Line data Source code
1 : // Copyright (c) 2019-2022 The Bitcoin Core developers
2 : // Distributed under the MIT software license, see the accompanying
3 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 :
5 : #ifndef BITCOIN_SCRIPT_MINISCRIPT_H
6 : #define BITCOIN_SCRIPT_MINISCRIPT_H
7 :
8 : #include <algorithm>
9 : #include <functional>
10 : #include <numeric>
11 : #include <memory>
12 : #include <optional>
13 : #include <string>
14 : #include <vector>
15 :
16 : #include <assert.h>
17 : #include <cstdlib>
18 :
19 : #include <policy/policy.h>
20 : #include <primitives/transaction.h>
21 : #include <script/script.h>
22 : #include <span.h>
23 : #include <util/spanparsing.h>
24 : #include <util/strencodings.h>
25 : #include <util/string.h>
26 : #include <util/vector.h>
27 :
28 : namespace miniscript {
29 :
30 : /** This type encapsulates the miniscript type system properties.
31 : *
32 : * Every miniscript expression is one of 4 basic types, and additionally has
33 : * a number of boolean type properties.
34 : *
35 : * The basic types are:
36 : * - "B" Base:
37 : * - Takes its inputs from the top of the stack.
38 : * - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
39 : * - When dissatisfied, pushes a 0 onto the stack.
40 : * - This is used for most expressions, and required for the top level one.
41 : * - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
42 : * - "V" Verify:
43 : * - Takes its inputs from the top of the stack.
44 : * - When satisfied, pushes nothing.
45 : * - Cannot be dissatisfied.
46 : * - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
47 : * of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY
48 : * and OP_EQUAL), or by combining a V fragment under some conditions.
49 : * - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
50 : * - "K" Key:
51 : * - Takes its inputs from the top of the stack.
52 : * - Becomes a B when followed by OP_CHECKSIG.
53 : * - Always pushes a public key onto the stack, for which a signature is to be
54 : * provided to satisfy the expression.
55 : * - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
56 : * - "W" Wrapped:
57 : * - Takes its input from one below the top of the stack.
58 : * - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
59 : * - When dissatisfied, pushes 0 op top of the stack or one below.
60 : * - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
61 : * - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
62 : *
63 : * There a type properties that help reasoning about correctness:
64 : * - "z" Zero-arg:
65 : * - Is known to always consume exactly 0 stack elements.
66 : * - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
67 : * - "o" One-arg:
68 : * - Is known to always consume exactly 1 stack element.
69 : * - Conflicts with property 'z'
70 : * - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
71 : * - "n" Nonzero:
72 : * - For every way this expression can be satisfied, a satisfaction exists that never needs
73 : * a zero top stack element.
74 : * - Conflicts with property 'z' and with type 'W'.
75 : * - "d" Dissatisfiable:
76 : * - There is an easy way to construct a dissatisfaction for this expression.
77 : * - Conflicts with type 'V'.
78 : * - "u" Unit:
79 : * - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
80 : * - Conflicts with type 'V'.
81 : *
82 : * Additional type properties help reasoning about nonmalleability:
83 : * - "e" Expression:
84 : * - This implies property 'd', but the dissatisfaction is nonmalleable.
85 : * - This generally requires 'e' for all subexpressions which are invoked for that
86 : * dissatifsaction, and property 'f' for the unexecuted subexpressions in that case.
87 : * - Conflicts with type 'V'.
88 : * - "f" Forced:
89 : * - Dissatisfactions (if any) for this expression always involve at least one signature.
90 : * - Is always true for type 'V'.
91 : * - "s" Safe:
92 : * - Satisfactions for this expression always involve at least one signature.
93 : * - "m" Nonmalleable:
94 : * - For every way this expression can be satisfied (which may be none),
95 : * a nonmalleable satisfaction exists.
96 : * - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
97 : * which are dissatisfied when satisfying the parent.
98 : *
99 : * One type property is an implementation detail:
100 : * - "x" Expensive verify:
101 : * - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
102 : * - Not having this property means that it can be converted to a V at no cost (by switching to the
103 : * -VERIFY version of the last opcode).
104 : *
105 : * Five more type properties for representing timelock information. Spend paths
106 : * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
107 : * This helps users detect if miniscript does not match the semantic behaviour the
108 : * user expects.
109 : * - "g" Whether the branch contains a relative time timelock
110 : * - "h" Whether the branch contains a relative height timelock
111 : * - "i" Whether the branch contains an absolute time timelock
112 : * - "j" Whether the branch contains an absolute height timelock
113 : * - "k"
114 : * - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
115 : * of the same type.
116 : * - If the miniscript does not have the "k" property, the miniscript template will not match
117 : * the user expectation of the corresponding spending policy.
118 : * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
119 : * valid in places where an X, a Y, a Z, an XY, ... is expected.
120 : */
121 : class Type {
122 : //! Internal bitmap of properties (see ""_mst operator for details).
123 : uint32_t m_flags;
124 :
125 : //! Internal constructor used by the ""_mst operator.
126 0 : explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
127 :
128 : public:
129 : //! The only way to publicly construct a Type is using this literal operator.
130 : friend constexpr Type operator"" _mst(const char* c, size_t l);
131 :
132 : //! Compute the type with the union of properties.
133 0 : constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
134 :
135 : //! Compute the type with the intersection of properties.
136 0 : constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
137 :
138 : //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
139 0 : constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
140 :
141 : //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
142 0 : constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
143 :
144 : //! Equality operator.
145 0 : constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
146 :
147 : //! The empty type if x is false, itself otherwise.
148 0 : constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
149 : };
150 :
151 : //! Literal operator to construct Type objects.
152 0 : inline constexpr Type operator"" _mst(const char* c, size_t l) {
153 0 : Type typ{0};
154 :
155 0 : for (const char *p = c; p < c + l; p++) {
156 0 : typ = typ | Type(
157 0 : *p == 'B' ? 1 << 0 : // Base type
158 0 : *p == 'V' ? 1 << 1 : // Verify type
159 0 : *p == 'K' ? 1 << 2 : // Key type
160 0 : *p == 'W' ? 1 << 3 : // Wrapped type
161 0 : *p == 'z' ? 1 << 4 : // Zero-arg property
162 0 : *p == 'o' ? 1 << 5 : // One-arg property
163 0 : *p == 'n' ? 1 << 6 : // Nonzero arg property
164 0 : *p == 'd' ? 1 << 7 : // Dissatisfiable property
165 0 : *p == 'u' ? 1 << 8 : // Unit property
166 0 : *p == 'e' ? 1 << 9 : // Expression property
167 0 : *p == 'f' ? 1 << 10 : // Forced property
168 0 : *p == 's' ? 1 << 11 : // Safe property
169 0 : *p == 'm' ? 1 << 12 : // Nonmalleable property
170 0 : *p == 'x' ? 1 << 13 : // Expensive verify
171 0 : *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
172 0 : *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
173 0 : *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
174 0 : *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
175 0 : *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
176 0 : (throw std::logic_error("Unknown character in _mst literal"), 0)
177 : );
178 0 : }
179 :
180 0 : return typ;
181 0 : }
182 :
183 : using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
184 :
185 : template<typename Key> struct Node;
186 : template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
187 :
188 : //! Construct a miniscript node as a shared_ptr.
189 : template<typename Key, typename... Args>
190 0 : NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
191 :
192 : //! The different node types in miniscript.
193 : enum class Fragment {
194 : JUST_0, //!< OP_0
195 : JUST_1, //!< OP_1
196 : PK_K, //!< [key]
197 : PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
198 : OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY
199 : AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY
200 : SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
201 : HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
202 : RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
203 : HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
204 : WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
205 : WRAP_S, //!< OP_SWAP [X]
206 : WRAP_C, //!< [X] OP_CHECKSIG
207 : WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF
208 : WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
209 : WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
210 : WRAP_N, //!< [X] OP_0NOTEQUAL
211 : AND_V, //!< [X] [Y]
212 : AND_B, //!< [X] [Y] OP_BOOLAND
213 : OR_B, //!< [X] [Y] OP_BOOLOR
214 : OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF
215 : OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
216 : OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
217 : ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
218 : THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
219 : MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG
220 : // AND_N(X,Y) is represented as ANDOR(X,Y,0)
221 : // WRAP_T(X) is represented as AND_V(X,1)
222 : // WRAP_L(X) is represented as OR_I(0,X)
223 : // WRAP_U(X) is represented as OR_I(X,0)
224 : };
225 :
226 : enum class Availability {
227 : NO,
228 : YES,
229 : MAYBE,
230 : };
231 :
232 : namespace internal {
233 :
234 : //! Helper function for Node::CalcType.
235 : Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys);
236 :
237 : //! Helper function for Node::CalcScriptLen.
238 : size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys);
239 :
240 : //! A helper sanitizer/checker for the output of CalcType.
241 : Type SanitizeType(Type x);
242 :
243 : //! An object representing a sequence of witness stack elements.
244 : struct InputStack {
245 : /** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
246 : * The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable,
247 : * but may be available at signing time. This makes the InputStack structure and signing logic,
248 : * filled with dummy signatures/preimages usable for witness size estimation.
249 : */
250 40 : Availability available = Availability::YES;
251 : //! Whether this stack contains a digital signature.
252 40 : bool has_sig = false;
253 : //! Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
254 40 : bool malleable = false;
255 : //! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
256 : //! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking.
257 40 : bool non_canon = false;
258 : //! Serialized witness size.
259 16 : size_t size = 0;
260 : //! Data elements.
261 : std::vector<std::vector<unsigned char>> stack;
262 : //! Construct an empty stack (valid).
263 32 : InputStack() {}
264 : //! Construct a valid single-element stack (with an element up to 75 bytes).
265 48 : InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
266 : //! Change availability
267 : InputStack& SetAvailable(Availability avail);
268 : //! Mark this input stack as having a signature.
269 : InputStack& SetWithSig();
270 : //! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
271 : InputStack& SetNonCanon();
272 : //! Mark this input stack as malleable.
273 : InputStack& SetMalleable(bool x = true);
274 : //! Concatenate two input stacks.
275 : friend InputStack operator+(InputStack a, InputStack b);
276 : //! Choose between two potential input stacks.
277 : friend InputStack operator|(InputStack a, InputStack b);
278 : };
279 :
280 : /** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */
281 : static const auto ZERO = InputStack(std::vector<unsigned char>());
282 : /** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */
283 : static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
284 : /** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */
285 : static const auto ONE = InputStack(Vector((unsigned char)1));
286 : /** The empty stack. */
287 : static const auto EMPTY = InputStack();
288 : /** A stack representing the lack of any (dis)satisfactions. */
289 : static const auto INVALID = InputStack().SetAvailable(Availability::NO);
290 :
291 : //! A pair of a satisfaction and a dissatisfaction InputStack.
292 : struct InputResult {
293 : InputStack nsat, sat;
294 :
295 : template<typename A, typename B>
296 0 : InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
297 : };
298 :
299 : //! Class whose objects represent the maximum of a list of integers.
