LCOV - code coverage report
Current view: top level - src - pubkey.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 5 242 2.1 %
Date: 2023-09-26 12:08:55 Functions: 3 24 12.5 %

          Line data    Source code
       1             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       2             : // Copyright (c) 2017 The Zcash developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #include <pubkey.h>
       7             : 
       8             : #include <hash.h>
       9             : #include <secp256k1.h>
      10             : #include <secp256k1_ellswift.h>
      11             : #include <secp256k1_extrakeys.h>
      12             : #include <secp256k1_recovery.h>
      13             : #include <secp256k1_schnorrsig.h>
      14             : #include <span.h>
      15             : #include <uint256.h>
      16             : 
      17             : #include <algorithm>
      18             : #include <cassert>
      19             : 
      20             : namespace {
      21             : 
      22             : struct Secp256k1SelfTester
      23             : {
      24           2 :     Secp256k1SelfTester() {
      25             :         /* Run libsecp256k1 self-test before using the secp256k1_context_static. */
      26           2 :         secp256k1_selftest();
      27           2 :     }
      28           2 : } SECP256K1_SELFTESTER;
      29             : 
      30             : } // namespace
      31             : 
      32             : /** This function is taken from the libsecp256k1 distribution and implements
      33             :  *  DER parsing for ECDSA signatures, while supporting an arbitrary subset of
      34             :  *  format violations.
      35             :  *
      36             :  *  Supported violations include negative integers, excessive padding, garbage
      37             :  *  at the end, and overly long length descriptors. This is safe to use in
      38             :  *  Bitcoin because since the activation of BIP66, signatures are verified to be
      39             :  *  strict DER before being passed to this module, and we know it supports all
      40             :  *  violations present in the blockchain before that point.
      41             :  */
      42           0 : int ecdsa_signature_parse_der_lax(secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
      43             :     size_t rpos, rlen, spos, slen;
      44           0 :     size_t pos = 0;
      45             :     size_t lenbyte;
      46           0 :     unsigned char tmpsig[64] = {0};
      47           0 :     int overflow = 0;
      48             : 
      49             :     /* Hack to initialize sig with a correctly-parsed but invalid signature. */
      50           0 :     secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
      51             : 
      52             :     /* Sequence tag byte */
      53           0 :     if (pos == inputlen || input[pos] != 0x30) {
      54           0 :         return 0;
      55             :     }
      56           0 :     pos++;
      57             : 
      58             :     /* Sequence length bytes */
      59           0 :     if (pos == inputlen) {
      60           0 :         return 0;
      61             :     }
      62           0 :     lenbyte = input[pos++];
      63           0 :     if (lenbyte & 0x80) {
      64           0 :         lenbyte -= 0x80;
      65           0 :         if (lenbyte > inputlen - pos) {
      66           0 :             return 0;
      67             :         }
      68           0 :         pos += lenbyte;
      69           0 :     }
      70             : 
      71             :     /* Integer tag byte for R */
      72           0 :     if (pos == inputlen || input[pos] != 0x02) {
      73           0 :         return 0;
      74             :     }
      75           0 :     pos++;
      76             : 
      77             :     /* Integer length for R */
      78           0 :     if (pos == inputlen) {
      79           0 :         return 0;
      80             :     }
      81           0 :     lenbyte = input[pos++];
      82           0 :     if (lenbyte & 0x80) {
      83           0 :         lenbyte -= 0x80;
      84           0 :         if (lenbyte > inputlen - pos) {
      85           0 :             return 0;
      86             :         }
      87           0 :         while (lenbyte > 0 && input[pos] == 0) {
      88           0 :             pos++;
      89           0 :             lenbyte--;
      90             :         }
      91             :         static_assert(sizeof(size_t) >= 4, "size_t too small");
      92           0 :         if (lenbyte >= 4) {
      93           0 :             return 0;
      94             :         }
      95           0 :         rlen = 0;
      96           0 :         while (lenbyte > 0) {
      97           0 :             rlen = (rlen << 8) + input[pos];
      98           0 :             pos++;
      99           0 :             lenbyte--;
     100             :         }
     101           0 :     } else {
     102           0 :         rlen = lenbyte;
     103             :     }
     104           0 :     if (rlen > inputlen - pos) {
     105           0 :         return 0;
     106             :     }
     107           0 :     rpos = pos;
     108           0 :     pos += rlen;
     109             : 
     110             :     /* Integer tag byte for S */
     111           0 :     if (pos == inputlen || input[pos] != 0x02) {
     112           0 :         return 0;
     113             :     }
     114           0 :     pos++;
     115             : 
