LCOV - code coverage report
Current view: top level - src/script - signingprovider.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 2 360 0.6 %
Date: 2023-09-26 12:08:55 Functions: 2 51 3.9 %

          Line data    Source code
       1             : // Copyright (c) 2009-2010 Satoshi Nakamoto
       2             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #include <script/keyorigin.h>
       7             : #include <script/interpreter.h>
       8             : #include <script/signingprovider.h>
       9             : 
      10             : #include <logging.h>
      11             : 
      12           2 : const SigningProvider& DUMMY_SIGNING_PROVIDER = SigningProvider();
      13             : 
      14             : template<typename M, typename K, typename V>
      15           0 : bool LookupHelper(const M& map, const K& key, V& value)
      16             : {
      17           0 :     auto it = map.find(key);
      18           0 :     if (it != map.end()) {
      19           0 :         value = it->second;
      20           0 :         return true;
      21             :     }
      22           0 :     return false;
      23           0 : }
      24             : 
      25           0 : bool HidingSigningProvider::GetCScript(const CScriptID& scriptid, CScript& script) const
      26             : {
      27           0 :     return m_provider->GetCScript(scriptid, script);
      28             : }
      29             : 
      30           0 : bool HidingSigningProvider::GetPubKey(const CKeyID& keyid, CPubKey& pubkey) const
      31             : {
      32           0 :     return m_provider->GetPubKey(keyid, pubkey);
      33             : }
      34             : 
      35           0 : bool HidingSigningProvider::GetKey(const CKeyID& keyid, CKey& key) const
      36             : {
      37           0 :     if (m_hide_secret) return false;
      38           0 :     return m_provider->GetKey(keyid, key);
      39           0 : }
      40             : 
      41           0 : bool HidingSigningProvider::GetKeyOrigin(const CKeyID& keyid, KeyOriginInfo& info) const
      42             : {
      43           0 :     if (m_hide_origin) return false;
      44           0 :     return m_provider->GetKeyOrigin(keyid, info);
      45           0 : }
      46             : 
      47           0 : bool HidingSigningProvider::GetTaprootSpendData(const XOnlyPubKey& output_key, TaprootSpendData& spenddata) const
      48             : {
      49           0 :     return m_provider->GetTaprootSpendData(output_key, spenddata);
      50             : }
      51           0 : bool HidingSigningProvider::GetTaprootBuilder(const XOnlyPubKey& output_key, TaprootBuilder& builder) const
      52             : {
      53           0 :     return m_provider->GetTaprootBuilder(output_key, builder);
      54             : }
      55             : 
      56           0 : bool FlatSigningProvider::GetCScript(const CScriptID& scriptid, CScript& script) const { return LookupHelper(scripts, scriptid, script); }
      57           0 : bool FlatSigningProvider::GetPubKey(const CKeyID& keyid, CPubKey& pubkey) const { return LookupHelper(pubkeys, keyid, pubkey); }
      58           0 : bool FlatSigningProvider::GetKeyOrigin(const CKeyID& keyid, KeyOriginInfo& info) const
      59             : {
      60           0 :     std::pair<CPubKey, KeyOriginInfo> out;
      61           0 :     bool ret = LookupHelper(origins, keyid, out);
      62           0 :     if (ret) info = std::move(out.second);
      63           0 :     return ret;
      64           0 : }
      65           0 : bool FlatSigningProvider::GetKey(const CKeyID& keyid, CKey& key) const { return LookupHelper(keys, keyid, key); }
      66           0 : bool FlatSigningProvider::GetTaprootSpendData(const XOnlyPubKey& output_key, TaprootSpendData& spenddata) const
      67             : {
      68           0 :     TaprootBuilder builder;
      69           0 :     if (LookupHelper(tr_trees, output_key, builder)) {
      70           0 :         spenddata = builder.GetSpendData();
      71           0 :         return true;
      72             :     }
      73           0 :     return false;
      74           2 : }
      75           0 : bool FlatSigningProvider::GetTaprootBuilder(const XOnlyPubKey& output_key, TaprootBuilder& builder) const
      76             : {
      77           0 :     return LookupHelper(tr_trees, output_key, builder);
      78             : }
      79             : 
      80           0 : FlatSigningProvider& FlatSigningProvider::Merge(FlatSigningProvider&& b)
      81             : {
      82           0 :     scripts.merge(b.scripts);
      83           0 :     pubkeys.merge(b.pubkeys);
      84           0 :     keys.merge(b.keys);
      85           0 :     origins.merge(b.origins);
      86           0 :     tr_trees.merge(b.tr_trees);
      87           0 :     return *this;
      88             : }
      89             : 
      90           0 : void FillableSigningProvider::ImplicitlyLearnRelatedKeyScripts(const CPubKey& pubkey)
      91             : {
      92           0 :     AssertLockHeld(cs_KeyStore);
      93           0 :     CKeyID key_id = pubkey.GetID();
      94             :     // This adds the redeemscripts necessary to detect P2WPKH and P2SH-P2WPKH
      95             :     // outputs. Technically P2WPKH outputs don't have a redeemscript to be
      96             :     // spent. However, our current IsMine logic requires the corresponding
      97             :     // P2SH-P2WPKH redeemscript to be present in the wallet in order to accept
      98             :     // payment even to P2WPKH outputs.
