LCOV - code coverage report
Current view: top level - src - net.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 116 2233 5.2 %
Date: 2023-09-26 12:08:55 Functions: 21 173 12.1 %

          Line data    Source code
       1             : // Copyright (c) 2009-2010 Satoshi Nakamoto
       2             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #if defined(HAVE_CONFIG_H)
       7             : #include <config/bitcoin-config.h>
       8             : #endif
       9             : 
      10             : #include <net.h>
      11             : 
      12             : #include <addrdb.h>
      13             : #include <addrman.h>
      14             : #include <banman.h>
      15             : #include <clientversion.h>
      16             : #include <common/args.h>
      17           2 : #include <compat/compat.h>
      18           2 : #include <consensus/consensus.h>
      19             : #include <crypto/sha256.h>
      20             : #include <i2p.h>
      21             : #include <logging.h>
      22             : #include <memusage.h>
      23             : #include <net_permissions.h>
      24             : #include <netaddress.h>
      25             : #include <netbase.h>
      26             : #include <node/eviction.h>
      27             : #include <node/interface_ui.h>
      28             : #include <protocol.h>
      29             : #include <random.h>
      30             : #include <scheduler.h>
      31             : #include <util/fs.h>
      32             : #include <util/sock.h>
      33             : #include <util/strencodings.h>
      34             : #include <util/thread.h>
      35             : #include <util/threadinterrupt.h>
      36             : #include <util/trace.h>
      37             : #include <util/translation.h>
      38             : #include <util/vector.h>
      39             : 
      40             : #ifdef WIN32
      41             : #include <string.h>
      42             : #endif
      43             : 
      44             : #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
      45             : #include <ifaddrs.h>
      46             : #endif
      47             : 
      48             : #include <algorithm>
      49             : #include <array>
      50             : #include <cstdint>
      51             : #include <functional>
      52             : #include <optional>
      53             : #include <unordered_map>
      54             : 
      55             : #include <math.h>
      56             : 
      57             : /** Maximum number of block-relay-only anchor connections */
      58             : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
      59             : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
      60             : /** Anchor IP address database file name */
      61             : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
      62             : 
      63             : // How often to dump addresses to peers.dat
      64             : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
      65             : 
      66             : /** Number of DNS seeds to query when the number of connections is low. */
      67             : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
      68             : 
      69             : /** How long to delay before querying DNS seeds
      70             :  *
      71             :  * If we have more than THRESHOLD entries in addrman, then it's likely
      72             :  * that we got those addresses from having previously connected to the P2P
      73             :  * network, and that we'll be able to successfully reconnect to the P2P
      74           2 :  * network via contacting one of them. So if that's the case, spend a
      75             :  * little longer trying to connect to known peers before querying the
      76             :  * DNS seeds.
      77             :  */
      78             : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
      79             : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
      80             : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
      81             : 
      82             : /** The default timeframe for -maxuploadtarget. 1 day. */
      83           2 : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
      84             : 
      85             : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
      86             : static constexpr auto FEELER_SLEEP_WINDOW{1s};
      87             : 
      88             : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
      89             : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
      90             : 
      91             : /** Used to pass flags to the Bind() function */
      92             : enum BindFlags {
      93             :     BF_NONE         = 0,
      94             :     BF_REPORT_ERROR = (1U << 0),
      95             :     /**
      96             :      * Do not call AddLocal() for our special addresses, e.g., for incoming
      97             :      * Tor connections, to prevent gossiping them over the network.
      98             :      */
      99             :     BF_DONT_ADVERTISE = (1U << 1),
     100             : };
     101             : 
     102             : // The set of sockets cannot be modified while waiting
     103             : // The sleep time needs to be small to avoid new sockets stalling
     104             : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
     105             : 
     106           2 : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
     107             : 
     108             : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
     109             : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
     110             : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
     111             : //
     112             : // Global state variables
     113             : //
     114             : bool fDiscover = true;
     115             : bool fListen = true;
     116             : GlobalMutex g_maplocalhost_mutex;
     117           2 : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
     118             : static bool vfLimited[NET_MAX] GUARDED_BY(g_maplocalhost_mutex) = {};
     119           2 : std::string strSubVersion;
     120             : 
     121           0 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
     122             : {
     123             :     // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
     124             :     // "small string" optimization area (which stores data inside the object itself, up to some
     125             :     // size; 15 bytes in modern libstdc++).
     126           0 :     return sizeof(*this) + memusage::DynamicUsage(data);
     127             : }
     128             : 
     129           0 : void CConnman::AddAddrFetch(const std::string& strDest)
     130             : {
     131           0 :     LOCK(m_addr_fetches_mutex);
     132           0 :     m_addr_fetches.push_back(strDest);
     133           0 : }
     134             : 
     135           0 : uint16_t GetListenPort()
     136             : {
     137             :     // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
     138           0 :     for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
     139           0 :         constexpr uint16_t dummy_port = 0;
     140             : 
     141           0 :         const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
     142           0 :         if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
     143           0 :     }
     144             : 
     145             :     // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
     146             :     // (-whitebind= is required to have ":port").
