B> span) { (void)/* force byte-type */UCharCast(span.data()); s.read(AsWritableBytes(span)); }
     307             : 
     308           0 : template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
     309           0 : template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
     310             : // clang-format on
     311             : 
     312             : 
     313             : /**
     314             :  * Compact Size
     315             :  * size <  253        -- 1 byte
     316             :  * size <= USHRT_MAX  -- 3 bytes  (253 + 2 bytes)
     317             :  * size <= UINT_MAX   -- 5 bytes  (254 + 4 bytes)
     318             :  * size >  UINT_MAX   -- 9 bytes  (255 + 8 bytes)
     319             :  */
     320     6463584 : inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
     321             : {
     322     6463584 :     if (nSize < 253)             return sizeof(unsigned char);
     323        2128 :     else if (nSize <= std::numeric_limits<uint16_t>::max()) return sizeof(unsigned char) + sizeof(uint16_t);
     324           0 :     else if (nSize <= std::numeric_limits<unsigned int>::max())  return sizeof(unsigned char) + sizeof(unsigned int);
     325           0 :     else                         return sizeof(unsigned char) + sizeof(uint64_t);
     326     6463584 : }
     327             : 
     328             : inline void WriteCompactSize(CSizeComputer& os, uint64_t nSize);
     329             : 
     330             : template<typename Stream>
     331     2343055 : void WriteCompactSize(Stream& os, uint64_t nSize)
     332             : {
     333     2343055 :     if (nSize < 253)
     334             :     {
     335     2342545 :         ser_writedata8(os, nSize);
     336     2342545 :     }
     337         510 :     else if (nSize <= std::numeric_limits<uint16_t>::max())
     338             :     {
     339         510 :         ser_writedata8(os, 253);
     340         510 :         ser_writedata16(os, nSize);
     341         510 :     }
     342           0 :     else if (nSize <= std::numeric_limits<unsigned int>::max())
     343             :     {
     344           0 :         ser_writedata8(os, 254);
     345           0 :         ser_writedata32(os, nSize);
     346           0 :     }
     347             :     else
     348             :     {
     349           0 :         ser_writedata8(os, 255);
     350           0 :         ser_writedata64(os, nSize);
     351             :     }
     352     2343055 :     return;
     353             : }
     354             : 
     355             : /**
     356             :  * Decode a CompactSize-encoded variable-length integer.
     357             :  *
     358             :  * As these are primarily used to encode the size of vector-like serializations, by default a range
     359             :  * check is performed. When used as a generic number encoding, range_check should be set to false.
     360             :  */
     361             : template<typename Stream>
     362          85 : uint64_t ReadCompactSize(Stream& is, bool range_check = true)
     363             : {
     364          85 :     uint8_t chSize = ser_readdata8(is);
     365          85 :     uint64_t nSizeRet = 0;
     366          85 :     if (chSize < 253)
     367             :     {
     368          85 :         nSizeRet = chSize;
     369          85 :     }
     370           0 :     else if (chSize == 253)
     371             :     {
     372           0 :         nSizeRet = ser_readdata16(is);
     373           0 :         if (nSizeRet < 253)
     374           0 :             throw std::ios_base::failure("non-canonical ReadCompactSize()");
     375           0 :     }
     376           0 :     else if (chSize == 254)
     377             :     {
     378           0 :         nSizeRet = ser_readdata32(is);
     379           0 :         if (nSizeRet < 0x10000u)
     380           0 :             throw std::ios_base::failure("non-canonical ReadCompactSize()");
     381           0 :     }
     382             :     else
     383             :     {
     384           0 :         nSizeRet = ser_readdata64(is);
     385           0 :         if (nSizeRet < 0x100000000ULL)
     386           0 :             throw std::ios_base::failure("non-canonical ReadCompactSize()");
     387             :     }
     388          85 :     if (range_check && nSizeRet > MAX_SIZE) {
     389           0 :         throw std::ios_base::failure("ReadCompactSize(): size too large");
     390             :     }
     391          85 :     return nSizeRet;
     392           0 : }
     393             : 
     394             : /**
     395             :  * Variable-length integers: bytes are a MSB base-128 encoding of the number.
     396             :  * The high bit in each byte signifies whether another digit follows. To make
     397             :  * sure the encoding is one-to-one, one is subtracted from all but the last digit.
     398             :  * Thus, the byte sequence a[] with length len, where all but the last byte
     399             :  * has bit 128 set, encodes the number:
     400             :  *
     401             :  *  (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
     402             :  *
     403             :  * Properties:
     404             :  * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
     405             :  * * Every integer has exactly one encoding
     406             :  * * Encoding does not depend on size of original integer type
     407             :  * * No redundancy: every (infinite) byte sequence corresponds to a list
     408             :  *   of encoded integers.