      99             :     // Also note that having superfluous scripts in the keystore never hurts.
     100             :     // They're only used to guide recursion in signing and IsMine logic - if
     101             :     // a script is present but we can't do anything with it, it has no effect.
     102             :     // "Implicitly" refers to fact that scripts are derived automatically from
     103             :     // existing keys, and are present in memory, even without being explicitly
     104             :     // loaded (e.g. from a file).
     105           0 :     if (pubkey.IsCompressed()) {
     106           0 :         CScript script = GetScriptForDestination(WitnessV0KeyHash(key_id));
     107             :         // This does not use AddCScript, as it may be overridden.
     108           0 :         CScriptID id(script);
     109           0 :         mapScripts[id] = std::move(script);
     110           0 :     }
     111           0 : }
     112             : 
     113           0 : bool FillableSigningProvider::GetPubKey(const CKeyID &address, CPubKey &vchPubKeyOut) const
     114             : {
     115           0 :     CKey key;
     116           0 :     if (!GetKey(address, key)) {
     117           0 :         return false;
     118             :     }
     119           0 :     vchPubKeyOut = key.GetPubKey();
     120           0 :     return true;
     121           0 : }
     122             : 
     123           0 : bool FillableSigningProvider::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
     124             : {
     125           0 :     LOCK(cs_KeyStore);
     126           0 :     mapKeys[pubkey.GetID()] = key;
     127           0 :     ImplicitlyLearnRelatedKeyScripts(pubkey);
     128             :     return true;
     129           0 : }
     130             : 
     131           0 : bool FillableSigningProvider::HaveKey(const CKeyID &address) const
     132             : {
     133           0 :     LOCK(cs_KeyStore);
     134           0 :     return mapKeys.count(address) > 0;
     135           0 : }
     136             : 
     137           0 : std::set<CKeyID> FillableSigningProvider::GetKeys() const
     138             : {
     139           0 :     LOCK(cs_KeyStore);
     140           0 :     std::set<CKeyID> set_address;
     141           0 :     for (const auto& mi : mapKeys) {
     142           0 :         set_address.insert(mi.first);
     143             :     }
     144           0 :     return set_address;
     145           0 : }
     146             : 
     147           0 : bool FillableSigningProvider::GetKey(const CKeyID &address, CKey &keyOut) const
     148             : {
     149           0 :     LOCK(cs_KeyStore);
     150           0 :     KeyMap::const_iterator mi = mapKeys.find(address);
     151           0 :     if (mi != mapKeys.end()) {
     152           0 :         keyOut = mi->second;
     153           0 :         return true;
     154             :     }
     155           0 :     return false;
     156           0 : }
     157             : 
     158           0 : bool FillableSigningProvider::AddCScript(const CScript& redeemScript)
     159             : {
     160           0 :     if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE)
     161           0 :         return error("FillableSigningProvider::AddCScript(): redeemScripts > %i bytes are invalid", MAX_SCRIPT_ELEMENT_SIZE);
     162             : 
     163           0 :     LOCK(cs_KeyStore);
     164           0 :     mapScripts[CScriptID(redeemScript)] = redeemScript;
     165           0 :     return true;
     166           0 : }
     167             : 
     168           0 : bool FillableSigningProvider::HaveCScript(const CScriptID& hash) const
     169             : {
     170           0 :     LOCK(cs_KeyStore);
     171           0 :     return mapScripts.count(hash) > 0;
     172           0 : }
     173             : 
     174           0 : std::set<CScriptID> FillableSigningProvider::GetCScripts() const
     175             : {
     176           0 :     LOCK(cs_KeyStore);
     177           0 :     std::set<CScriptID> set_script;
     178           0 :     for (const auto& mi : mapScripts) {
     179           0 :         set_script.insert(mi.first);
     180             :     }
     181           0 :     return set_script;
     182           0 : }
     183             : 
     184           0 : bool FillableSigningProvider::GetCScript(const CScriptID &hash, CScript& redeemScriptOut) const
     185             : {
     186           0 :     LOCK(cs_KeyStore);
     187           0 :     ScriptMap::const_iterator mi = mapScripts.find(hash);
     188           0 :     if (mi != mapScripts.end())
     189             :     {
     190           0 :         redeemScriptOut = (*mi).second;