300 : template<typename I>
301 : struct MaxInt {
302 : const bool valid;
303 : const I value;
304 :
305 0 : MaxInt() : valid(false), value(0) {}
306 0 : MaxInt(I val) : valid(true), value(val) {}
307 :
308 0 : friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
309 0 : if (!a.valid || !b.valid) return {};
310 0 : return a.value + b.value;
311 0 : }
312 :
313 0 : friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
314 0 : if (!a.valid) return b;
315 0 : if (!b.valid) return a;
316 0 : return std::max(a.value, b.value);
317 0 : }
318 : };
319 :
320 : struct Ops {
321 : //! Non-push opcodes.
322 : uint32_t count;
323 : //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
324 : MaxInt<uint32_t> sat;
325 : //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
326 : MaxInt<uint32_t> dsat;
327 :
328 0 : Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
329 : };
330 :
331 : struct StackSize {
332 : //! Maximum stack size to satisfy;
333 : MaxInt<uint32_t> sat;
334 : //! Maximum stack size to dissatisfy;
335 : MaxInt<uint32_t> dsat;
336 :
337 0 : StackSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
338 : };
339 :
340 : struct WitnessSize {
341 : //! Maximum witness size to satisfy;
342 : MaxInt<uint32_t> sat;
343 : //! Maximum witness size to dissatisfy;
344 : MaxInt<uint32_t> dsat;
345 :
346 0 : WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
347 : };
348 :
349 : struct NoDupCheck {};
350 :
351 : } // namespace internal
352 :
353 : //! A node in a miniscript expression.
354 : template<typename Key>
355 : struct Node {
356 : //! What node type this node is.
357 : const Fragment fragment;
358 : //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
359 : const uint32_t k = 0;
360 : //! The keys used by this expression (only for PK_K/PK_H/MULTI)
361 : const std::vector<Key> keys;
362 : //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
363 : const std::vector<unsigned char> data;
364 : //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
365 : const std::vector<NodeRef<Key>> subs;
366 :
367 : private:
368 : //! Cached ops counts.
369 : const internal::Ops ops;
370 : //! Cached stack size bounds.
371 : const internal::StackSize ss;
372 : //! Cached witness size bounds.
373 : const internal::WitnessSize ws;
374 : //! Cached expression type (computed by CalcType and fed through SanitizeType).
375 : const Type typ;
376 : //! Cached script length (computed by CalcScriptLen).
377 : const size_t scriptlen;
378 : //! Whether a public key appears more than once in this node. This value is initialized
379 : //! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the
380 : //! computation, requiring it to be done manually by invoking DuplicateKeyCheck().
381 : //! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys
382 : //! for all subnodes as well.
383 : mutable std::optional<bool> has_duplicate_keys;
384 :
385 :
386 : //! Compute the length of the script for this miniscript (including children).
387 0 : size_t CalcScriptLen() const {
388 0 : size_t subsize = 0;
389 0 : for (const auto& sub : subs) {
390 0 : subsize += sub->ScriptSize();
391 : }
392 0 : Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
393 0 : return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size());
394 : }
395 :
396 : /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
397 : *
398 : * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
399 : * result can be thought of as first using downfn to compute a "state" for each node,
400 : * from the root down to the leaves. Then upfn is used to compute a "result" for each
401 : * node, from the leaves back up to the root, which is then returned. In the actual
402 : * implementation, both functions are invoked in an interleaved fashion, performing a
403 : * depth-first traversal of the tree.
404 : *
405 : * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
406 : * - root is the state of the root node, of type State.
407 : * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
408 : * node, its state, and an index of one of its children, computes the state of that
409 : * child. It can modify the state. Children of a given node will have downfn()
410 : * called in order.
411 : * - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
412 : * which given a node, its state, and a Span of the results of its children,
413 : * computes the result of the node. If std::nullopt is returned by upfn,
414 : * TreeEvalMaybe() immediately returns std::nullopt.
415 : * The return value of TreeEvalMaybe is the result of the root node.
416 : *
417 : * Result type cannot be bool due to the std::vector<bool> specialization.
418 : */
419 : template<typename Result, typename State, typename DownFn, typename UpFn>
420 0 : std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
421 : {
422 : /** Entries of the explicit stack tracked in this algorithm. */
423 : struct StackElem
424 : {
425 : const Node& node; //!< The node being evaluated.
426 : size_t expanded; //!< How many children of this node have been expanded.
427 : State state; //!< The state for that node.
428 :
429 0 : StackElem(const Node& node_, size_t exp_, State&& state_) :
430 0 : node(node_), expanded(exp_), state(std::move(state_)) {}
431 : };
432 : /* Stack of tree nodes being explored. */
433 0 : std::vector<StackElem> stack;
434 : /* Results of subtrees so far. Their order and mapping to tree nodes
435 : * is implicitly defined by stack. */
436 0 : std::vector<Result> results;
437 0 : stack.emplace_back(*this, 0, std::move(root_state));
438 :
439 : /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
440 : * State variables are omitted for simplicity.
441 : *
442 : * First: stack=[(A,0)] results=[]
443 : * stack=[(A,1),(B,0)] results=[]
444 : * stack=[(A,1)] results=[B]
445 : * stack=[(A,2),(C,0)] results=[B]
446 : * stack=[(A,2),(C,1),(D,0)] results=[B]
447 : * stack=[(A,2),(C,1)] results=[B,D]
448 : * stack=[(A,2),(C,2),(E,0)] results=[B,D]
449 : * stack=[(A,2),(C,2)] results=[B,D,E]
450 : * stack=[(A,2)] results=[B,C]
451 : * stack=[(A,3),(F,0)] results=[B,C]
452 : * stack=[(A,3)] results=[B,C,F]
453 : * Final: stack=[] results=[A]
454 : */
455 0 : while (stack.size()) {
456 0 : const Node& node = stack.back().node;
457 0 : if (stack.back().expanded < node.subs.size()) {
458 : /* We encounter a tree node with at least one unexpanded child.
459 : * Expand it. By the time we hit this node again, the result of
460 : * that child (and all earlier children) will be at the end of `results`. */
461 0 : size_t child_index = stack.back().expanded++;
462 0 : State child_state = downfn(stack.back().state, node, child_index);
463 0 : stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
464 0 : continue;
465 : }
466 : // Invoke upfn with the last node.subs.size() elements of results as input.
467 0 : assert(results.size() >= node.subs.size());
468 0 : std::optional<Result> result{upfn(std::move(stack.back().state), node,
469 0 : Span<Result>{results}.last(node.subs.size()))};
470 : // If evaluation returns std::nullopt, abort immediately.
471 0 : if (!result) return {};
472 : // Replace the last node.subs.size() elements of results with the new result.
473 0 : results.erase(results.end() - node.subs.size(), results.end());
474 0 : results.push_back(std::move(*result));
475 0 : stack.pop_back();
476 0 : }
477 : // The final remaining results element is the root result, return it.
478 0 : assert(results.size() == 1);
479 0 : return std::move(results[0]);
480 0 : }
481 :
482 : /** Like TreeEvalMaybe, but without downfn or State type.
483 : * upfn takes (const Node&, Span<Result>) and returns std::optional<Result>. */
484 : template<typename Result, typename UpFn>
485 : std::optional<Result> TreeEvalMaybe(UpFn upfn) const
486 : {
487 : struct DummyState {};
488 : return TreeEvalMaybe<Result>(DummyState{},
489 : [](DummyState, const Node&, size_t) { return DummyState{}; },
490 : [&upfn](DummyState, const Node& node, Span<Result> subs) {
491 : return upfn(node, subs);
492 : }
493 : );
494 : }
495 :
496 : /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
497 : template<typename Result, typename State, typename DownFn, typename UpFn>
498 0 : Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
499 : {
500 : // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
501 : // unconditionally dereference the result (it cannot be std::nullopt).
502 0 : return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
503 0 : std::forward<DownFn>(downfn),
504 0 : [&upfn](State&& state, const Node& node, Span<Result> subs) {
505 0 : Result res{upfn(std::move(state), node, subs)};
506 0 : return std::optional<Result>(std::move(res));
507 0 : }
508 : ));
509 0 : }
510 :
511 : /** Like TreeEval, but without downfn or State type.
512 : * upfn takes (const Node&, Span<Result>) and returns Result. */
513 : template<typename Result, typename UpFn>
514 0 : Result TreeEval(UpFn upfn) const
515 : {
516 : struct DummyState {};
517 0 : return std::move(*TreeEvalMaybe<Result>(DummyState{},
518 0 : [](DummyState, const Node&, size_t) { return DummyState{}; },
519 0 : [&upfn](DummyState, const Node& node, Span<Result> subs) {
520 0 : Result res{upfn(node, subs)};
521 0 : return std::optional<Result>(std::move(res));
522 0 : }
523 : ));
524 0 : }
525 :
526 : /** Compare two miniscript subtrees, using a non-recursive algorithm. */
527 0 : friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
528 : {
529 0 : std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
530 0 : queue.emplace_back(node1, node2);
531 0 : while (!queue.empty()) {
532 0 : const auto& [a, b] = queue.back();
533 0 : queue.pop_back();
534 0 : if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
535 0 : if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
536 0 : if (a.subs.size() < b.subs.size()) return -1;
537 0 : if (b.subs.size() < a.subs.size()) return 1;
538 0 : size_t n = a.subs.size();
539 0 : for (size_t i = 0; i < n; ++i) {
540 0 : queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
541 0 : }
542 : }
543 0 : return 0;
544 0 : }
545 :
546 : //! Compute the type for this miniscript.
547 0 : Type CalcType() const {
548 : using namespace internal;
549 :
550 : // THRESH has a variable number of subexpressions
551 0 : std::vector<Type> sub_types;
552 0 : if (fragment == Fragment::THRESH) {
553 0 : for (const auto& sub : subs) sub_types.push_back(sub->GetType());
554 0 : }
555 : // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
556 0 : Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
557 0 : Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst;
558 0 : Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst;
559 :
560 0 : return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size()));
561 0 : }
562 :
563 : public:
564 : template<typename Ctx>
565 0 : CScript ToScript(const Ctx& ctx) const
566 : {
567 : // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
568 : // The State is a boolean: whether or not the node's script expansion is followed
569 : // by an OP_VERIFY (which may need to be combined with the last script opcode).
570 0 : auto downfn = [](bool verify, const Node& node, size_t index) {
571 : // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
572 0 : if (node.fragment == Fragment::WRAP_V) return true;
573 : // The subexpression of WRAP_S, and the last subexpression of AND_V
574 : // inherit the followed-by-OP_VERIFY property from the parent.
575 0 : if (node.fragment == Fragment::WRAP_S ||
576 0 : (node.fragment == Fragment::AND_V && index == 1)) return verify;
577 0 : return false;
578 0 : };
579 : // The upward function computes for a node, given its followed-by-OP_VERIFY status
580 : // and the CScripts of its child nodes, the CScript of the node.