     409             :  *
     410             :  * 0:         [0x00]  256:        [0x81 0x00]
     411             :  * 1:         [0x01]  16383:      [0xFE 0x7F]
     412             :  * 127:       [0x7F]  16384:      [0xFF 0x00]
     413             :  * 128:  [0x80 0x00]  16511:      [0xFF 0x7F]
     414             :  * 255:  [0x80 0x7F]  65535: [0x82 0xFE 0x7F]
     415             :  * 2^32:           [0x8E 0xFE 0xFE 0xFF 0x00]
     416             :  */
     417             : 
     418             : /**
     419             :  * Mode for encoding VarInts.
     420             :  *
     421             :  * Currently there is no support for signed encodings. The default mode will not
     422             :  * compile with signed values, and the legacy "nonnegative signed" mode will
     423             :  * accept signed values, but improperly encode and decode them if they are
     424             :  * negative. In the future, the DEFAULT mode could be extended to support
     425             :  * negative numbers in a backwards compatible way, and additional modes could be
     426             :  * added to support different varint formats (e.g. zigzag encoding).
     427             :  */
     428             : enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };
     429             : 
     430             : template <VarIntMode Mode, typename I>
     431             : struct CheckVarIntMode {
     432       19256 :     constexpr CheckVarIntMode()
     433             :     {
     434             :         static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
     435             :         static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
     436       19256 :     }
     437             : };
     438             : 
     439             : template<VarIntMode Mode, typename I>
     440             : inline unsigned int GetSizeOfVarInt(I n)
     441             : {
     442             :     CheckVarIntMode<Mode, I>();
     443             :     int nRet = 0;
     444             :     while(true) {
     445             :         nRet++;
     446             :         if (n <= 0x7F)
     447             :             break;
     448             :         n = (n >> 7) - 1;
     449             :     }
     450             :     return nRet;
     451             : }
     452             : 
     453             : template<typename I>
     454             : inline void WriteVarInt(CSizeComputer& os, I n);
     455             : 
     456             : template<typename Stream, VarIntMode Mode, typename I>
     457       19256 : void WriteVarInt(Stream& os, I n)
     458             : {
     459       19256 :     CheckVarIntMode<Mode, I>();
     460             :     unsigned char tmp[(sizeof(n)*8+6)/7];
     461       19256 :     int len=0;
     462       19396 :     while(true) {
     463       19396 :         tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
     464       19396 :         if (n <= 0x7F)
     465       19256 :             break;
     466         140 :         n = (n >> 7) - 1;
     467         140 :         len++;
     468             :     }
     469       19256 :     do {
     470       19396 :         ser_writedata8(os, tmp[len]);
     471       19396 :     } while(len--);
     472       19256 : }
     473             : 
     474             : template<typename Stream, VarIntMode Mode, typename I>
     475           0 : I ReadVarInt(Stream& is)
     476             : {
     477           0 :     CheckVarIntMode<Mode, I>();
     478           0 :     I n = 0;
     479           0 :     while(true) {
     480           0 :         unsigned char chData = ser_readdata8(is);
     481           0 :         if (n > (std::numeric_limits<I>::max() >> 7)) {
     482           0 :            throw std::ios_base::failure("ReadVarInt(): size too large");
     483             :         }
     484           0 :         n = (n << 7) | (chData & 0x7F);
     485           0 :         if (chData & 0x80) {
     486           0 :             if (n == std::numeric_limits<I>::max()) {
     487           0 :                 throw std::ios_base::failure("ReadVarInt(): size too large");
     488             :             }
     489           0 :             n++;
     490           0 :         } else {
     491           0 :             return n;
     492             :         }
     493             :     }
     494           0 : }
     495             : 
     496             : /** Simple wrapper class to serialize objects using a formatter; used by Using(). */
     497             : template<typename Formatter, typename T>
     498             : class Wrapper
     499             : {
     500             :     static_assert(std::is_lvalue_reference<T>::value, "Wrapper needs an lvalue reference type T");
     501             : protected:
     502             :     T m_object;
     503             : public:
     504     1574505 :     explicit Wrapper(T obj) : m_object(obj) {}
     505     1578532 :     template<typename Stream> void Serialize(Stream &s) const { Formatter().Ser(s, m_object); }
     506          35 :     template<typename Stream> void Unserialize(Stream &s) { Formatter().Unser(s, m_object); }
     507             : };
     508             : 
     509             : /** Cause serialization/deserialization of an object to be done using a specified formatter class.