     191           0 :         return true;
     192             :     }
     193           0 :     return false;
     194           0 : }
     195             : 
     196           0 : CKeyID GetKeyForDestination(const SigningProvider& store, const CTxDestination& dest)
     197             : {
     198             :     // Only supports destinations which map to single public keys:
     199             :     // P2PKH, P2WPKH, P2SH-P2WPKH, P2TR
     200           0 :     if (auto id = std::get_if<PKHash>(&dest)) {
     201           0 :         return ToKeyID(*id);
     202             :     }
     203           0 :     if (auto witness_id = std::get_if<WitnessV0KeyHash>(&dest)) {
     204           0 :         return ToKeyID(*witness_id);
     205             :     }
     206           0 :     if (auto script_hash = std::get_if<ScriptHash>(&dest)) {
     207           0 :         CScript script;
     208           0 :         CScriptID script_id = ToScriptID(*script_hash);
     209           0 :         CTxDestination inner_dest;
     210           0 :         if (store.GetCScript(script_id, script) && ExtractDestination(script, inner_dest)) {
     211           0 :             if (auto inner_witness_id = std::get_if<WitnessV0KeyHash>(&inner_dest)) {
     212           0 :                 return ToKeyID(*inner_witness_id);
     213             :             }
     214           0 :         }
     215           0 :     }
     216           0 :     if (auto output_key = std::get_if<WitnessV1Taproot>(&dest)) {
     217           0 :         TaprootSpendData spenddata;
     218           0 :         CPubKey pub;
     219           0 :         if (store.GetTaprootSpendData(*output_key, spenddata)
     220           0 :             && !spenddata.internal_key.IsNull()
     221           0 :             && spenddata.merkle_root.IsNull()
     222           0 :             && store.GetPubKeyByXOnly(spenddata.internal_key, pub)) {
     223           0 :             return pub.GetID();
     224             :         }
     225           0 :     }
     226           0 :     return CKeyID();
     227           0 : }
     228             : 
     229           0 : void MultiSigningProvider::AddProvider(std::unique_ptr<SigningProvider> provider)
     230             : {
     231           0 :     m_providers.push_back(std::move(provider));
     232           0 : }
     233             : 
     234           0 : bool MultiSigningProvider::GetCScript(const CScriptID& scriptid, CScript& script) const
     235             : {
     236           0 :     for (const auto& provider: m_providers) {
     237           0 :         if (provider->GetCScript(scriptid, script)) return true;
     238             :     }
     239           0 :     return false;
     240           0 : }
     241             : 
     242           0 : bool MultiSigningProvider::GetPubKey(const CKeyID& keyid, CPubKey& pubkey) const
     243             : {
     244           0 :     for (const auto& provider: m_providers) {
     245           0 :         if (provider->GetPubKey(keyid, pubkey)) return true;
     246             :     }
     247           0 :     return false;
     248           0 : }
     249             : 
     250             : 
     251           0 : bool MultiSigningProvider::GetKeyOrigin(const CKeyID& keyid, KeyOriginInfo& info) const
     252             : {
     253           0 :     for (const auto& provider: m_providers) {
     254           0 :         if (provider->GetKeyOrigin(keyid, info)) return true;
     255             :     }
     256           0 :     return false;
     257           0 : }
     258             : 
     259           0 : bool MultiSigningProvider::GetKey(const CKeyID& keyid, CKey& key) const
     260             : {
     261           0 :     for (const auto& provider: m_providers) {
     262           0 :         if (provider->GetKey(keyid, key)) return true;
     263             :     }
     264           0 :     return false;
     265           0 : }
     266             : 
     267           0 : bool MultiSigningProvider::GetTaprootSpendData(const XOnlyPubKey& output_key, TaprootSpendData& spenddata) const
     268             : {
     269           0 :     for (const auto& provider: m_providers) {
     270           0 :         if (provider->GetTaprootSpendData(output_key, spenddata)) return true;
     271             :     }
     272           0 :     return false;
     273           0 : }
     274             : 
     275           0 : bool MultiSigningProvider::GetTaprootBuilder(const XOnlyPubKey& output_key, TaprootBuilder& builder) const
     276             : {
     277           0 :     for (const auto& provider: m_providers) {
     278           0 :         if (provider->GetTaprootBuilder(output_key, builder)) return true;