581 0 : auto upfn = [&ctx](bool verify, const Node& node, Span<CScript> subs) -> CScript {
582 0 : switch (node.fragment) {
583 0 : case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
584 0 : case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
585 0 : case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
586 0 : case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
587 0 : case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
588 0 : case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
589 0 : case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
590 0 : case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
591 0 : case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
592 0 : case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
593 0 : case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
594 0 : case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
595 : case Fragment::WRAP_V: {
596 0 : if (node.subs[0]->GetType() << "x"_mst) {
597 0 : return BuildScript(std::move(subs[0]), OP_VERIFY);
598 : } else {
599 0 : return std::move(subs[0]);
600 : }
601 : }
602 0 : case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
603 0 : case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
604 0 : case Fragment::JUST_1: return BuildScript(OP_1);
605 0 : case Fragment::JUST_0: return BuildScript(OP_0);
606 0 : case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
607 0 : case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
608 0 : case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
609 0 : case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
610 0 : case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
611 0 : case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
612 0 : case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
613 : case Fragment::MULTI: {
614 0 : CScript script = BuildScript(node.k);
615 0 : for (const auto& key : node.keys) {
616 0 : script = BuildScript(std::move(script), ctx.ToPKBytes(key));
617 : }
618 0 : return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
619 0 : }
620 : case Fragment::THRESH: {
621 0 : CScript script = std::move(subs[0]);
622 0 : for (size_t i = 1; i < subs.size(); ++i) {
623 0 : script = BuildScript(std::move(script), subs[i], OP_ADD);
624 0 : }
625 0 : return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
626 0 : }
627 : }
628 0 : assert(false);
629 0 : };
630 0 : return TreeEval<CScript>(false, downfn, upfn);
631 : }
632 :
633 : template<typename CTx>
634 0 : std::optional<std::string> ToString(const CTx& ctx) const {
635 : // To construct the std::string representation for a Miniscript object, we use
636 : // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
637 : // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
638 0 : auto downfn = [](bool, const Node& node, size_t) {
639 0 : return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
640 0 : node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
641 0 : node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
642 0 : node.fragment == Fragment::WRAP_C ||
643 0 : (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
644 0 : (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
645 0 : (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
646 : };
647 : // The upward function computes for a node, given whether its parent is a wrapper,
648 : // and the string representations of its child nodes, the string representation of the node.
649 0 : auto upfn = [&ctx](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
650 0 : std::string ret = wrapped ? ":" : "";
651 :
652 0 : switch (node.fragment) {
653 0 : case Fragment::WRAP_A: return "a" + std::move(subs[0]);
654 0 : case Fragment::WRAP_S: return "s" + std::move(subs[0]);
655 : case Fragment::WRAP_C:
656 0 : if (node.subs[0]->fragment == Fragment::PK_K) {
657 : // pk(K) is syntactic sugar for c:pk_k(K)
658 0 : auto key_str = ctx.ToString(node.subs[0]->keys[0]);
659 0 : if (!key_str) return {};
660 0 : return std::move(ret) + "pk(" + std::move(*key_str) + ")";
661 0 : }
662 0 : if (node.subs[0]->fragment == Fragment::PK_H) {
663 : // pkh(K) is syntactic sugar for c:pk_h(K)
664 0 : auto key_str = ctx.ToString(node.subs[0]->keys[0]);
665 0 : if (!key_str) return {};
666 0 : return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
667 0 : }
668 0 : return "c" + std::move(subs[0]);
669 0 : case Fragment::WRAP_D: return "d" + std::move(subs[0]);
670 0 : case Fragment::WRAP_V: return "v" + std::move(subs[0]);
671 0 : case Fragment::WRAP_J: return "j" + std::move(subs[0]);
672 0 : case Fragment::WRAP_N: return "n" + std::move(subs[0]);
673 : case Fragment::AND_V:
674 : // t:X is syntactic sugar for and_v(X,1).
675 0 : if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
676 0 : break;
677 : case Fragment::OR_I:
678 0 : if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
679 0 : if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
680 0 : break;
681 0 : default: break;
682 : }
683 0 : switch (node.fragment) {
684 : case Fragment::PK_K: {
685 0 : auto key_str = ctx.ToString(node.keys[0]);
686 0 : if (!key_str) return {};
687 0 : return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
688 0 : }
689 : case Fragment::PK_H: {
690 0 : auto key_str = ctx.ToString(node.keys[0]);
691 0 : if (!key_str) return {};
692 0 : return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
693 0 : }
694 0 : case Fragment::AFTER: return std::move(ret) + "after(" + ::ToString(node.k) + ")";
695 0 : case Fragment::OLDER: return std::move(ret) + "older(" + ::ToString(node.k) + ")";
696 0 : case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
697 0 : case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
698 0 : case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
699 0 : case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
700 0 : case Fragment::JUST_1: return std::move(ret) + "1";
701 0 : case Fragment::JUST_0: return std::move(ret) + "0";
702 0 : case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
703 0 : case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
704 0 : case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
705 0 : case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
706 0 : case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
707 0 : case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
708 : case Fragment::ANDOR:
709 : // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
710 0 : if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
711 0 : return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
712 : case Fragment::MULTI: {
713 0 : auto str = std::move(ret) + "multi(" + ::ToString(node.k);
714 0 : for (const auto& key : node.keys) {
715 0 : auto key_str = ctx.ToString(key);
716 0 : if (!key_str) return {};
717 0 : str += "," + std::move(*key_str);
718 0 : }
719 0 : return std::move(str) + ")";
720 0 : }
721 : case Fragment::THRESH: {
722 0 : auto str = std::move(ret) + "thresh(" + ::ToString(node.k);
723 0 : for (auto& sub : subs) {
724 0 : str += "," + std::move(sub);
725 : }
726 0 : return std::move(str) + ")";
727 0 : }
728 0 : default: break;
729 : }
730 0 : assert(false);
731 0 : };
732 :
733 0 : return TreeEvalMaybe<std::string>(false, downfn, upfn);
734 : }
735 :
736 : private:
737 0 : internal::Ops CalcOps() const {
738 0 : switch (fragment) {
739 0 : case Fragment::JUST_1: return {0, 0, {}};
740 0 : case Fragment::JUST_0: return {0, {}, 0};
741 0 : case Fragment::PK_K: return {0, 0, 0};
742 0 : case Fragment::PK_H: return {3, 0, 0};
743 : case Fragment::OLDER:
744 0 : case Fragment::AFTER: return {1, 0, {}};
745 : case Fragment::SHA256:
746 : case Fragment::RIPEMD160:
747 : case Fragment::HASH256:
748 0 : case Fragment::HASH160: return {4, 0, {}};
749 0 : case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
750 : case Fragment::AND_B: {
751 0 : const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
752 0 : const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
753 0 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
754 0 : return {count, sat, dsat};
755 : }
756 : case Fragment::OR_B: {
757 0 : const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
758 0 : const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
759 0 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
760 0 : return {count, sat, dsat};
761 : }
762 : case Fragment::OR_D: {
763 0 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
764 0 : const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
765 0 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
766 0 : return {count, sat, dsat};
767 : }
768 : case Fragment::OR_C: {
769 0 : const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
770 0 : const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
771 0 : return {count, sat, {}};
772 : }
773 : case Fragment::OR_I: {
774 0 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
775 0 : const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
776 0 : const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
777 0 : return {count, sat, dsat};
778 : }
779 : case Fragment::ANDOR: {
780 0 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
781 0 : const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
782 0 : const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
783 0 : return {count, sat, dsat};
784 : }
785 0 : case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
786 : case Fragment::WRAP_S:
787 : case Fragment::WRAP_C:
788 0 : case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
789 0 : case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
790 0 : case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
791 0 : case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
792 0 : case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
793 : case Fragment::THRESH: {
794 0 : uint32_t count = 0;
795 0 : auto sats = Vector(internal::MaxInt<uint32_t>(0));
796 0 : for (const auto& sub : subs) {
797 0 : count += sub->ops.count + 1;
798 0 : auto next_sats = Vector(sats[0] + sub->ops.dsat);
799 0 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
800 0 : next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
801 0 : sats = std::move(next_sats);
802 0 : }
803 0 : assert(k <= sats.size());
804 0 : return {count, sats[k], sats[0]};
805 0 : }
806 : }
807 0 : assert(false);
808 0 : }
809 :
810 0 : internal::StackSize CalcStackSize() const {
811 0 : switch (fragment) {
812 0 : case Fragment::JUST_0: return {{}, 0};
813 : case Fragment::JUST_1:
814 : case Fragment::OLDER:
815 0 : case Fragment::AFTER: return {0, {}};
816 0 : case Fragment::PK_K: return {1, 1};
817 0 : case Fragment::PK_H: return {2, 2};
818 : case Fragment::SHA256:
819 : case Fragment::RIPEMD160:
820 : case Fragment::HASH256:
821 0 : case Fragment::HASH160: return {1, {}};
822 : case Fragment::ANDOR: {
823 0 : const auto sat{(subs[0]->ss.sat + subs[1]->ss.sat) | (subs[0]->ss.dsat + subs[2]->ss.sat)};
824 0 : const auto dsat{subs[0]->ss.dsat + subs[2]->ss.dsat};
825 0 : return {sat, dsat};
826 : }
827 0 : case Fragment::AND_V: return {subs[0]->ss.sat + subs[1]->ss.sat, {}};
828 0 : case Fragment::AND_B: return {subs[0]->ss.sat + subs[1]->ss.sat, subs[0]->ss.dsat + subs[1]->ss.dsat};
829 : case Fragment::OR_B: {
830 0 : const auto sat{(subs[0]->ss.dsat + subs[1]->ss.sat) | (subs[0]->ss.sat + subs[1]->ss.dsat)};
831 0 : const auto dsat{subs[0]->ss.dsat + subs[1]->ss.dsat};
832 0 : return {sat, dsat};
833 : }
834 0 : case Fragment::OR_C: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), {}};
835 0 : case Fragment::OR_D: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), subs[0]->ss.dsat + subs[1]->ss.dsat};
836 0 : case Fragment::OR_I: return {(subs[0]->ss.sat + 1) | (subs[1]->ss.sat + 1), (subs[0]->ss.dsat + 1) | (subs[1]->ss.dsat + 1)};
837 0 : case Fragment::MULTI: return {k + 1, k + 1};
838 : case Fragment::WRAP_A:
839 : case Fragment::WRAP_N:
840 : case Fragment::WRAP_S:
841 0 : case Fragment::WRAP_C: return subs[0]->ss;
842 0 : case Fragment::WRAP_D: return {1 + subs[0]->ss.sat, 1};
843 0 : case Fragment::WRAP_V: return {subs[0]->ss.sat, {}};
844 0 : case Fragment::WRAP_J: return {subs[0]->ss.sat, 1};
845 : case Fragment::THRESH: {
846 0 : auto sats = Vector(internal::MaxInt<uint32_t>(0));
847 0 : for (const auto& sub : subs) {
848 0 : auto next_sats = Vector(sats[0] + sub->ss.dsat);
849 0 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ss.dsat) | (sats[j - 1] + sub->ss.sat));
850 0 : next_sats.push_back(sats[sats.size() - 1] + sub->ss.sat);
851 0 : sats = std::move(next_sats);
852 0 : }
853 0 : assert(k <= sats.size());
854 0 : return {sats[k], sats[0]};
855 0 : }
856 : }
857 0 : assert(false);
858 0 : }
859 :
860 0 : internal::WitnessSize CalcWitnessSize() const {
861 0 : switch (fragment) {
862 0 : case Fragment::JUST_0: return {{}, 0};
863 : case Fragment::JUST_1:
864 : case Fragment::OLDER:
865 0 : case Fragment::AFTER: return {0, {}};
866 0 : case Fragment::PK_K: return {1 + 72, 1};
867 0 : case Fragment::PK_H: return {1 + 72 + 1 + 33, 1 + 1 + 33};
868 : case Fragment::SHA256:
869 : case Fragment::RIPEMD160:
870 : case Fragment::HASH256:
871 0 : case Fragment::HASH160: return {1 + 32, {}};
872 : case Fragment::ANDOR: {
873 0 : const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
874 0 : const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
875 0 : return {sat, dsat};
876 : }
877 0 : case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
878 0 : case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
879 : case Fragment::OR_B: {
880 0 : const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
881 0 : const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
882 0 : return {sat, dsat};
883 : }
884 0 : case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
885 0 : case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
886 0 : case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
887 0 : case Fragment::MULTI: return {k * (1 + 72) + 1, k + 1};
888 : case Fragment::WRAP_A:
889 : case Fragment::WRAP_N:
890 : case Fragment::WRAP_S:
891 0 : case Fragment::WRAP_C: return subs[0]->ws;
892 0 : case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
893 0 : case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
894 0 : case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
895 : case Fragment::THRESH: {
896 0 : auto sats = Vector(internal::MaxInt<uint32_t>(0));
897 0 : for (const auto& sub : subs) {
898 0 : auto next_sats = Vector(sats[0] + sub->ws.dsat);
899 0 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
900 0 : next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
901 0 : sats = std::move(next_sats);
902 0 : }
903 0 : assert(k <= sats.size());
904 0 : return {sats[k], sats[0]};
905 0 : }
906 : }
907 0 : assert(false);
908 0 : }
909 :
910 : template<typename Ctx>
911 0 : internal::InputResult ProduceInput(const Ctx& ctx) const {
912 : using namespace internal;
913 :
914 : // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
915 : // given those of its subnodes.