     116             :     /* Integer length for S */
     117           0 :     if (pos == inputlen) {
     118           0 :         return 0;
     119             :     }
     120           0 :     lenbyte = input[pos++];
     121           0 :     if (lenbyte & 0x80) {
     122           0 :         lenbyte -= 0x80;
     123           0 :         if (lenbyte > inputlen - pos) {
     124           0 :             return 0;
     125             :         }
     126           0 :         while (lenbyte > 0 && input[pos] == 0) {
     127           0 :             pos++;
     128           0 :             lenbyte--;
     129             :         }
     130             :         static_assert(sizeof(size_t) >= 4, "size_t too small");
     131           0 :         if (lenbyte >= 4) {
     132           0 :             return 0;
     133             :         }
     134           0 :         slen = 0;
     135           0 :         while (lenbyte > 0) {
     136           0 :             slen = (slen << 8) + input[pos];
     137           0 :             pos++;
     138           0 :             lenbyte--;
     139             :         }
     140           0 :     } else {
     141           0 :         slen = lenbyte;
     142             :     }
     143           0 :     if (slen > inputlen - pos) {
     144           0 :         return 0;
     145             :     }
     146           0 :     spos = pos;
     147             : 
     148             :     /* Ignore leading zeroes in R */
     149           0 :     while (rlen > 0 && input[rpos] == 0) {
     150           0 :         rlen--;
     151           0 :         rpos++;
     152             :     }
     153             :     /* Copy R value */
     154           0 :     if (rlen > 32) {
     155           0 :         overflow = 1;
     156           0 :     } else {
     157           0 :         memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
     158             :     }
     159             : 
     160             :     /* Ignore leading zeroes in S */
     161           0 :     while (slen > 0 && input[spos] == 0) {
     162           0 :         slen--;
     163           0 :         spos++;
     164             :     }
     165             :     /* Copy S value */
     166           0 :     if (slen > 32) {
     167           0 :         overflow = 1;
     168           0 :     } else {
     169           0 :         memcpy(tmpsig + 64 - slen, input + spos, slen);
     170             :     }
     171             : 
     172           0 :     if (!overflow) {
     173           0 :         overflow = !secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
     174           0 :     }
     175           0 :     if (overflow) {
     176             :         /* Overwrite the result again with a correctly-parsed but invalid
     177             :            signature if parsing failed. */
     178           0 :         memset(tmpsig, 0, 64);
     179           0 :         secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig);
     180           0 :     }
     181           0 :     return 1;
     182           0 : }
     183             : 
     184           0 : XOnlyPubKey::XOnlyPubKey(Span<const unsigned char> bytes)
     185             : {
     186           0 :     assert(bytes.size() == 32);
     187           0 :     std::copy(bytes.begin(), bytes.end(), m_keydata.begin());
     188           0 : }
     189             : 
     190           0 : std::vector<CKeyID> XOnlyPubKey::GetKeyIDs() const
     191             : {
     192           0 :     std::vector<CKeyID> out;
     193             :     // For now, use the old full pubkey-based key derivation logic. As it is indexed by
     194             :     // Hash160(full pubkey), we need to return both a version prefixed with 0x02, and one
     195             :     // with 0x03.
     196           0 :     unsigned char b[33] = {0x02};
     197           0 :     std::copy(m_keydata.begin(), m_keydata.end(), b + 1);
     198           0 :     CPubKey fullpubkey;
     199           0 :     fullpubkey.Set(b, b + 33);
     200           0 :     out.push_back(fullpubkey.GetID());
     201           0 :     b[0] = 0x03;
     202           0 :     fullpubkey.Set(b, b + 33);
     203           0 :     out.push_back(fullpubkey.GetID());
     204           0 :     return out;
     205           0 : }
     206             : 
     207           0 : bool XOnlyPubKey::IsFullyValid() const
     208             : {
     209             :     secp256k1_xonly_pubkey pubkey;
     210           0 :     return secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data());
     211             : }
     212             : 
     213           0 : bool XOnlyPubKey::VerifySchnorr(const uint256& msg, Span<const unsigned char> sigbytes) const
     214             : {
     215           0 :     assert(sigbytes.size() == 64);
     216             :     secp256k1_xonly_pubkey pubkey;
     217           0 :     if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data())) return false;
     218           0 :     return secp256k1_schnorrsig_verify(secp256k1_context_static, sigbytes.data(), msg.begin(), 32, &pubkey);
     219           0 : }
     220             : 
     221           2 : static const HashWriter HASHER_TAPTWEAK{TaggedHash("TapTweak")};
     222             : 
     223           0 : uint256 XOnlyPubKey::ComputeTapTweakHash(const uint256* merkle_root) const
     224             : {
     225           0 :     if (merkle_root == nullptr) {
     226             :         // We have no scripts. The actual tweak does not matter, but follow BIP341 here to
     227             :         // allow for reproducible tweaking.