     279             :     }
     280           0 :     return false;
     281           0 : }
     282             : 
     283           0 : /*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
     284             : {
     285           0 :     NodeInfo ret;
     286             :     /* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
     287           0 :     for (auto& leaf : a.leaves) {
     288           0 :         leaf.merkle_branch.push_back(b.hash);
     289           0 :         ret.leaves.emplace_back(std::move(leaf));
     290             :     }
     291             :     /* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
     292           0 :     for (auto& leaf : b.leaves) {
     293           0 :         leaf.merkle_branch.push_back(a.hash);
     294           0 :         ret.leaves.emplace_back(std::move(leaf));
     295             :     }
     296           0 :     ret.hash = ComputeTapbranchHash(a.hash, b.hash);
     297           0 :     return ret;
     298           0 : }
     299             : 
     300           0 : void TaprootSpendData::Merge(TaprootSpendData other)
     301             : {
     302             :     // TODO: figure out how to better deal with conflicting information
     303             :     // being merged.
     304           0 :     if (internal_key.IsNull() && !other.internal_key.IsNull()) {
     305           0 :         internal_key = other.internal_key;
     306           0 :     }
     307           0 :     if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
     308           0 :         merkle_root = other.merkle_root;
     309           0 :     }
     310           0 :     for (auto& [key, control_blocks] : other.scripts) {
     311           0 :         scripts[key].merge(std::move(control_blocks));
     312             :     }
     313           0 : }
     314             : 
     315           0 : void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
     316             : {
     317           0 :     assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
     318             :     /* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
     319             :      * so would mean the Add() invocations do not correspond to a DFS traversal of a
     320             :      * binary tree. */
     321           0 :     if ((size_t)depth + 1 < m_branch.size()) {
     322           0 :         m_valid = false;
     323           0 :         return;
     324             :     }
     325             :     /* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
     326             :      * The 'node' variable is overwritten here with the newly combined node. */
     327           0 :     while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
     328           0 :         node = Combine(std::move(node), std::move(*m_branch[depth]));
     329           0 :         m_branch.pop_back();
     330           0 :         if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
     331           0 :         --depth;
     332             :     }
     333           0 :     if (m_valid) {
     334             :         /* Make sure the branch is big enough to place the new node. */
     335           0 :         if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
     336           0 :         assert(!m_branch[depth].has_value());
     337           0 :         m_branch[depth] = std::move(node);
     338           0 :     }
     339           0 : }
     340             : 
     341           0 : /*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
     342             : {
     343           0 :     std::vector<bool> branch;
     344           0 :     for (int depth : depths) {
     345             :         // This inner loop corresponds to effectively the same logic on branch
     346             :         // as what Insert() performs on the m_branch variable. Instead of
     347             :         // storing a NodeInfo object, just remember whether or not there is one
     348             :         // at that depth.
     349           0 :         if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
     350           0 :         if ((size_t)depth + 1 < branch.size()) return false;
     351           0 :         while (branch.size() > (size_t)depth && branch[depth]) {
     352           0 :             branch.pop_back();
     353           0 :             if (depth == 0) return false;
     354           0 :             --depth;
     355             :         }
     356           0 :         if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
     357           0 :         assert(!branch[depth]);
     358           0 :         branch[depth] = true;
     359             :     }
     360             :     // And this check corresponds to the IsComplete() check on m_branch.