     510             :  *
     511             :  * To use this, you need a class Formatter that has public functions Ser(stream, const object&) for
     512             :  * serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
     513             :  * READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
     514             :  *
     515             :  * This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
     516             :  * const during serialization, and non-const during deserialization, which maintains const
     517             :  * correctness.
     518             :  */
     519             : template<typename Formatter, typename T>
     520     1578567 : static inline Wrapper<Formatter, T&> Using(T&& t) { return Wrapper<Formatter, T&>(t); }
     521             : 
     522             : #define VARINT_MODE(obj, mode) Using<VarIntFormatter<mode>>(obj)
     523             : #define VARINT(obj) Using<VarIntFormatter<VarIntMode::DEFAULT>>(obj)
     524             : #define COMPACTSIZE(obj) Using<CompactSizeFormatter<true>>(obj)
     525             : #define LIMITED_STRING(obj,n) Using<LimitedStringFormatter<n>>(obj)
     526             : 
     527             : /** Serialization wrapper class for integers in VarInt format. */
     528             : template<VarIntMode Mode>
     529             : struct VarIntFormatter
     530             : {
     531       19256 :     template<typename Stream, typename I> void Ser(Stream &s, I v)
     532             :     {
     533       19256 :         WriteVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s, v);
     534       19256 :     }
     535             : 
     536           0 :     template<typename Stream, typename I> void Unser(Stream& s, I& v)
     537             :     {
     538           0 :         v = ReadVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s);
     539           0 :     }
     540             : };
     541             : 
     542             : /** Serialization wrapper class for custom integers and enums.
     543             :  *
     544             :  * It permits specifying the serialized size (1 to 8 bytes) and endianness.
     545             :  *
     546             :  * Use the big endian mode for values that are stored in memory in native
     547             :  * byte order, but serialized in big endian notation. This is only intended
     548             :  * to implement serializers that are compatible with existing formats, and
     549             :  * its use is not recommended for new data structures.
     550             :  */
     551             : template<int Bytes, bool BigEndian = false>
     552             : struct CustomUintFormatter
     553             : {
     554             :     static_assert(Bytes > 0 && Bytes <= 8, "CustomUintFormatter Bytes out of range");
     555             :     static constexpr uint64_t MAX = 0xffffffffffffffff >> (8 * (8 - Bytes));
     556             : 
     557           0 :     template <typename Stream, typename I> void Ser(Stream& s, I v)
     558             :     {
     559           0 :         if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
     560             :         if (BigEndian) {
     561           0 :             uint64_t raw = htobe64(v);
     562           0 :             s.write(AsBytes(Span{&raw, 1}).last(Bytes));
     563             :         } else {
     564           0 :             uint64_t raw = htole64(v);
     565           0 :             s.write(AsBytes(Span{&raw, 1}).first(Bytes));
     566             :         }
     567           0 :     }
     568             : 
     569           0 :     template <typename Stream, typename I> void Unser(Stream& s, I& v)
     570             :     {
     571             :         using U = typename std::conditional<std::is_enum<I>::value, std::underlying_type<I>, std::common_type<I>>::type::type;
     572             :         static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
     573           0 :         uint64_t raw = 0;
     574             :         if (BigEndian) {
     575           0 :             s.read(AsWritableBytes(Span{&raw, 1}).last(Bytes));
     576           0 :             v = static_cast<I>(be64toh(raw));
     577             :         } else {
     578           0 :             s.read(AsWritableBytes(Span{&raw, 1}).first(Bytes));
     579           0 :             v = static_cast<I>(le64toh(raw));
     580             :         }
     581           0 :     }
     582             : };
     583             : 
     584             : template<int Bytes> using BigEndianFormatter = CustomUintFormatter<Bytes, true>;
     585             : 
     586             : /** Formatter for integers in CompactSize format. */
     587             : template<bool RangeCheck>
     588             : struct CompactSizeFormatter
     589             : {
     590             :     template<typename Stream, typename I>
     591           0 :     void Unser(Stream& s, I& v)
     592             :     {
     593           0 :         uint64_t n = ReadCompactSize<Stream>(s, RangeCheck);
     594           0 :         if (n < std::numeric_limits<I>::min() || n > std::numeric_limits<I>::max()) {
     595           0 :             throw std::ios_base::failure("CompactSize exceeds limit of type");
     596             :         }
     597           0 :         v = n;
     598           0 :     }
     599             : 