916 0 : auto helper = [&ctx](const Node& node, Span<InputResult> subres) -> InputResult {
917 0 : switch (node.fragment) {
918 : case Fragment::PK_K: {
919 0 : std::vector<unsigned char> sig;
920 0 : Availability avail = ctx.Sign(node.keys[0], sig);
921 0 : return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
922 0 : }
923 : case Fragment::PK_H: {
924 0 : std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
925 0 : Availability avail = ctx.Sign(node.keys[0], sig);
926 0 : return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
927 0 : }
928 : case Fragment::MULTI: {
929 : // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
930 : // In the loop below, these stacks are built up using a dynamic programming approach.
931 : // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
932 0 : std::vector<InputStack> sats = Vector(ZERO);
933 0 : for (size_t i = 0; i < node.keys.size(); ++i) {
934 0 : std::vector<unsigned char> sig;
935 0 : Availability avail = ctx.Sign(node.keys[i], sig);
936 : // Compute signature stack for just the i'th key.
937 0 : auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
938 : // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
939 : // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
940 : // current (i'th) key. The very last element needs all signatures filled.
941 0 : std::vector<InputStack> next_sats;
942 0 : next_sats.push_back(sats[0]);
943 0 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
944 0 : next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
945 : // Switch over.
946 0 : sats = std::move(next_sats);
947 0 : }
948 : // The dissatisfaction consists of k+1 stack elements all equal to 0.
949 0 : InputStack nsat = ZERO;
950 0 : for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
951 0 : assert(node.k <= sats.size());
952 0 : return {std::move(nsat), std::move(sats[node.k])};
953 0 : }
954 : case Fragment::THRESH: {
955 : // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
956 : // In the loop below, these stacks are built up using a dynamic programming approach.
957 : // sats[0] starts off empty.
958 0 : std::vector<InputStack> sats = Vector(EMPTY);
959 0 : for (size_t i = 0; i < subres.size(); ++i) {
960 : // Introduce an alias for the i'th last satisfaction/dissatisfaction.
961 0 : auto& res = subres[subres.size() - i - 1];
962 : // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
963 : // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
964 : // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
965 0 : std::vector<InputStack> next_sats;
966 0 : next_sats.push_back(sats[0] + res.nsat);
967 0 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
968 0 : next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
969 : // Switch over.
970 0 : sats = std::move(next_sats);
971 0 : }
972 : // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
973 : // is computed by gathering all sats[i].nsat for i != k.
974 0 : InputStack nsat = INVALID;
975 0 : for (size_t i = 0; i < sats.size(); ++i) {
976 : // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
977 : // the rest are non-canonical (a no-signature dissatisfaction - the i=0
978 : // form - is always available) and malleable (due to overcompleteness).
979 : // Marking the solutions malleable here is not strictly necessary, as they
980 : // should already never be picked in non-malleable solutions due to the
981 : // availability of the i=0 form.
982 0 : if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
983 : // Include all dissatisfactions (even these non-canonical ones) in nsat.
984 0 : if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
985 0 : }
986 0 : assert(node.k <= sats.size());
987 0 : return {std::move(nsat), std::move(sats[node.k])};
988 0 : }
989 : case Fragment::OLDER: {
990 0 : return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
991 : }
992 : case Fragment::AFTER: {
993 0 : return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
994 : }
995 : case Fragment::SHA256: {
996 0 : std::vector<unsigned char> preimage;
997 0 : Availability avail = ctx.SatSHA256(node.data, preimage);
998 0 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
999 0 : }
1000 : case Fragment::RIPEMD160: {
1001 0 : std::vector<unsigned char> preimage;
1002 0 : Availability avail = ctx.SatRIPEMD160(node.data, preimage);
1003 0 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1004 0 : }
1005 : case Fragment::HASH256: {
1006 0 : std::vector<unsigned char> preimage;
1007 0 : Availability avail = ctx.SatHASH256(node.data, preimage);
1008 0 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1009 0 : }
1010 : case Fragment::HASH160: {
1011 0 : std::vector<unsigned char> preimage;
1012 0 : Availability avail = ctx.SatHASH160(node.data, preimage);
1013 0 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1014 0 : }
1015 : case Fragment::AND_V: {
1016 0 : auto& x = subres[0], &y = subres[1];
1017 : // As the dissatisfaction here only consist of a single option, it doesn't
1018 : // actually need to be listed (it's not required for reasoning about malleability of
1019 : // other options), and is never required (no valid miniscript relies on the ability
1020 : // to satisfy the type V left subexpression). It's still listed here for
1021 : // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
1022 : // care about malleability might in some cases prefer it still.
1023 0 : return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
1024 : }
1025 : case Fragment::AND_B: {
1026 0 : auto& x = subres[0], &y = subres[1];
1027 : // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
1028 : // as malleable. While they are definitely malleable, they are also non-canonical due
1029 : // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
1030 : // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
1031 : // weren't marked as malleable.
1032 0 : return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
1033 : }
1034 : case Fragment::OR_B: {
1035 0 : auto& x = subres[0], &z = subres[1];
1036 : // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
1037 0 : return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
1038 : }
1039 : case Fragment::OR_C: {
1040 0 : auto& x = subres[0], &z = subres[1];
1041 0 : return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
1042 : }
1043 : case Fragment::OR_D: {
1044 0 : auto& x = subres[0], &z = subres[1];
1045 0 : return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
1046 : }
1047 : case Fragment::OR_I: {
1048 0 : auto& x = subres[0], &z = subres[1];
1049 0 : return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
1050 : }
1051 : case Fragment::ANDOR: {
1052 0 : auto& x = subres[0], &y = subres[1], &z = subres[2];
1053 0 : return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
1054 : }
1055 : case Fragment::WRAP_A:
1056 : case Fragment::WRAP_S:
1057 : case Fragment::WRAP_C:
1058 : case Fragment::WRAP_N:
1059 0 : return std::move(subres[0]);
1060 : case Fragment::WRAP_D: {
1061 0 : auto &x = subres[0];
1062 0 : return {ZERO, x.sat + ONE};
1063 : }
1064 : case Fragment::WRAP_J: {
1065 0 : auto &x = subres[0];
1066 : // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
1067 : // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
1068 : // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
1069 : // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
1070 : // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
1071 0 : return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
1072 : }
1073 : case Fragment::WRAP_V: {
1074 0 : auto &x = subres[0];
1075 0 : return {INVALID, std::move(x.sat)};
1076 : }
1077 0 : case Fragment::JUST_0: return {EMPTY, INVALID};
1078 0 : case Fragment::JUST_1: return {INVALID, EMPTY};
1079 : }
1080 0 : assert(false);
1081 : return {INVALID, INVALID};
1082 0 : };
1083 :
1084 0 : auto tester = [&helper](const Node& node, Span<InputResult> subres) -> InputResult {
1085 0 : auto ret = helper(node, subres);
1086 :
1087 : // Do a consistency check between the satisfaction code and the type checker
1088 : // (the actual satisfaction code in ProduceInputHelper does not use GetType)
1089 :
1090 : // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
1091 0 : if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0);
1092 0 : if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0);
1093 :
1094 : // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
1095 0 : if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1);
1096 0 : if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1);
1097 :
1098 : // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
1099 : // the top element cannot be 0.
1100 0 : if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1);
1101 0 : if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1);
1102 0 : if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty());
1103 :
1104 : // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
1105 : // it must be canonical.
1106 0 : if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO);
1107 0 : if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig);
1108 0 : if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon);
1109 :
1110 : // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
1111 0 : if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig);
1112 0 : if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig);
1113 :
1114 : // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
1115 0 : if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO);
1116 0 : if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable);
1117 :
1118 : // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
1119 0 : if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable);
1120 :
1121 : // If a non-malleable satisfaction exists, it must be canonical.
1122 0 : if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon);
1123 :
1124 0 : return ret;
1125 0 : };
1126 :
1127 0 : return TreeEval<InputResult>(tester);
1128 : }
1129 :
1130 : public:
1131 : /** Update duplicate key information in this Node.
1132 : *
1133 : * This uses a custom key comparator provided by the context in order to still detect duplicates
1134 : * for more complicated types.
1135 : */
1136 0 : template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
1137 : {
1138 : // We cannot use a lambda here, as lambdas are non assignable, and the set operations
1139 : // below require moving the comparators around.
1140 : struct Comp {
1141 : const Ctx* ctx_ptr;
1142 0 : Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
1143 0 : bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
1144 : };
1145 :
1146 : // state in the recursive computation:
1147 : // - std::nullopt means "this node has duplicates"
1148 : // - an std::set means "this node has no duplicate keys, and they are: ...".