     228           0 :         return (HashWriter{HASHER_TAPTWEAK} << m_keydata).GetSHA256();
     229             :     } else {
     230           0 :         return (HashWriter{HASHER_TAPTWEAK} << m_keydata << *merkle_root).GetSHA256();
     231             :     }
     232           0 : }
     233             : 
     234           0 : bool XOnlyPubKey::CheckTapTweak(const XOnlyPubKey& internal, const uint256& merkle_root, bool parity) const
     235             : {
     236             :     secp256k1_xonly_pubkey internal_key;
     237           0 :     if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &internal_key, internal.data())) return false;
     238           0 :     uint256 tweak = internal.ComputeTapTweakHash(&merkle_root);
     239           0 :     return secp256k1_xonly_pubkey_tweak_add_check(secp256k1_context_static, m_keydata.begin(), parity, &internal_key, tweak.begin());
     240           0 : }
     241             : 
     242           0 : std::optional<std::pair<XOnlyPubKey, bool>> XOnlyPubKey::CreateTapTweak(const uint256* merkle_root) const
     243             : {
     244             :     secp256k1_xonly_pubkey base_point;
     245           0 :     if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &base_point, data())) return std::nullopt;
     246             :     secp256k1_pubkey out;
     247           0 :     uint256 tweak = ComputeTapTweakHash(merkle_root);
     248           0 :     if (!secp256k1_xonly_pubkey_tweak_add(secp256k1_context_static, &out, &base_point, tweak.data())) return std::nullopt;
     249           0 :     int parity = -1;
     250           0 :     std::pair<XOnlyPubKey, bool> ret;
     251             :     secp256k1_xonly_pubkey out_xonly;
     252           0 :     if (!secp256k1_xonly_pubkey_from_pubkey(secp256k1_context_static, &out_xonly, &parity, &out)) return std::nullopt;
     253           0 :     secp256k1_xonly_pubkey_serialize(secp256k1_context_static, ret.first.begin(), &out_xonly);
     254           0 :     assert(parity == 0 || parity == 1);
     255           0 :     ret.second = parity;
     256           0 :     return ret;
     257           0 : }
     258             : 
     259             : 
     260           0 : bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
     261           0 :     if (!IsValid())
     262           0 :         return false;
     263             :     secp256k1_pubkey pubkey;
     264             :     secp256k1_ecdsa_signature sig;
     265           0 :     if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
     266           0 :         return false;
     267             :     }
     268           0 :     if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) {
     269           0 :         return false;
     270             :     }
     271             :     /* libsecp256k1's ECDSA verification requires lower-S signatures, which have
     272             :      * not historically been enforced in Bitcoin, so normalize them first. */
     273           0 :     secp256k1_ecdsa_signature_normalize(secp256k1_context_static, &sig, &sig);
     274           0 :     return secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pubkey);
     275           0 : }
     276             : 
     277           0 : bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
     278           0 :     if (vchSig.size() != COMPACT_SIGNATURE_SIZE)
     279           0 :         return false;
     280           0 :     int recid = (vchSig[0] - 27) & 3;
     281           0 :     bool fComp = ((vchSig[0] - 27) & 4) != 0;
     282             :     secp256k1_pubkey pubkey;
     283             :     secp256k1_ecdsa_recoverable_signature sig;
     284           0 :     if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_static, &sig, &vchSig[1], recid)) {
     285           0 :         return false;
     286             :     }
     287           0 :     if (!secp256k1_ecdsa_recover(secp256k1_context_static, &pubkey, &sig, hash.begin())) {
     288           0 :         return false;
     289             :     }
     290             :     unsigned char pub[SIZE];
     291           0 :     size_t publen = SIZE;
     292           0 :     secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
     293           0 :     Set(pub, pub + publen);
     294           0 :     return true;
     295           0 : }
     296             : 
     297           0 : bool CPubKey::IsFullyValid() const {
     298           0 :     if (!IsValid())
     299           0 :         return false;
     300             :     secp256k1_pubkey pubkey;
     301           0 :     return secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size());
     302           0 : }
     303             : 
     304           0 : bool CPubKey::Decompress() {
     305           0 :     if (!IsValid())
     306           0 :         return false;
     307             :     secp256k1_pubkey pubkey;
     308           0 :     if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
     309           0 :         return false;
     310             :     }
     311             :     unsigned char pub[SIZE];
     312           0 :     size_t publen = SIZE;