     600             :     template<typename Stream, typename I>
     601           0 :     void Ser(Stream& s, I v)
     602             :     {
     603             :         static_assert(std::is_unsigned<I>::value, "CompactSize only supported for unsigned integers");
     604             :         static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(), "CompactSize only supports 64-bit integers and below");
     605             : 
     606           0 :         WriteCompactSize<Stream>(s, v);
     607           0 :     }
     608             : };
     609             : 
     610             : template <typename U, bool LOSSY = false>
     611             : struct ChronoFormatter {
     612             :     template <typename Stream, typename Tp>
     613           0 :     void Unser(Stream& s, Tp& tp)
     614             :     {
     615             :         U u;
     616           0 :         s >> u;
     617             :         // Lossy deserialization does not make sense, so force Wnarrowing
     618           0 :         tp = Tp{typename Tp::duration{typename Tp::duration::rep{u}}};
     619           0 :     }
     620             :     template <typename Stream, typename Tp>
     621           0 :     void Ser(Stream& s, Tp tp)
     622             :     {
     623             :         if constexpr (LOSSY) {
     624           0 :             s << U(tp.time_since_epoch().count());
     625             :         } else {
     626           0 :             s << U{tp.time_since_epoch().count()};
     627             :         }
     628           0 :     }
     629             : };
     630             : template <typename U>
     631             : using LossyChronoFormatter = ChronoFormatter<U, true>;
     632             : 
     633             : class CompactSizeWriter
     634             : {
     635             : protected:
     636             :     uint64_t n;
     637             : public:
     638           0 :     explicit CompactSizeWriter(uint64_t n_in) : n(n_in) { }
     639             : 
     640             :     template<typename Stream>
     641           0 :     void Serialize(Stream &s) const {
     642           0 :         WriteCompactSize<Stream>(s, n);
     643           0 :     }
     644             : };
     645             : 
     646             : template<size_t Limit>
     647             : struct LimitedStringFormatter
     648             : {
     649             :     template<typename Stream>
     650           0 :     void Unser(Stream& s, std::string& v)
     651             :     {
     652           0 :         size_t size = ReadCompactSize(s);
     653           0 :         if (size > Limit) {
     654           0 :             throw std::ios_base::failure("String length limit exceeded");
     655             :         }
     656           0 :         v.resize(size);
     657           0 :         if (size != 0) s.read(MakeWritableByteSpan(v));
     658           0 :     }
     659             : 
     660             :     template<typename Stream>
     661           0 :     void Ser(Stream& s, const std::string& v)
     662             :     {
     663           0 :         s << v;
     664           0 :     }
     665             : };
     666             : 
     667             : /** Formatter to serialize/deserialize vector elements using another formatter
     668             :  *
     669             :  * Example:
     670             :  *   struct X {
     671             :  *     std::vector<uint64_t> v;
     672             :  *     SERIALIZE_METHODS(X, obj) { READWRITE(Using<VectorFormatter<VarInt>>(obj.v)); }
     673             :  *   };
     674             :  * will define a struct that contains a vector of uint64_t, which is serialized
     675             :  * as a vector of VarInt-encoded integers.
     676             :  *
     677             :  * V is not required to be an std::vector type. It works for any class that
     678             :  * exposes a value_type, size, reserve, emplace_back, back, and const iterators.
     679             :  */
     680             : template<class Formatter>
     681             : struct VectorFormatter
     682             : {
     683             :     template<typename Stream, typename V>
     684     1559276 :     void Ser(Stream& s, const V& v)
     685             :     {
     686           0 :         Formatter formatter;
     687     1559276 :         WriteCompactSize(s, v.size());
     688     8453151 :         for (const typename V::value_type& elem : v) {
     689     6893875 :             formatter.Ser(s, elem);
     690             :         }
     691     1559276 :     }
     692             : 
     693             :     template<typename Stream, typename V>
     694          35 :     void Unser(Stream& s, V& v)
     695             :     {
     696           0 :         Formatter formatter;
     697          35 :         v.clear();
     698          35 :         size_t size = ReadCompactSize(s);
     699          35 :         size_t allocated = 0;
     700          70 :         while (allocated < size) {
     701             :             // For DoS prevention, do not blindly allocate as much as the stream claims to contain.
     702             :             // Instead, allocate in 5MiB batches, so that an attacker actually needs to provide
     703             :             // X MiB of data to make us allocate X+5 Mib.