1149 : using keyset = std::set<Key, Comp>;
1150 : using state = std::optional<keyset>;
1151 :
1152 0 : auto upfn = [&ctx](const Node& node, Span<state> subs) -> state {
1153 : // If this node is already known to have duplicates, nothing left to do.
1154 0 : if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
1155 :
1156 : // Check if one of the children is already known to have duplicates.
1157 0 : for (auto& sub : subs) {
1158 0 : if (!sub.has_value()) {
1159 0 : node.has_duplicate_keys = true;
1160 0 : return {};
1161 : }
1162 : }
1163 :
1164 : // Start building the set of keys involved in this node and children.
1165 : // Start by keys in this node directly.
1166 0 : size_t keys_count = node.keys.size();
1167 0 : keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
1168 0 : if (key_set.size() != keys_count) {
1169 : // It already has duplicates; bail out.
1170 0 : node.has_duplicate_keys = true;
1171 0 : return {};
1172 : }
1173 :
1174 : // Merge the keys from the children into this set.
1175 0 : for (auto& sub : subs) {
1176 0 : keys_count += sub->size();
1177 : // Small optimization: std::set::merge is linear in the size of the second arg but
1178 : // logarithmic in the size of the first.
1179 0 : if (key_set.size() < sub->size()) std::swap(key_set, *sub);
1180 0 : key_set.merge(*sub);
1181 0 : if (key_set.size() != keys_count) {
1182 0 : node.has_duplicate_keys = true;
1183 0 : return {};
1184 : }
1185 : }
1186 :
1187 0 : node.has_duplicate_keys = false;
1188 0 : return key_set;
1189 0 : };
1190 :
1191 0 : TreeEval<state>(upfn);
1192 0 : }
1193 :
1194 : //! Return the size of the script for this expression (faster than ToScript().size()).
1195 0 : size_t ScriptSize() const { return scriptlen; }
1196 :
1197 : //! Return the maximum number of ops needed to satisfy this script non-malleably.
1198 0 : std::optional<uint32_t> GetOps() const {
1199 0 : if (!ops.sat.valid) return {};
1200 0 : return ops.count + ops.sat.value;
1201 0 : }
1202 :
1203 : //! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
1204 0 : uint32_t GetStaticOps() const { return ops.count; }
1205 :
1206 : //! Check the ops limit of this script against the consensus limit.
1207 0 : bool CheckOpsLimit() const {
1208 0 : if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
1209 0 : return true;
1210 0 : }
1211 :
1212 : /** Return the maximum number of stack elements needed to satisfy this script non-malleably.
1213 : * This does not account for the P2WSH script push. */
1214 0 : std::optional<uint32_t> GetStackSize() const {
1215 0 : if (!ss.sat.valid) return {};
1216 0 : return ss.sat.value;
1217 0 : }
1218 :
1219 : //! Check the maximum stack size for this script against the policy limit.
1220 0 : bool CheckStackSize() const {
1221 0 : if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
1222 0 : return true;
1223 0 : }
1224 :
1225 : //! Whether no satisfaction exists for this node.
1226 0 : bool IsNotSatisfiable() const { return !GetStackSize(); }
1227 :
1228 : /** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does
1229 : * not include the witness script push. */
1230 0 : std::optional<uint32_t> GetWitnessSize() const {
1231 0 : if (!ws.sat.valid) return {};
1232 0 : return ws.sat.value;
1233 0 : }
1234 :
1235 : //! Return the expression type.
1236 0 : Type GetType() const { return typ; }
1237 :
1238 : //! Find an insane subnode which has no insane children. Nullptr if there is none.
1239 0 : const Node* FindInsaneSub() const {
1240 0 : return TreeEval<const Node*>([](const Node& node, Span<const Node*> subs) -> const Node* {
1241 0 : for (auto& sub: subs) if (sub) return sub;
1242 0 : if (!node.IsSaneSubexpression()) return &node;
1243 0 : return nullptr;
1244 0 : });
1245 : }
1246 :
1247 : //! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all
1248 : //! key, time, and hashing nodes, and should return their satisfiability.
1249 : template<typename F>
1250 0 : bool IsSatisfiable(F fn) const
1251 : {
1252 : // TreeEval() doesn't support bool as NodeType, so use int instead.
1253 0 : return TreeEval<int>([&fn](const Node& node, Span<int> subs) -> bool {
1254 0 : switch (node.fragment) {
1255 : case Fragment::JUST_0:
1256 0 : return false;
1257 : case Fragment::JUST_1:
1258 0 : return true;
1259 : case Fragment::PK_K:
1260 : case Fragment::PK_H:
1261 : case Fragment::MULTI:
1262 : case Fragment::AFTER:
1263 : case Fragment::OLDER:
1264 : case Fragment::HASH256:
1265 : case Fragment::HASH160:
1266 : case Fragment::SHA256:
1267 : case Fragment::RIPEMD160:
1268 0 : return bool{fn(node)};
1269 : case Fragment::ANDOR:
1270 0 : return (subs[0] && subs[1]) || subs[2];
1271 : case Fragment::AND_V:
1272 : case Fragment::AND_B:
1273 0 : return subs[0] && subs[1];
1274 : case Fragment::OR_B:
1275 : case Fragment::OR_C:
1276 : case Fragment::OR_D:
1277 : case Fragment::OR_I:
1278 0 : return subs[0] || subs[1];
1279 : case Fragment::THRESH:
1280 0 : return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
1281 : default: // wrappers
1282 0 : assert(subs.size() == 1);
1283 0 : return subs[0];
1284 : }
1285 0 : });
1286 : }
1287 :
1288 : //! Check whether this node is valid at all.
1289 0 : bool IsValid() const { return !(GetType() == ""_mst) && ScriptSize() <= MAX_STANDARD_P2WSH_SCRIPT_SIZE; }
1290 :
1291 : //! Check whether this node is valid as a script on its own.
1292 0 : bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
1293 :
1294 : //! Check whether this script can always be satisfied in a non-malleable way.
1295 0 : bool IsNonMalleable() const { return GetType() << "m"_mst; }
1296 :
1297 : //! Check whether this script always needs a signature.
1298 0 : bool NeedsSignature() const { return GetType() << "s"_mst; }
1299 :
1300 : //! Check whether there is no satisfaction path that contains both timelocks and heightlocks
1301 0 : bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
1302 :
1303 : //! Check whether there is no duplicate key across this fragment and all its sub-fragments.
1304 0 : bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
1305 :
1306 : //! Whether successful non-malleable satisfactions are guaranteed to be valid.
1307 0 : bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
1308 :
1309 : //! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own.
1310 0 : bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
1311 :
1312 : //! Check whether this node is safe as a script on its own.
1313 0 : bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
1314 :
1315 : //! Produce a witness for this script, if possible and given the information available in the context.
1316 : //! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction()
1317 : //! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's
1318 : //! conditions are satisfied (private keys and hash preimages available, locktimes satsified).
1319 : template<typename Ctx>
1320 0 : Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
1321 0 : auto ret = ProduceInput(ctx);
1322 0 : if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
1323 0 : stack = std::move(ret.sat.stack);
1324 0 : return ret.sat.available;
1325 0 : }
1326 :
1327 : //! Equality testing.
1328 0 : bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
1329 :
1330 : // Constructors with various argument combinations, which bypass the duplicate key check.
1331 0 : Node(internal::NoDupCheck, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1332 0 : Node(internal::NoDupCheck, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) : fragment(nt), k(val), data(std::move(arg)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1333 : Node(internal::NoDupCheck, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) : fragment(nt), k(val), keys(std::move(key)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1334 0 : Node(internal::NoDupCheck, Fragment nt, std::vector<Key> key, uint32_t val = 0) : fragment(nt), k(val), keys(std::move(key)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1335 0 : Node(internal::NoDupCheck, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) : fragment(nt), k(val), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1336 0 : Node(internal::NoDupCheck, Fragment nt, uint32_t val = 0) : fragment(nt), k(val), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1337 :
1338 : // Constructors with various argument combinations, which do perform the duplicate key check.
1339 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
1340 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
1341 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
1342 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
1343 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
1344 0 : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0) : Node(internal::NoDupCheck{}, nt, val) { DuplicateKeyCheck(ctx); }
1345 : };
1346 :
1347 : namespace internal {
1348 :
1349 : enum class ParseContext {
1350 : /** An expression which may be begin with wrappers followed by a colon. */
1351 : WRAPPED_EXPR,
1352 : /** A miniscript expression which does not begin with wrappers. */
1353 : EXPR,
1354 :
1355 : /** SWAP wraps the top constructed node with s: */
1356 : SWAP,
1357 : /** ALT wraps the top constructed node with a: */
1358 : ALT,
1359 : /** CHECK wraps the top constructed node with c: */
1360 : CHECK,
1361 : /** DUP_IF wraps the top constructed node with d: */
1362 : DUP_IF,
1363 : /** VERIFY wraps the top constructed node with v: */
1364 : VERIFY,
1365 : /** NON_ZERO wraps the top constructed node with j: */
1366 : NON_ZERO,
1367 : /** ZERO_NOTEQUAL wraps the top constructed node with n: */
1368 : ZERO_NOTEQUAL,
1369 : /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
1370 : WRAP_U,
1371 : /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
1372 : WRAP_T,
1373 :
1374 : /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
1375 : AND_N,
1376 : /** AND_V will construct an and_v node from the last two constructed nodes. */
1377 : AND_V,
1378 : /** AND_B will construct an and_b node from the last two constructed nodes. */
1379 : AND_B,
1380 : /** ANDOR will construct an andor node from the last three constructed nodes. */
1381 : ANDOR,
1382 : /** OR_B will construct an or_b node from the last two constructed nodes. */
1383 : OR_B,
1384 : /** OR_C will construct an or_c node from the last two constructed nodes. */
1385 : OR_C,
1386 : /** OR_D will construct an or_d node from the last two constructed nodes. */
1387 : OR_D,
1388 : /** OR_I will construct an or_i node from the last two constructed nodes. */
1389 : OR_I,
1390 :
1391 : /** THRESH will read a wrapped expression, and then look for a COMMA. If
1392 : * no comma follows, it will construct a thresh node from the appropriate
1393 : * number of constructed children. Otherwise, it will recurse with another
1394 : * THRESH. */
1395 : THRESH,
1396 :
1397 : /** COMMA expects the next element to be ',' and fails if not. */
1398 : COMMA,
1399 : /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
1400 : CLOSE_BRACKET,
1401 : };
1402 :
1403 : int FindNextChar(Span<const char> in, const char m);
1404 :
1405 : /** Parse a key string ending at the end of the fragment's text representation. */
1406 : template<typename Key, typename Ctx>
1407 0 : std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
1408 : {
1409 0 : int key_size = FindNextChar(in, ')');
1410 0 : if (key_size < 1) return {};
1411 0 : auto key = ctx.FromString(in.begin(), in.begin() + key_size);
1412 0 : if (!key) return {};
1413 0 : return {{std::move(*key), key_size}};
1414 0 : }
1415 :
1416 : /** Parse a hex string ending at the end of the fragment's text representation. */
1417 : template<typename Ctx>
1418 0 : std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
1419 : const Ctx& ctx)
1420 : {
1421 0 : int hash_size = FindNextChar(in, ')');
1422 0 : if (hash_size < 1) return {};
1423 0 : std::string val = std::string(in.begin(), in.begin() + hash_size);
1424 0 : if (!IsHex(val)) return {};
1425 0 : auto hash = ParseHex(val);
1426 0 : if (hash.size() != expected_size) return {};
1427 0 : return {{std::move(hash), hash_size}};
1428 0 : }
1429 :
1430 : /** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
1431 : template<typename Key>
1432 0 : void BuildBack(Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
1433 : {
1434 0 : NodeRef<Key> child = std::move(constructed.back());
1435 0 : constructed.pop_back();
1436 0 : if (reverse) {
1437 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, nt, Vector(std::move(child), std::move(constructed.back())));
1438 0 : } else {
1439 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, nt, Vector(std::move(constructed.back()), std::move(child)));
1440 : }
1441 0 : }
1442 :
1443 : /**
1444 : * Parse a miniscript from its textual descriptor form.