     313           0 :     secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
     314           0 :     Set(pub, pub + publen);
     315           0 :     return true;
     316           0 : }
     317             : 
     318           0 : bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
     319           0 :     assert(IsValid());
     320           0 :     assert((nChild >> 31) == 0);
     321           0 :     assert(size() == COMPRESSED_SIZE);
     322             :     unsigned char out[64];
     323           0 :     BIP32Hash(cc, nChild, *begin(), begin()+1, out);
     324           0 :     memcpy(ccChild.begin(), out+32, 32);
     325             :     secp256k1_pubkey pubkey;
     326           0 :     if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) {
     327           0 :         return false;
     328             :     }
     329           0 :     if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_static, &pubkey, out)) {
     330           0 :         return false;
     331             :     }
     332             :     unsigned char pub[COMPRESSED_SIZE];
     333           0 :     size_t publen = COMPRESSED_SIZE;
     334           0 :     secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED);
     335           0 :     pubkeyChild.Set(pub, pub + publen);
     336           0 :     return true;
     337           0 : }
     338             : 
     339           0 : EllSwiftPubKey::EllSwiftPubKey(Span<const std::byte> ellswift) noexcept
     340             : {
     341           0 :     assert(ellswift.size() == SIZE);
     342           0 :     std::copy(ellswift.begin(), ellswift.end(), m_pubkey.begin());
     343           0 : }
     344             : 
     345           0 : CPubKey EllSwiftPubKey::Decode() const
     346             : {
     347             :     secp256k1_pubkey pubkey;
     348           0 :     secp256k1_ellswift_decode(secp256k1_context_static, &pubkey, UCharCast(m_pubkey.data()));
     349             : 
     350           0 :     size_t sz = CPubKey::COMPRESSED_SIZE;
     351             :     std::array<uint8_t, CPubKey::COMPRESSED_SIZE> vch_bytes;
     352             : 
     353           0 :     secp256k1_ec_pubkey_serialize(secp256k1_context_static, vch_bytes.data(), &sz, &pubkey, SECP256K1_EC_COMPRESSED);
     354           0 :     assert(sz == vch_bytes.size());
     355             : 
     356           0 :     return CPubKey{vch_bytes.begin(), vch_bytes.end()};
     357             : }
     358             : 
     359           0 : void CExtPubKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
     360           0 :     code[0] = nDepth;
     361           0 :     memcpy(code+1, vchFingerprint, 4);
     362           0 :     WriteBE32(code+5, nChild);
     363           0 :     memcpy(code+9, chaincode.begin(), 32);
     364           0 :     assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
     365           0 :     memcpy(code+41, pubkey.begin(), CPubKey::COMPRESSED_SIZE);
     366           0 : }
     367             : 
     368           0 : void CExtPubKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
     369           0 :     nDepth = code[0];
     370           0 :     memcpy(vchFingerprint, code+1, 4);
     371           0 :     nChild = ReadBE32(code+5);
     372           0 :     memcpy(chaincode.begin(), code+9, 32);
     373           0 :     pubkey.Set(code+41, code+BIP32_EXTKEY_SIZE);
     374           0 :     if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || !pubkey.IsFullyValid()) pubkey = CPubKey();
     375           0 : }
     376             : 
     377           0 : void CExtPubKey::EncodeWithVersion(unsigned char code[BIP32_EXTKEY_WITH_VERSION_SIZE]) const
     378             : {
     379           0 :     memcpy(code, version, 4);
     380           0 :     Encode(&code[4]);
     381           0 : }
     382             : 
     383           0 : void CExtPubKey::DecodeWithVersion(const unsigned char code[BIP32_EXTKEY_WITH_VERSION_SIZE])
     384             : {
     385           0 :     memcpy(version, code, 4);
     386           0 :     Decode(&code[4]);
     387           0 : }
     388             : 
     389           0 : bool CExtPubKey::Derive(CExtPubKey &out, unsigned int _nChild) const {
     390           0 :     if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
     391           0 :     out.nDepth = nDepth + 1;
     392           0 :     CKeyID id = pubkey.GetID();
     393           0 :     memcpy(out.vchFingerprint, &id, 4);
     394           0 :     out.nChild = _nChild;
     395           0 :     return pubkey.Derive(out.pubkey, out.chaincode, _nChild, chaincode);
     396           0 : }
     397             : 
     398           0 : /* static */ bool CPubKey::CheckLowS(const std::vector<unsigned char>& vchSig) {
     399             :     secp256k1_ecdsa_signature sig;
     400           0 :     if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) {
     401           0 :         return false;
     402             :     }
     403           0 :     return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_static, nullptr, &sig));
     404           0 : }

Generated by: LCOV version 1.14