     704             :             static_assert(sizeof(typename V::value_type) <= MAX_VECTOR_ALLOCATE, "Vector element size too large");
     705          35 :             allocated = std::min(size, allocated + MAX_VECTOR_ALLOCATE / sizeof(typename V::value_type));
     706          35 :             v.reserve(allocated);
     707          70 :             while (v.size() < allocated) {
     708          35 :                 v.emplace_back();
     709          35 :                 formatter.Unser(s, v.back());
     710             :             }
     711             :         }
     712          35 :     };
     713             : };
     714             : 
     715             : /**
     716             :  * Forward declarations
     717             :  */
     718             : 
     719             : /**
     720             :  *  string
     721             :  */
     722             : template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
     723             : template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
     724             : 
     725             : /**
     726             :  * prevector
     727             :  * prevectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
     728             :  */
     729             : template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
     730             : template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
     731             : 
     732             : /**
     733             :  * vector
     734             :  * vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
     735             :  */
     736             : template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
     737             : template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
     738             : 
     739             : /**
     740             :  * pair
     741             :  */
     742             : template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
     743             : template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
     744             : 
     745             : /**
     746             :  * map
     747             :  */
     748             : template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
     749             : template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);
     750             : 
     751             : /**
     752             :  * set
     753             :  */
     754             : template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
     755             : template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
     756             : 
     757             : /**
     758             :  * shared_ptr
     759             :  */
     760             : template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
     761             : template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
     762             : 
     763             : /**
     764             :  * unique_ptr
     765             :  */
     766             : template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
     767             : template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
     768             : 
     769             : 
     770             : 
     771             : /**
     772             :  * If none of the specialized versions above matched, default to calling member function.
     773             :  */
     774             : template<typename Stream, typename T>
     775    19769715 : inline void Serialize(Stream& os, const T& a)
     776             : {
     777    19769715 :     a.Serialize(os);
     778    19769715 : }
     779             : 
     780             : template<typename Stream, typename T>
     781       47292 : inline void Unserialize(Stream& is, T&& a)
     782             : {
     783       47292 :     a.Unserialize(is);
     784       47292 : }
     785             : 
     786             : /** Default formatter. Serializes objects as themselves.
     787             :  *
     788             :  * The vector/prevector serialization code passes this to VectorFormatter
     789             :  * to enable reusing that logic. It shouldn't be needed elsewhere.
     790             :  */
     791             : struct DefaultFormatter
     792             : {
     793             :     template<typename Stream, typename T>
     794     6893875 :     static void Ser(Stream& s, const T& t) { Serialize(s, t); }
     795             : 
     796             :     template<typename Stream, typename T>
     797          35 :     static void Unser(Stream& s, T& t) { Unserialize(s, t); }
     798             : };
     799             : 
     800             : 
     801             : 
     802             : 
     803             : 
     804             : /**
     805             :  * string
     806             :  */
     807             : template<typename Stream, typename C>
     808           5 : void Serialize(Stream& os, const std::basic_string<C>& str)
     809             : {
     810           5 :     WriteCompactSize(os, str.size());
     811           5 :     if (!str.empty())
     812           5 :         os.write(MakeByteSpan(str));
     813           5 : }
     814             : 
     815             : template<typename Stream, typename C>
     816           0 : void Unserialize(Stream& is, std::basic_string<C>& str)
     817             : {
     818           0 :     unsigned int nSize = ReadCompactSize(is);
     819           0 :     str.resize(nSize);
     820           0 :     if (nSize != 0)
     821           0 :         is.read(MakeWritableByteSpan(str));
     822           0 : }
     823             : 
     824             : 
     825             : 
     826             : /**
     827             :  * prevector
     828             :  */
     829             : template <typename Stream, unsigned int N, typename T>
     830     6361243 : void Serialize(Stream& os, const prevector<N, T>& v)
     831             : {
     832             :     if constexpr (std::is_same_v<T, unsigned char>) {
     833     6361243 :         WriteCompactSize(os, v.size());
     834     6361243 :         if (!v.empty())
     835     3899423 :             os.write(MakeByteSpan(v));
     836             :     } else {
     837           0 :         Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
     838             :     }
     839     6361243 : }
     840             : 
     841             : 
     842             : template <typename Stream, unsigned int N, typename T>
     843          34 : void Unserialize(Stream& is, prevector<N, T>& v)
     844             : {
     845             :     if constexpr (std::is_same_v<T, unsigned char>) {
     846             :         // Limit size per read so bogus size value won't cause out of memory
     847          34 :         v.clear();
     848          34 :         unsigned int nSize = ReadCompactSize(is);
     849          34 :         unsigned int i = 0;
     850          68 :         while (i < nSize) {
     851          34 :             unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
     852          34 :             v.resize_uninitialized(i + blk);
     853          34 :             is.read(AsWritableBytes(Span{&v[i], blk}));
     854          34 :             i += blk;
     855             :         }
     856             :     } else {
     857             :         Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
     858             :     }
     859          34 : }
     860             : 
     861             : 
     862             : /**
     863             :  * vector
     864             :  */
     865             : template <typename Stream, typename T, typename A>
     866     2492994 : void Serialize(Stream& os, const std::vector<T, A>& v)
     867             : {
     868             :     if constexpr (std::is_same_v<T, unsigned char>) {
     869      933718 :         WriteCompactSize(os, v.size());
     870      933718 :         if (!v.empty())
     871      933718 :             os.write(MakeByteSpan(v));
     872             :     } else if constexpr (std::is_same_v<T, bool>) {
     873             :         // A special case for std::vector<bool>, as dereferencing
     874             :         // std::vector<bool>::const_iterator does not result in a const bool&
     875             :         // due to std::vector's special casing for bool arguments.