1445 : * This does not check whether the script is valid, let alone sane. The caller is expected to use
1446 : * the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node.
1447 : */
1448 : template<typename Key, typename Ctx>
1449 0 : inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
1450 : {
1451 : using namespace spanparsing;
1452 :
1453 : // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
1454 : // script byte from all leaf nodes, counting it instead whenever a space for a recursive
1455 : // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
1456 : // increment the script_size by at least one, except for:
1457 : // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
1458 : // This is not an issue however, as "space" for them has to be created by combinators,
1459 : // which do increment script_size.
1460 : // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
1461 : // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
1462 : // to be interleaved with other fragments to be valid, so this is not a concern.
1463 0 : size_t script_size{1};
1464 :
1465 : // The two integers are used to hold state for thresh()
1466 0 : std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
1467 0 : std::vector<NodeRef<Key>> constructed;
1468 :
1469 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1470 :
1471 0 : while (!to_parse.empty()) {
1472 0 : if (script_size > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
1473 :
1474 : // Get the current context we are decoding within
1475 0 : auto [cur_context, n, k] = to_parse.back();
1476 0 : to_parse.pop_back();
1477 :
1478 0 : switch (cur_context) {
1479 : case ParseContext::WRAPPED_EXPR: {
1480 0 : std::optional<size_t> colon_index{};
1481 0 : for (size_t i = 1; i < in.size(); ++i) {
1482 0 : if (in[i] == ':') {
1483 0 : colon_index = i;
1484 0 : break;
1485 : }
1486 0 : if (in[i] < 'a' || in[i] > 'z') break;
1487 0 : }
1488 : // If there is no colon, this loop won't execute
1489 0 : bool last_was_v{false};
1490 0 : for (size_t j = 0; colon_index && j < *colon_index; ++j) {
1491 0 : if (script_size > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
1492 0 : if (in[j] == 'a') {
1493 0 : script_size += 2;
1494 0 : to_parse.emplace_back(ParseContext::ALT, -1, -1);
1495 0 : } else if (in[j] == 's') {
1496 0 : script_size += 1;
1497 0 : to_parse.emplace_back(ParseContext::SWAP, -1, -1);
1498 0 : } else if (in[j] == 'c') {
1499 0 : script_size += 1;
1500 0 : to_parse.emplace_back(ParseContext::CHECK, -1, -1);
1501 0 : } else if (in[j] == 'd') {
1502 0 : script_size += 3;
1503 0 : to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
1504 0 : } else if (in[j] == 'j') {
1505 0 : script_size += 4;
1506 0 : to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
1507 0 : } else if (in[j] == 'n') {
1508 0 : script_size += 1;
1509 0 : to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
1510 0 : } else if (in[j] == 'v') {
1511 : // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
1512 : // failure as script_size isn't incremented.
1513 0 : if (last_was_v) return {};
1514 0 : to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
1515 0 : } else if (in[j] == 'u') {
1516 0 : script_size += 4;
1517 0 : to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
1518 0 : } else if (in[j] == 't') {
1519 0 : script_size += 1;
1520 0 : to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
1521 0 : } else if (in[j] == 'l') {
1522 : // The l: wrapper is equivalent to or_i(0,X)
1523 0 : script_size += 4;
1524 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_0));
1525 0 : to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1526 0 : } else {
1527 0 : return {};
1528 : }
1529 0 : last_was_v = (in[j] == 'v');
1530 0 : }
1531 0 : to_parse.emplace_back(ParseContext::EXPR, -1, -1);
1532 0 : if (colon_index) in = in.subspan(*colon_index + 1);
1533 0 : break;
1534 : }
1535 : case ParseContext::EXPR: {
1536 0 : if (Const("0", in)) {
1537 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_0));
1538 0 : } else if (Const("1", in)) {
1539 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_1));
1540 0 : } else if (Const("pk(", in)) {
1541 0 : auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
1542 0 : if (!res) return {};
1543 0 : auto& [key, key_size] = *res;
1544 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_K, Vector(std::move(key))))));
1545 0 : in = in.subspan(key_size + 1);
1546 0 : script_size += 34;
1547 0 : } else if (Const("pkh(", in)) {
1548 0 : auto res = ParseKeyEnd<Key>(in, ctx);
1549 0 : if (!res) return {};
1550 0 : auto& [key, key_size] = *res;
1551 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_H, Vector(std::move(key))))));
1552 0 : in = in.subspan(key_size + 1);
1553 0 : script_size += 24;
1554 0 : } else if (Const("pk_k(", in)) {
1555 0 : auto res = ParseKeyEnd<Key>(in, ctx);
1556 0 : if (!res) return {};
1557 0 : auto& [key, key_size] = *res;
1558 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_K, Vector(std::move(key))));
1559 0 : in = in.subspan(key_size + 1);
1560 0 : script_size += 33;
1561 0 : } else if (Const("pk_h(", in)) {
1562 0 : auto res = ParseKeyEnd<Key>(in, ctx);
1563 0 : if (!res) return {};
1564 0 : auto& [key, key_size] = *res;
1565 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_H, Vector(std::move(key))));
1566 0 : in = in.subspan(key_size + 1);
1567 0 : script_size += 23;
1568 0 : } else if (Const("sha256(", in)) {
1569 0 : auto res = ParseHexStrEnd(in, 32, ctx);
1570 0 : if (!res) return {};
1571 0 : auto& [hash, hash_size] = *res;
1572 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::SHA256, std::move(hash)));
1573 0 : in = in.subspan(hash_size + 1);
1574 0 : script_size += 38;
1575 0 : } else if (Const("ripemd160(", in)) {
1576 0 : auto res = ParseHexStrEnd(in, 20, ctx);
1577 0 : if (!res) return {};
1578 0 : auto& [hash, hash_size] = *res;
1579 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::RIPEMD160, std::move(hash)));
1580 0 : in = in.subspan(hash_size + 1);
1581 0 : script_size += 26;
1582 0 : } else if (Const("hash256(", in)) {
1583 0 : auto res = ParseHexStrEnd(in, 32, ctx);
1584 0 : if (!res) return {};
1585 0 : auto& [hash, hash_size] = *res;
1586 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::HASH256, std::move(hash)));
1587 0 : in = in.subspan(hash_size + 1);
1588 0 : script_size += 38;
1589 0 : } else if (Const("hash160(", in)) {
1590 0 : auto res = ParseHexStrEnd(in, 20, ctx);
1591 0 : if (!res) return {};
1592 0 : auto& [hash, hash_size] = *res;
1593 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::HASH160, std::move(hash)));
1594 0 : in = in.subspan(hash_size + 1);
1595 0 : script_size += 26;
1596 0 : } else if (Const("after(", in)) {
1597 0 : int arg_size = FindNextChar(in, ')');
1598 0 : if (arg_size < 1) return {};
1599 : int64_t num;
1600 0 : if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
1601 0 : if (num < 1 || num >= 0x80000000L) return {};
1602 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::AFTER, num));
1603 0 : in = in.subspan(arg_size + 1);
1604 0 : script_size += 1 + (num > 16) + (num > 0x7f) + (num > 0x7fff) + (num > 0x7fffff);
1605 0 : } else if (Const("older(", in)) {
1606 0 : int arg_size = FindNextChar(in, ')');
1607 0 : if (arg_size < 1) return {};
1608 : int64_t num;
1609 0 : if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
1610 0 : if (num < 1 || num >= 0x80000000L) return {};
1611 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::OLDER, num));
1612 0 : in = in.subspan(arg_size + 1);
1613 0 : script_size += 1 + (num > 16) + (num > 0x7f) + (num > 0x7fff) + (num > 0x7fffff);
1614 0 : } else if (Const("multi(", in)) {
1615 : // Get threshold
1616 0 : int next_comma = FindNextChar(in, ',');
1617 0 : if (next_comma < 1) return {};
1618 0 : if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
1619 0 : in = in.subspan(next_comma + 1);
1620 : // Get keys
1621 0 : std::vector<Key> keys;
1622 0 : while (next_comma != -1) {
1623 0 : next_comma = FindNextChar(in, ',');
1624 0 : int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
1625 0 : if (key_length < 1) return {};
1626 0 : auto key = ctx.FromString(in.begin(), in.begin() + key_length);
1627 0 : if (!key) return {};
1628 0 : keys.push_back(std::move(*key));
1629 0 : in = in.subspan(key_length + 1);
1630 : }
1631 0 : if (keys.size() < 1 || keys.size() > 20) return {};
1632 0 : if (k < 1 || k > (int64_t)keys.size()) return {};
1633 0 : script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
1634 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::MULTI, std::move(keys), k));
1635 0 : } else if (Const("thresh(", in)) {
1636 0 : int next_comma = FindNextChar(in, ',');
1637 0 : if (next_comma < 1) return {};
1638 0 : if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
1639 0 : if (k < 1) return {};
1640 0 : in = in.subspan(next_comma + 1);
1641 : // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
1642 0 : to_parse.emplace_back(ParseContext::THRESH, 1, k);
1643 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1644 0 : script_size += 2 + (k > 16) + (k > 0x7f) + (k > 0x7fff) + (k > 0x7fffff);
1645 0 : } else if (Const("andor(", in)) {
1646 0 : to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
1647 0 : to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
1648 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1649 0 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
1650 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1651 0 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
1652 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1653 0 : script_size += 5;
1654 0 : } else {
1655 0 : if (Const("and_n(", in)) {