     361           0 :     return branch.size() == 0 || (branch.size() == 1 && branch[0]);
     362           0 : }
     363             : 
     364           0 : TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
     365             : {
     366           0 :     assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
     367           0 :     if (!IsValid()) return *this;
     368             :     /* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
     369           0 :     NodeInfo node;
     370           0 :     node.hash = ComputeTapleafHash(leaf_version, script);
     371           0 :     if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
     372             :     /* Insert into the branch. */
     373           0 :     Insert(std::move(node), depth);
     374           0 :     return *this;
     375           0 : }
     376             : 
     377           0 : TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
     378             : {
     379           0 :     if (!IsValid()) return *this;
     380             :     /* Construct NodeInfo object with the hash directly, and insert it into the branch. */
     381           0 :     NodeInfo node;
     382           0 :     node.hash = hash;
     383           0 :     Insert(std::move(node), depth);
     384           0 :     return *this;
     385           0 : }
     386             : 
     387           0 : TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
     388             : {
     389             :     /* Can only call this function when IsComplete() is true. */
     390           0 :     assert(IsComplete());
     391           0 :     m_internal_key = internal_key;
     392           0 :     auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
     393           0 :     assert(ret.has_value());
     394           0 :     std::tie(m_output_key, m_parity) = *ret;
     395           0 :     return *this;
     396             : }
     397             : 
     398           0 : WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
     399             : 
     400           0 : TaprootSpendData TaprootBuilder::GetSpendData() const
     401             : {
     402           0 :     assert(IsComplete());
     403           0 :     assert(m_output_key.IsFullyValid());
     404           0 :     TaprootSpendData spd;
     405           0 :     spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
     406           0 :     spd.internal_key = m_internal_key;
     407           0 :     if (m_branch.size()) {
     408             :         // If any script paths exist, they have been combined into the root m_branch[0]
     409             :         // by now. Compute the control block for each of its tracked leaves, and put them in
     410             :         // spd.scripts.
     411           0 :         for (const auto& leaf : m_branch[0]->leaves) {
     412           0 :             std::vector<unsigned char> control_block;
     413           0 :             control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
     414           0 :             control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
     415           0 :             std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
     416           0 :             if (leaf.merkle_branch.size()) {
     417           0 :                 std::copy(leaf.merkle_branch[0].begin(),
     418           0 :                           leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
     419           0 :                           control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
     420           0 :             }
     421           0 :             spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
     422           0 :         }
     423           0 :     }
     424           0 :     return spd;
     425           0 : }
     426             : 
     427           0 : std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
     428             : {
     429             :     // Verify that the output matches the assumed Merkle root and internal key.
     430           0 :     auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
     431           0 :     if (!tweak || tweak->first != output) return std::nullopt;
     432             :     // If the Merkle root is 0, the tree is empty, and we're done.
     433           0 :     std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
     434           0 :     if (spenddata.merkle_root.IsNull()) return ret;
     435             : 
     436             :     /** Data structure to represent the nodes of the tree we're going to build. */
     437           0 :     struct TreeNode {
     438             :         /** Hash of this node, if known; 0 otherwise. */
     439             :         uint256 hash;
     440             :         /** The left and right subtrees (note that their order is irrelevant). */
     441             :         std::unique_ptr<TreeNode> sub[2];
     442             :         /** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
     443             :          *  nullptr otherwise. */
     444           0 :         const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
     445             :         /** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
     446           0 :         bool explored = false;
     447             :         /** Whether or not this node is an inner node (unknown until explored = true). */
     448             :         bool inner;
     449             :         /** Whether or not we have produced output for this subtree. */
     450           0 :         bool done = false;
     451             :     };
     452             : 
     453             :     // Build tree from the provided branches.
     454           0 :     TreeNode root;
     455           0 :     root.hash = spenddata.merkle_root;
     456           0 :     for (const auto& [key, control_blocks] : spenddata.scripts) {
     457           0 :         const auto& [script, leaf_ver] = key;
     458           0 :         for (const auto& control : control_blocks) {
     459             :             // Skip script records with nonsensical leaf version.
     460           0 :             if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
     461             :             // Skip script records with invalid control block sizes.
     462           0 :             if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
     463           0 :                 ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
     464             :             // Skip script records that don't match the control block.
     465           0 :             if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
     466             :             // Skip script records that don't match the provided Merkle root.
     467           0 :             const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
     468           0 :             const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
     469           0 :             if (merkle_root != spenddata.merkle_root) continue;
     470             : 
     471           0 :             TreeNode* node = &root;
     472           0 :             size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
     473           0 :             for (size_t depth = 0; depth < levels; ++depth) {
     474             :                 // Can't descend into a node which we already know is a leaf.
     475           0 :                 if (node->explored && !node->inner) return std::nullopt;
     476             : 
     477             :                 // Extract partner hash from Merkle branch in control block.