     876           0 :         WriteCompactSize(os, v.size());
     877           0 :         for (bool elem : v) {
     878           0 :             ::Serialize(os, elem);
     879             :         }
     880             :     } else {
     881     1559276 :         Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
     882             :     }
     883     2492994 : }
     884             : 
     885             : 
     886             : template <typename Stream, typename T, typename A>
     887          35 : void Unserialize(Stream& is, std::vector<T, A>& v)
     888             : {
     889             :     if constexpr (std::is_same_v<T, unsigned char>) {
     890             :         // Limit size per read so bogus size value won't cause out of memory
     891           0 :         v.clear();
     892           0 :         unsigned int nSize = ReadCompactSize(is);
     893           0 :         unsigned int i = 0;
     894           0 :         while (i < nSize) {
     895           0 :             unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
     896           0 :             v.resize(i + blk);
     897           0 :             is.read(AsWritableBytes(Span{&v[i], blk}));
     898           0 :             i += blk;
     899             :         }
     900             :     } else {
     901          35 :         Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
     902             :     }
     903          35 : }
     904             : 
     905             : 
     906             : /**
     907             :  * pair
     908             :  */
     909             : template<typename Stream, typename K, typename T>
     910           5 : void Serialize(Stream& os, const std::pair<K, T>& item)
     911             : {
     912           5 :     Serialize(os, item.first);
     913           5 :     Serialize(os, item.second);
     914           5 : }
     915             : 
     916             : template<typename Stream, typename K, typename T>
     917           0 : void Unserialize(Stream& is, std::pair<K, T>& item)
     918             : {
     919           0 :     Unserialize(is, item.first);
     920           0 :     Unserialize(is, item.second);
     921           0 : }
     922             : 
     923             : 
     924             : 
     925             : /**
     926             :  * map
     927             :  */
     928             : template<typename Stream, typename K, typename T, typename Pred, typename A>
     929           0 : void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
     930             : {
     931           0 :     WriteCompactSize(os, m.size());
     932           0 :     for (const auto& entry : m)
     933           0 :         Serialize(os, entry);
     934           0 : }
     935             : 
     936             : template<typename Stream, typename K, typename T, typename Pred, typename A>
     937           0 : void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
     938             : {
     939           0 :     m.clear();
     940           0 :     unsigned int nSize = ReadCompactSize(is);
     941           0 :     typename std::map<K, T, Pred, A>::iterator mi = m.begin();
     942           0 :     for (unsigned int i = 0; i < nSize; i++)
     943             :     {
     944           0 :         std::pair<K, T> item;
     945           0 :         Unserialize(is, item);
     946           0 :         mi = m.insert(mi, item);
     947           0 :     }
     948           0 : }
     949             : 
     950             : 
     951             : 
     952             : /**
     953             :  * set
     954             :  */
     955             : template<typename Stream, typename K, typename Pred, typename A>
     956           0 : void Serialize(Stream& os, const std::set<K, Pred, A>& m)
     957             : {
     958           0 :     WriteCompactSize(os, m.size());
     959           0 :     for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
     960           0 :         Serialize(os, (*it));
     961           0 : }
     962             : 
     963             : template<typename Stream, typename K, typename Pred, typename A>
     964           0 : void Unserialize(Stream& is, std::set<K, Pred, A>& m)
     965             : {
     966           0 :     m.clear();
     967           0 :     unsigned int nSize = ReadCompactSize(is);
     968           0 :     typename std::set<K, Pred, A>::iterator it = m.begin();
     969           0 :     for (unsigned int i = 0; i < nSize; i++)
     970             :     {
     971           0 :         K key;
     972           0 :         Unserialize(is, key);
     973           0 :         it = m.insert(it, key);
     974           0 :     }
     975           0 : }
     976             : 
     977             : 
     978             : 
     979             : /**
     980             :  * unique_ptr
     981             :  */
     982             : template<typename Stream, typename T> void
     983             : Serialize(Stream& os, const std::unique_ptr<const T>& p)
     984             : {
     985             :     Serialize(os, *p);
     986             : }
     987             : 
     988             : template<typename Stream, typename T>
     989             : void Unserialize(Stream& is, std::unique_ptr<const T>& p)
     990             : {
     991             :     p.reset(new T(deserialize, is));
     992             : }
     993             : 
     994             : 
     995             : 
     996             : /**
     997             :  * shared_ptr
     998             :  */
     999             : template<typename Stream, typename T> void
    1000       36448 : Serialize(Stream& os, const std::shared_ptr<const T>& p)
    1001             : {
    1002       36448 :     Serialize(os, *p);
    1003       36448 : }
    1004             : 
    1005             : template<typename Stream, typename T>
    1006          17 : void Unserialize(Stream& is, std::shared_ptr<const T>& p)
    1007             : {
    1008          17 :     p = std::make_shared<const T>(deserialize, is);
    1009          17 : }
    1010             : 
    1011             : /**
    1012             :  * Support for (un)serializing many things at once
    1013             :  */
    1014             : 
    1015             : template <typename Stream, typename... Args>
    1016    15300559 : void SerializeMany(Stream& s, const Args&... args)
    1017             : {
    1018    15300559 :     (::Serialize(s, args), ...);
    1019    15300559 : }
    1020             : 
    1021             : template <typename Stream, typename... Args>
    1022       22458 : inline void UnserializeMany(Stream& s, Args&&... args)
    1023             : {
    1024       22458 :     (::Unserialize(s, args), ...);
    1025       22458 : }
    1026             : 
    1027             : /**
    1028             :  * Support for all macros providing or using the ser_action parameter of the SerializationOps method.