1656 0 : to_parse.emplace_back(ParseContext::AND_N, -1, -1);
1657 0 : script_size += 5;
1658 0 : } else if (Const("and_b(", in)) {
1659 0 : to_parse.emplace_back(ParseContext::AND_B, -1, -1);
1660 0 : script_size += 2;
1661 0 : } else if (Const("and_v(", in)) {
1662 0 : to_parse.emplace_back(ParseContext::AND_V, -1, -1);
1663 0 : script_size += 1;
1664 0 : } else if (Const("or_b(", in)) {
1665 0 : to_parse.emplace_back(ParseContext::OR_B, -1, -1);
1666 0 : script_size += 2;
1667 0 : } else if (Const("or_c(", in)) {
1668 0 : to_parse.emplace_back(ParseContext::OR_C, -1, -1);
1669 0 : script_size += 3;
1670 0 : } else if (Const("or_d(", in)) {
1671 0 : to_parse.emplace_back(ParseContext::OR_D, -1, -1);
1672 0 : script_size += 4;
1673 0 : } else if (Const("or_i(", in)) {
1674 0 : to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1675 0 : script_size += 4;
1676 0 : } else {
1677 0 : return {};
1678 : }
1679 0 : to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
1680 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1681 0 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
1682 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1683 : }
1684 0 : break;
1685 : }
1686 : case ParseContext::ALT: {
1687 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_A, Vector(std::move(constructed.back())));
1688 0 : break;
1689 : }
1690 : case ParseContext::SWAP: {
1691 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_S, Vector(std::move(constructed.back())));
1692 0 : break;
1693 : }
1694 : case ParseContext::CHECK: {
1695 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_C, Vector(std::move(constructed.back())));
1696 0 : break;
1697 : }
1698 : case ParseContext::DUP_IF: {
1699 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_D, Vector(std::move(constructed.back())));
1700 0 : break;
1701 : }
1702 : case ParseContext::NON_ZERO: {
1703 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_J, Vector(std::move(constructed.back())));
1704 0 : break;
1705 : }
1706 : case ParseContext::ZERO_NOTEQUAL: {
1707 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_N, Vector(std::move(constructed.back())));
1708 0 : break;
1709 : }
1710 : case ParseContext::VERIFY: {
1711 0 : script_size += (constructed.back()->GetType() << "x"_mst);
1712 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_V, Vector(std::move(constructed.back())));
1713 0 : break;
1714 : }
1715 : case ParseContext::WRAP_U: {
1716 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_0)));
1717 0 : break;
1718 : }
1719 : case ParseContext::WRAP_T: {
1720 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_1)));
1721 0 : break;
1722 : }
1723 : case ParseContext::AND_B: {
1724 0 : BuildBack(Fragment::AND_B, constructed);
1725 0 : break;
1726 : }
1727 : case ParseContext::AND_N: {
1728 0 : auto mid = std::move(constructed.back());
1729 0 : constructed.pop_back();
1730 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(ctx, Fragment::JUST_0)));
1731 : break;
1732 0 : }
1733 : case ParseContext::AND_V: {
1734 0 : BuildBack(Fragment::AND_V, constructed);
1735 0 : break;
1736 : }
1737 : case ParseContext::OR_B: {
1738 0 : BuildBack(Fragment::OR_B, constructed);
1739 0 : break;
1740 : }
1741 : case ParseContext::OR_C: {
1742 0 : BuildBack(Fragment::OR_C, constructed);
1743 0 : break;
1744 : }
1745 : case ParseContext::OR_D: {
1746 0 : BuildBack(Fragment::OR_D, constructed);
1747 0 : break;
1748 : }
1749 : case ParseContext::OR_I: {
1750 0 : BuildBack(Fragment::OR_I, constructed);
1751 0 : break;
1752 : }
1753 : case ParseContext::ANDOR: {
1754 0 : auto right = std::move(constructed.back());
1755 0 : constructed.pop_back();
1756 0 : auto mid = std::move(constructed.back());
1757 0 : constructed.pop_back();
1758 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
1759 : break;
1760 0 : }
1761 : case ParseContext::THRESH: {
1762 0 : if (in.size() < 1) return {};
1763 0 : if (in[0] == ',') {
1764 0 : in = in.subspan(1);
1765 0 : to_parse.emplace_back(ParseContext::THRESH, n+1, k);
1766 0 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1767 0 : script_size += 2;
1768 0 : } else if (in[0] == ')') {
1769 0 : if (k > n) return {};
1770 0 : in = in.subspan(1);
1771 : // Children are constructed in reverse order, so iterate from end to beginning
1772 0 : std::vector<NodeRef<Key>> subs;
1773 0 : for (int i = 0; i < n; ++i) {
1774 0 : subs.push_back(std::move(constructed.back()));
1775 0 : constructed.pop_back();
1776 0 : }
1777 0 : std::reverse(subs.begin(), subs.end());
1778 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::THRESH, std::move(subs), k));
1779 0 : } else {
1780 0 : return {};
1781 : }
1782 0 : break;
1783 : }
1784 : case ParseContext::COMMA: {
1785 0 : if (in.size() < 1 || in[0] != ',') return {};
1786 0 : in = in.subspan(1);
1787 0 : break;
1788 : }
1789 : case ParseContext::CLOSE_BRACKET: {
1790 0 : if (in.size() < 1 || in[0] != ')') return {};
1791 0 : in = in.subspan(1);
1792 0 : break;
1793 : }
1794 : }
1795 : }
1796 :
1797 : // Sanity checks on the produced miniscript
1798 0 : assert(constructed.size() == 1);
1799 0 : assert(constructed[0]->ScriptSize() == script_size);
1800 0 : if (in.size() > 0) return {};
1801 0 : NodeRef<Key> tl_node = std::move(constructed.front());
1802 0 : tl_node->DuplicateKeyCheck(ctx);
1803 0 : return tl_node;
1804 0 : }
1805 :
1806 : /** Decode a script into opcode/push pairs.
1807 : *
1808 : * Construct a vector with one element per opcode in the script, in reverse order.
1809 : * Each element is a pair consisting of the opcode, as well as the data pushed by
1810 : * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
1811 : * and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG, OP_EQUAL
1812 : * respectively, plus OP_VERIFY.
1813 : */
1814 : std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
1815 :
1816 : /** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
1817 : std::optional<int64_t> ParseScriptNumber(const Opcode& in);
1818 :
1819 : enum class DecodeContext {
1820 : /** A single expression of type B, K, or V. Specifically, this can't be an
1821 : * and_v or an expression of type W (a: and s: wrappers). */
1822 : SINGLE_BKV_EXPR,
1823 : /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
1824 : * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
1825 : BKV_EXPR,
1826 : /** An expression of type W (a: or s: wrappers). */
1827 : W_EXPR,
1828 :
1829 : /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
1830 : * didn't end with FROMALTSTACK), and wraps the top of the constructed stack
1831 : * with s: */
1832 : SWAP,
1833 : /** ALT expects the next element to be TOALTSTACK (we must have already read a
1834 : * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
1835 : ALT,
1836 : /** CHECK wraps the top constructed node with c: */
1837 : CHECK,
1838 : /** DUP_IF wraps the top constructed node with d: */
1839 : DUP_IF,
1840 : /** VERIFY wraps the top constructed node with v: */
1841 : VERIFY,
1842 : /** NON_ZERO wraps the top constructed node with j: */
1843 : NON_ZERO,
1844 : /** ZERO_NOTEQUAL wraps the top constructed node with n: */
1845 : ZERO_NOTEQUAL,
1846 :
1847 : /** MAYBE_AND_V will check if the next part of the script could be a valid
1848 : * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
1849 : * to decode it and construct the and_v node. This is recursive, to deal with
1850 : * multiple and_v nodes inside each other. */
1851 : MAYBE_AND_V,
1852 : /** AND_V will construct an and_v node from the last two constructed nodes. */
1853 : AND_V,
1854 : /** AND_B will construct an and_b node from the last two constructed nodes. */
1855 : AND_B,
1856 : /** ANDOR will construct an andor node from the last three constructed nodes. */
1857 : ANDOR,
1858 : /** OR_B will construct an or_b node from the last two constructed nodes. */
1859 : OR_B,
1860 : /** OR_C will construct an or_c node from the last two constructed nodes. */
1861 : OR_C,
1862 : /** OR_D will construct an or_d node from the last two constructed nodes. */
1863 : OR_D,
1864 :
1865 : /** In a thresh expression, all sub-expressions other than the first are W-type,
1866 : * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
1867 : * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
1868 : THRESH_W,
1869 : /** THRESH_E constructs a thresh node from the appropriate number of constructed
1870 : * children. */
1871 : THRESH_E,
1872 :
1873 : /** ENDIF signals that we are inside some sort of OP_IF structure, which could be
1874 : * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
1875 : * a BKV_EXPR and then deal with the next opcode case-by-case. */
1876 : ENDIF,
1877 : /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
1878 : * we could either be in an or_d or an or_c node. We then check for IFDUP to
1879 : * distinguish these cases. */
1880 : ENDIF_NOTIF,
1881 : /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
1882 : * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
1883 : * OP_NOTIF. */
1884 : ENDIF_ELSE,
1885 : };
1886 :
1887 : //! Parse a miniscript from a bitcoin script
1888 : template<typename Key, typename Ctx, typename I>
1889 0 : inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
1890 : {
1891 : // The two integers are used to hold state for thresh()
1892 0 : std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
1893 0 : std::vector<NodeRef<Key>> constructed;
1894 :
1895 : // This is the top level, so we assume the type is B
1896 : // (in particular, disallowing top level W expressions)
1897 0 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
1898 :
1899 0 : while (!to_parse.empty()) {
1900 : // Exit early if the Miniscript is not going to be valid.