     478           0 :                 uint256 hash;
     479           0 :                 std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
     480           0 :                           control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
     481           0 :                           hash.begin());
     482             : 
     483           0 :                 if (node->sub[0]) {
     484             :                     // Descend into the existing left or right branch.
     485           0 :                     bool desc = false;
     486           0 :                     for (int i = 0; i < 2; ++i) {
     487           0 :                         if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
     488           0 :                             node->sub[i]->hash = hash;
     489           0 :                             node = &*node->sub[1-i];
     490           0 :                             desc = true;
     491           0 :                             break;
     492             :                         }
     493           0 :                     }
     494           0 :                     if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
     495           0 :                 } else {
     496             :                     // We're in an unexplored node. Create subtrees and descend.
     497           0 :                     node->explored = true;
     498           0 :                     node->inner = true;
     499           0 :                     node->sub[0] = std::make_unique<TreeNode>();
     500           0 :                     node->sub[1] = std::make_unique<TreeNode>();
     501           0 :                     node->sub[1]->hash = hash;
     502           0 :                     node = &*node->sub[0];
     503             :                 }
     504           0 :             }
     505             :             // Cannot turn a known inner node into a leaf.
     506           0 :             if (node->sub[0]) return std::nullopt;
     507           0 :             node->explored = true;
     508           0 :             node->inner = false;
     509           0 :             node->leaf = &key;
     510           0 :             node->hash = leaf_hash;
     511             :         }
     512             :     }
     513             : 
     514             :     // Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
     515             :     // overflowing the call stack (the tree may be 128 levels deep).
     516           0 :     std::vector<TreeNode*> stack{&root};
     517           0 :     while (!stack.empty()) {
     518           0 :         TreeNode& node = *stack.back();
     519           0 :         if (!node.explored) {
     520             :             // Unexplored node, which means the tree is incomplete.
     521           0 :             return std::nullopt;
     522           0 :         } else if (!node.inner) {
     523             :             // Leaf node; produce output.
     524           0 :             ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
     525           0 :             node.done = true;
     526           0 :             stack.pop_back();
     527           0 :         } else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
     528           0 :                    ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
     529             :             // Whenever there are nodes with two identical subtrees under it, we run into a problem:
     530             :             // the control blocks for the leaves underneath those will be identical as well, and thus
     531             :             // they will all be matched to the same path in the tree. The result is that at the location
     532             :             // where the duplicate occurred, the left child will contain a normal tree that can be explored
     533             :             // and processed, but the right one will remain unexplored.
     534             :             //
     535             :             // This situation can be detected, by encountering an inner node with unexplored right subtree
     536             :             // with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
     537             :             //
     538             :             // To deal with this, simply process the left tree a second time (set its done flag to false;
     539             :             // noting that the done flag of its children have already been set to false after processing
     540             :             // those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
     541             :             // subtree to true.
     542           0 :             node.sub[0]->done = false;
     543           0 :             node.sub[1]->done = true;
     544           0 :         } else if (node.sub[0]->done && node.sub[1]->done) {
     545             :             // An internal node which we're finished with.
     546           0 :             node.sub[0]->done = false;
     547           0 :             node.sub[1]->done = false;
     548           0 :             node.done = true;
     549           0 :             stack.pop_back();
     550           0 :         } else if (!node.sub[0]->done) {
     551             :             // An internal node whose left branch hasn't been processed yet. Do so first.
     552           0 :             stack.push_back(&*node.sub[0]);
     553           0 :         } else if (!node.sub[1]->done) {
     554             :             // An internal node whose right branch hasn't been processed yet. Do so first.
     555           0 :             stack.push_back(&*node.sub[1]);
     556           0 :         }
     557             :     }
     558             : 
     559           0 :     return ret;
     560           0 : }
     561             : 
     562           0 : std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
     563             : {
     564           0 :     assert(IsComplete());
     565           0 :     std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
     566           0 :     if (m_branch.size()) {
     567           0 :         const auto& leaves = m_branch[0]->leaves;
     568           0 :         for (const auto& leaf : leaves) {
     569           0 :             assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
     570           0 :             uint8_t depth = (uint8_t)leaf.merkle_branch.size();
     571           0 :             uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
     572           0 :             tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
     573             :         }
     574           0 :     }
     575           0 :     return tuples;
     576           0 : }

Generated by: LCOV version 1.14