    1029             :  */
    1030             : struct ActionSerialize {
    1031             :     static constexpr bool ForRead() { return false; }
    1032             : 
    1033             :     template<typename Stream, typename... Args>
    1034    15300559 :     static void SerReadWriteMany(Stream& s, const Args&... args)
    1035             :     {
    1036    15300559 :         ::SerializeMany(s, args...);
    1037    15300559 :     }
    1038             : 
    1039             :     template<typename Stream, typename Type, typename Fn>
    1040           0 :     static void SerRead(Stream& s, Type&&, Fn&&)
    1041             :     {
    1042           0 :     }
    1043             : 
    1044             :     template<typename Stream, typename Type, typename Fn>
    1045           0 :     static void SerWrite(Stream& s, Type&& obj, Fn&& fn)
    1046             :     {
    1047           0 :         fn(s, std::forward<Type>(obj));
    1048           0 :     }
    1049             : };
    1050             : struct ActionUnserialize {
    1051             :     static constexpr bool ForRead() { return true; }
    1052             : 
    1053             :     template<typename Stream, typename... Args>
    1054       22458 :     static void SerReadWriteMany(Stream& s, Args&&... args)
    1055             :     {
    1056       22458 :         ::UnserializeMany(s, args...);
    1057       22458 :     }
    1058             : 
    1059             :     template<typename Stream, typename Type, typename Fn>
    1060           0 :     static void SerRead(Stream& s, Type&& obj, Fn&& fn)
    1061             :     {
    1062           0 :         fn(s, std::forward<Type>(obj));
    1063           0 :     }
    1064             : 
    1065             :     template<typename Stream, typename Type, typename Fn>
    1066           0 :     static void SerWrite(Stream& s, Type&&, Fn&&)
    1067             :     {
    1068           0 :     }
    1069             : };
    1070             : 
    1071             : /* ::GetSerializeSize implementations
    1072             :  *
    1073             :  * Computing the serialized size of objects is done through a special stream
    1074             :  * object of type CSizeComputer, which only records the number of bytes written
    1075             :  * to it.
    1076             :  *
    1077             :  * If your Serialize or SerializationOp method has non-trivial overhead for
    1078             :  * serialization, it may be worthwhile to implement a specialized version for
    1079             :  * CSizeComputer, which uses the s.seek() method to record bytes that would
    1080             :  * be written instead.