1901 0 : if (!constructed.empty() && !constructed.back()->IsValid()) return {};
1902 :
1903 : // Get the current context we are decoding within
1904 0 : auto [cur_context, n, k] = to_parse.back();
1905 0 : to_parse.pop_back();
1906 :
1907 0 : switch(cur_context) {
1908 : case DecodeContext::SINGLE_BKV_EXPR: {
1909 0 : if (in >= last) return {};
1910 :
1911 : // Constants
1912 0 : if (in[0].first == OP_1) {
1913 0 : ++in;
1914 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_1));
1915 0 : break;
1916 : }
1917 0 : if (in[0].first == OP_0) {
1918 0 : ++in;
1919 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::JUST_0));
1920 0 : break;
1921 : }
1922 : // Public keys
1923 0 : if (in[0].second.size() == 33) {
1924 0 : auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
1925 0 : if (!key) return {};
1926 0 : ++in;
1927 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_K, Vector(std::move(*key))));
1928 0 : break;
1929 0 : }
1930 0 : if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
1931 0 : auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
1932 0 : if (!key) return {};
1933 0 : in += 5;
1934 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::PK_H, Vector(std::move(*key))));
1935 0 : break;
1936 0 : }
1937 : // Time locks
1938 0 : std::optional<int64_t> num;
1939 0 : if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
1940 0 : in += 2;
1941 0 : if (*num < 1 || *num > 0x7FFFFFFFL) return {};
1942 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::OLDER, *num));
1943 0 : break;
1944 : }
1945 0 : if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
1946 0 : in += 2;
1947 0 : if (num < 1 || num > 0x7FFFFFFFL) return {};
1948 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::AFTER, *num));
1949 0 : break;
1950 : }
1951 : // Hashes
1952 0 : if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
1953 0 : if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
1954 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::SHA256, in[1].second));
1955 0 : in += 7;
1956 0 : break;
1957 0 : } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
1958 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::RIPEMD160, in[1].second));
1959 0 : in += 7;
1960 0 : break;
1961 0 : } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
1962 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::HASH256, in[1].second));
1963 0 : in += 7;
1964 0 : break;
1965 0 : } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
1966 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::HASH160, in[1].second));
1967 0 : in += 7;
1968 0 : break;
1969 : }
1970 0 : }
1971 : // Multi
1972 0 : if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
1973 0 : std::vector<Key> keys;
1974 0 : const auto n = ParseScriptNumber(in[1]);
1975 0 : if (!n || last - in < 3 + *n) return {};
1976 0 : if (*n < 1 || *n > 20) return {};
1977 0 : for (int i = 0; i < *n; ++i) {
1978 0 : if (in[2 + i].second.size() != 33) return {};
1979 0 : auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
1980 0 : if (!key) return {};
1981 0 : keys.push_back(std::move(*key));
1982 0 : }
1983 0 : const auto k = ParseScriptNumber(in[2 + *n]);
1984 0 : if (!k || *k < 1 || *k > *n) return {};
1985 0 : in += 3 + *n;
1986 0 : std::reverse(keys.begin(), keys.end());
1987 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::MULTI, std::move(keys), *k));
1988 0 : break;
1989 0 : }
1990 : /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
1991 : * than BKV_EXPR, because and_v commutes with these wrappers. For example,
1992 : * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
1993 : // c: wrapper
1994 0 : if (in[0].first == OP_CHECKSIG) {
1995 0 : ++in;
1996 0 : to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
1997 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
1998 0 : break;
1999 : }
2000 : // v: wrapper
2001 0 : if (in[0].first == OP_VERIFY) {
2002 0 : ++in;
2003 0 : to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
2004 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2005 0 : break;
2006 : }
2007 : // n: wrapper
2008 0 : if (in[0].first == OP_0NOTEQUAL) {
2009 0 : ++in;
2010 0 : to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
2011 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2012 0 : break;
2013 : }
2014 : // Thresh
2015 0 : if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
2016 0 : if (*num < 1) return {};
2017 0 : in += 2;
2018 0 : to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
2019 0 : break;
2020 : }
2021 : // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
2022 0 : if (in[0].first == OP_ENDIF) {
2023 0 : ++in;
2024 0 : to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
2025 0 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2026 0 : break;
2027 : }
2028 : /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
2029 : * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
2030 : * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
2031 : * miniscript, while the latter is valid. So we leave the and_v "outside"
2032 : * while decoding. */
2033 : // and_b
2034 0 : if (in[0].first == OP_BOOLAND) {
2035 0 : ++in;
2036 0 : to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
2037 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2038 0 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2039 0 : break;
2040 : }
2041 : // or_b
2042 0 : if (in[0].first == OP_BOOLOR) {
2043 0 : ++in;
2044 0 : to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
2045 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2046 0 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2047 0 : break;
2048 : }
2049 : // Unrecognised expression
2050 0 : return {};
2051 : }
2052 : case DecodeContext::BKV_EXPR: {
2053 0 : to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
2054 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2055 0 : break;
2056 : }
2057 : case DecodeContext::W_EXPR: {
2058 : // a: wrapper
2059 0 : if (in >= last) return {};
2060 0 : if (in[0].first == OP_FROMALTSTACK) {
2061 0 : ++in;
2062 0 : to_parse.emplace_back(DecodeContext::ALT, -1, -1);
2063 0 : } else {
2064 0 : to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
2065 : }
2066 0 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2067 0 : break;
2068 : }
2069 : case DecodeContext::MAYBE_AND_V: {
2070 : // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
2071 : // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
2072 0 : if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
2073 0 : to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
2074 : // BKV_EXPR can contain more AND_V nodes
2075 0 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2076 0 : }
2077 0 : break;
2078 : }
2079 : case DecodeContext::SWAP: {
2080 0 : if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
2081 0 : ++in;
2082 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_S, Vector(std::move(constructed.back())));
2083 0 : break;
2084 : }
2085 : case DecodeContext::ALT: {
2086 0 : if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
2087 0 : ++in;
2088 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_A, Vector(std::move(constructed.back())));
2089 0 : break;
2090 : }
2091 : case DecodeContext::CHECK: {
2092 0 : if (constructed.empty()) return {};
2093 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_C, Vector(std::move(constructed.back())));
2094 0 : break;
2095 : }
2096 : case DecodeContext::DUP_IF: {
2097 0 : if (constructed.empty()) return {};
2098 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_D, Vector(std::move(constructed.back())));
2099 0 : break;
2100 : }
2101 : case DecodeContext::VERIFY: {
2102 0 : if (constructed.empty()) return {};
2103 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_V, Vector(std::move(constructed.back())));
2104 0 : break;
2105 : }
2106 : case DecodeContext::NON_ZERO: {
2107 0 : if (constructed.empty()) return {};
2108 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_J, Vector(std::move(constructed.back())));
2109 0 : break;
2110 : }
2111 : case DecodeContext::ZERO_NOTEQUAL: {
2112 0 : if (constructed.empty()) return {};
2113 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::WRAP_N, Vector(std::move(constructed.back())));
2114 0 : break;
2115 : }
2116 : case DecodeContext::AND_V: {
2117 0 : if (constructed.size() < 2) return {};
2118 0 : BuildBack(Fragment::AND_V, constructed, /*reverse=*/true);
2119 0 : break;
2120 : }
2121 : case DecodeContext::AND_B: {
2122 0 : if (constructed.size() < 2) return {};
2123 0 : BuildBack(Fragment::AND_B, constructed, /*reverse=*/true);
2124 0 : break;
2125 : }
2126 : case DecodeContext::OR_B: {
2127 0 : if (constructed.size() < 2) return {};
2128 0 : BuildBack(Fragment::OR_B, constructed, /*reverse=*/true);
2129 0 : break;
2130 : }
2131 : case DecodeContext::OR_C: {
2132 0 : if (constructed.size() < 2) return {};
2133 0 : BuildBack(Fragment::OR_C, constructed, /*reverse=*/true);
2134 0 : break;
2135 : }
2136 : case DecodeContext::OR_D: {
2137 0 : if (constructed.size() < 2) return {};
2138 0 : BuildBack(Fragment::OR_D, constructed, /*reverse=*/true);
2139 0 : break;
2140 : }
2141 : case DecodeContext::ANDOR: {
2142 0 : if (constructed.size() < 3) return {};
2143 0 : NodeRef<Key> left = std::move(constructed.back());
2144 0 : constructed.pop_back();
2145 0 : NodeRef<Key> right = std::move(constructed.back());
2146 0 : constructed.pop_back();
2147 0 : NodeRef<Key> mid = std::move(constructed.back());
2148 0 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
2149 : break;
2150 0 : }
2151 : case DecodeContext::THRESH_W: {
2152 0 : if (in >= last) return {};
2153 0 : if (in[0].first == OP_ADD) {
2154 0 : ++in;
2155 0 : to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
2156 0 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2157 0 : } else {
2158 0 : to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
2159 : // All children of thresh have type modifier d, so cannot be and_v
2160 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2161 : }
2162 0 : break;
2163 : }
2164 : case DecodeContext::THRESH_E: {
2165 0 : if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
2166 0 : std::vector<NodeRef<Key>> subs;
2167 0 : for (int i = 0; i < n; ++i) {
2168 0 : NodeRef<Key> sub = std::move(constructed.back());
2169 0 : constructed.pop_back();
2170 0 : subs.push_back(std::move(sub));
2171 0 : }
2172 0 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, Fragment::THRESH, std::move(subs), k));
2173 : break;
2174 0 : }
2175 : case DecodeContext::ENDIF: {
2176 0 : if (in >= last) return {};
2177 :
2178 : // could be andor or or_i
2179 0 : if (in[0].first == OP_ELSE) {
2180 0 : ++in;
2181 0 : to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
2182 0 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2183 0 : }
2184 : // could be j: or d: wrapper
2185 0 : else if (in[0].first == OP_IF) {
2186 0 : if (last - in >= 2 && in[1].first == OP_DUP) {
2187 0 : in += 2;
2188 0 : to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
2189 0 : } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
2190 0 : in += 3;
2191 0 : to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
2192 0 : }
2193 : else {
2194 0 : return {};
2195 : }
2196 : // could be or_c or or_d
2197 0 : } else if (in[0].first == OP_NOTIF) {
2198 0 : ++in;
2199 0 : to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
2200 0 : }
2201 : else {
2202 0 : return {};
2203 : }
2204 0 : break;
2205 : }
2206 : case DecodeContext::ENDIF_NOTIF: {
2207 0 : if (in >= last) return {};
2208 0 : if (in[0].first == OP_IFDUP) {
2209 0 : ++in;
2210 0 : to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
2211 0 : } else {
2212 0 : to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
2213 : }
2214 : // or_c and or_d both require X to have type modifier d so, can't contain and_v
2215 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2216 0 : break;
2217 : }
2218 : case DecodeContext::ENDIF_ELSE: {
2219 0 : if (in >= last) return {};
2220 0 : if (in[0].first == OP_IF) {
2221 0 : ++in;
2222 0 : BuildBack(Fragment::OR_I, constructed, /*reverse=*/true);
2223 0 : } else if (in[0].first == OP_NOTIF) {
2224 0 : ++in;
2225 0 : to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
2226 : // andor requires X to have type modifier d, so it can't be and_v
2227 0 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2228 0 : } else {
2229 0 : return {};
2230 : }
2231 0 : break;
2232 : }
2233 : }
2234 : }
2235 0 : if (constructed.size() != 1) return {};
2236 0 : NodeRef<Key> tl_node = std::move(constructed.front());
2237 0 : tl_node->DuplicateKeyCheck(ctx);
2238 : // Note that due to how ComputeType works (only assign the type to the node if the
2239 : // subs' types are valid) this would fail if any node of tree is badly typed.
2240 0 : if (!tl_node->IsValidTopLevel()) return {};
2241 0 : return tl_node;
2242 0 : }
2243 :
2244 : } // namespace internal
2245 :
2246 : template<typename Ctx>
2247 0 : inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
2248 0 : return internal::Parse<typename Ctx::Key>(str, ctx);
2249 : }
2250 :
2251 : template<typename Ctx>
2252 0 : inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
2253 : using namespace internal;
2254 : // A too large Script is necessarily invalid, don't bother parsing it.
2255 0 : if (script.size() > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
2256 0 : auto decomposed = DecomposeScript(script);
2257 0 : if (!decomposed) return {};
2258 0 : auto it = decomposed->begin();
2259 0 : auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
2260 0 : if (!ret) return {};
2261 0 : if (it != decomposed->end()) return {};
2262 0 : return ret;
2263 0 : }
2264 :
2265 : } // namespace miniscript
2266 :
2267 : #endif // BITCOIN_SCRIPT_MINISCRIPT_H
|