    1081             :  */
    1082             : class CSizeComputer
    1083             : {
    1084             : protected:
    1085      509490 :     size_t nSize{0};
    1086             : 
    1087             :     const int nVersion;
    1088             : public:
    1089     1018980 :     explicit CSizeComputer(int nVersionIn) : nVersion(nVersionIn) {}
    1090             : 
    1091    12727828 :     void write(Span<const std::byte> src)
    1092             :     {
    1093    12727828 :         this->nSize += src.size();
    1094    12727828 :     }
    1095             : 
    1096             :     /** Pretend _nSize bytes are written, without specifying them. */
    1097     6463584 :     void seek(size_t _nSize)
    1098             :     {
    1099     6463584 :         this->nSize += _nSize;
    1100     6463584 :     }
    1101             : 
    1102             :     template<typename T>
    1103     3856773 :     CSizeComputer& operator<<(const T& obj)
    1104             :     {
    1105     3856773 :         ::Serialize(*this, obj);
    1106     3856773 :         return (*this);
    1107             :     }
    1108             : 
    1109      509490 :     size_t size() const {
    1110      509490 :         return nSize;
    1111             :     }
    1112             : 
    1113      173684 :     int GetVersion() const { return nVersion; }
    1114             : };
    1115             : 
    1116             : template<typename I>
    1117             : inline void WriteVarInt(CSizeComputer &s, I n)
    1118             : {
    1119             :     s.seek(GetSizeOfVarInt<I>(n));
    1120             : }
    1121             : 
    1122     6463584 : inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize)
    1123             : {
    1124     6463584 :     s.seek(GetSizeOfCompactSize(nSize));
    1125     6463584 : }
    1126             : 
    1127             : template <typename T>
    1128      509490 : size_t GetSerializeSize(const T& t, int nVersion = 0)
    1129             : {
    1130      509490 :     return (CSizeComputer(nVersion) << t).size();
    1131             : }
    1132             : 
    1133             : template <typename... T>
    1134           0 : size_t GetSerializeSizeMany(int nVersion, const T&... t)
    1135             : {
    1136           0 :     CSizeComputer sc(nVersion);
    1137           0 :     SerializeMany(sc, t...);
    1138           0 :     return sc.size();
    1139             : }
    1140             : 
    1141             : /** Wrapper that overrides the GetParams() function of a stream (and hides GetVersion/GetType). */
    1142             : template <typename Params, typename SubStream>
    1143             : class ParamsStream
    1144             : {
    1145             :     const Params& m_params;
    1146             :     SubStream& m_substream; // private to avoid leaking version/type into serialization code that shouldn't see it
    1147             : 
    1148             : public:
    1149           0 :     ParamsStream(const Params& params LIFETIMEBOUND, SubStream& substream LIFETIMEBOUND) : m_params{params}, m_substream{substream} {}
    1150           0 :     template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
    1151           0 :     template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
    1152           0 :     void write(Span<const std::byte> src) { m_substream.write(src); }
    1153           0 :     void read(Span<std::byte> dst) { m_substream.read(dst); }
    1154           0 :     void ignore(size_t num) { m_substream.ignore(num); }
    1155           0 :     bool eof() const { return m_substream.eof(); }
    1156             :     size_t size() const { return m_substream.size(); }
    1157           0 :     const Params& GetParams() const { return m_params; }
    1158             :     int GetVersion() = delete; // Deprecated with Params usage
    1159             :     int GetType() = delete;    // Deprecated with Params usage
    1160             : };
    1161             : 
    1162             : /** Wrapper that serializes objects with the specified parameters. */
    1163             : template <typename Params, typename T>
    1164             : class ParamsWrapper
    1165             : {
    1166             :     const Params& m_params;
    1167             :     T& m_object;
    1168             : 
    1169             : public:
    1170           0 :     explicit ParamsWrapper(const Params& params, T& obj) : m_params{params}, m_object{obj} {}
    1171             : 
    1172             :     template <typename Stream>
    1173           0 :     void Serialize(Stream& s) const
    1174             :     {
    1175           0 :         ParamsStream ss{m_params, s};
    1176           0 :         ::Serialize(ss, m_object);
    1177           0 :     }
    1178             :     template <typename Stream>
    1179           0 :     void Unserialize(Stream& s)
    1180             :     {
    1181           0 :         ParamsStream ss{m_params, s};
    1182           0 :         ::Unserialize(ss, m_object);
    1183           0 :     }
    1184             : };
    1185             : 
    1186             : /**
    1187             :  * Return a wrapper around t that (de)serializes it with specified parameter params.
    1188             :  *
    1189             :  * See FORMATTER_METHODS_PARAMS for more information on serialization parameters.
    1190             :  */
    1191             : template <typename Params, typename T>
    1192           0 : static auto WithParams(const Params& params, T&& t)
    1193             : {
    1194           0 :     return ParamsWrapper<Params, T>{params, t};
    1195             : }
    1196             : 
    1197             : /**
    1198             :  * Helper macro for SerParams structs
    1199             :  *
    1200             :  * Allows you define SerParams instances and then apply them directly
    1201             :  * to an object via function call syntax, eg:
    1202             :  *
    1203             :  *   constexpr SerParams FOO{....};
    1204             :  *   ss << FOO(obj);
    1205             :  */
    1206             : #define SER_PARAMS_OPFUNC \
    1207             :     template <typename T> \
    1208             :     auto operator()(T&& t) const { return WithParams(*this, t); }
    1209             : 
    1210             : #endif // BITCOIN_SERIALIZE_H

Generated by: LCOV version 1.14