     147           0 :     for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
     148           0 :         NetWhitebindPermissions whitebind;
     149           0 :         bilingual_str error;
     150           0 :         if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
     151           0 :             if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
     152           0 :                 return whitebind.m_service.GetPort();
     153             :             }
     154           0 :         }
     155           0 :     }
     156             : 
     157             :     // Otherwise, if -port= is provided, use that. Otherwise use the default port.
     158           0 :     return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
     159           0 : }
     160             : 
     161             : // Determine the "best" local address for a particular peer.
     162           0 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
     163             : {
     164           0 :     if (!fListen) return std::nullopt;
     165             : 
     166           0 :     std::optional<CService> addr;
     167           0 :     int nBestScore = -1;
     168           0 :     int nBestReachability = -1;
     169             :     {
     170           0 :         LOCK(g_maplocalhost_mutex);
     171           0 :         for (const auto& [local_addr, local_service_info] : mapLocalHost) {
     172             :             // For privacy reasons, don't advertise our privacy-network address
     173             :             // to other networks and don't advertise our other-network address
     174             :             // to privacy networks.
     175           0 :             if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
     176           0 :                 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
     177           0 :                 continue;
     178             :             }
     179           0 :             const int nScore{local_service_info.nScore};
     180           0 :             const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
     181           0 :             if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
     182           0 :                 addr.emplace(CService{local_addr, local_service_info.nPort});
     183           0 :                 nBestReachability = nReachability;
     184           0 :                 nBestScore = nScore;
     185           0 :             }
     186             :         }
     187           0 :     }
     188           0 :     return addr;
     189           0 : }
     190             : 
     191             : //! Convert the serialized seeds into usable address objects.
     192           0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
     193             : {
     194             :     // It'll only connect to one or two seed nodes because once it connects,
     195             :     // it'll get a pile of addresses with newer timestamps.
     196             :     // Seed nodes are given a random 'last seen time' of between one and two
     197             :     // weeks ago.
     198           0 :     const auto one_week{7 * 24h};
     199           0 :     std::vector<CAddress> vSeedsOut;
     200           0 :     FastRandomContext rng;
     201           0 :     DataStream underlying_stream{vSeedsIn};
     202           0 :     ParamsStream s{CAddress::V2_NETWORK, underlying_stream};
     203           0 :     while (!s.eof()) {
     204           0 :         CService endpoint;
     205           0 :         s >> endpoint;
     206           0 :         CAddress addr{endpoint, GetDesirableServiceFlags(NODE_NONE)};
     207           0 :         addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
     208           0 :         LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
     209           0 :         vSeedsOut.push_back(addr);
     210           0 :     }
     211           0 :     return vSeedsOut;
     212           0 : }
     213             : 
     214             : // Determine the "best" local address for a particular peer.
     215             : // If none, return the unroutable 0.0.0.0 but filled in with
     216             : // the normal parameters, since the IP may be changed to a useful
     217             : // one by discovery.
     218           0 : CService GetLocalAddress(const CNode& peer)
     219             : {
     220           0 :     return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
     221           0 : }
     222             : 
     223           0 : static int GetnScore(const CService& addr)
     224             : {
     225           0 :     LOCK(g_maplocalhost_mutex);
     226           0 :     const auto it = mapLocalHost.find(addr);
     227           0 :     return (it != mapLocalHost.end()) ? it->second.nScore : 0;
     228           0 : }
     229             : 
     230             : // Is our peer's addrLocal potentially useful as an external IP source?
     231           0 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
     232             : {
     233           0 :     CService addrLocal = pnode->GetAddrLocal();
     234           0 :     return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
     235           0 :            IsReachable(addrLocal.GetNetwork());
     236           0 : }
     237             : 
     238           0 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
     239             : {
     240           0 :     CService addrLocal{GetLocalAddress(node)};
     241           0 :     if (gArgs.GetBoolArg("-addrmantest", false)) {
     242             :         // use IPv4 loopback during addrmantest
     243           0 :         addrLocal = CService(LookupNumeric("127.0.0.1", GetListenPort()));
     244           0 :     }
     245             :     // If discovery is enabled, sometimes give our peer the address it
     246             :     // tells us that it sees us as in case it has a better idea of our
     247             :     // address than we do.
     248           0 :     FastRandomContext rng;
     249           0 :     if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
     250           0 :          rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
     251             :     {
     252           0 :         if (node.IsInboundConn()) {
     253             :             // For inbound connections, assume both the address and the port
     254             :             // as seen from the peer.
     255           0 :             addrLocal = CService{node.GetAddrLocal()};
     256           0 :         } else {
     257             :             // For outbound connections, assume just the address as seen from
     258             :             // the peer and leave the port in `addrLocal` as returned by
     259             :             // `GetLocalAddress()` above. The peer has no way to observe our
     260             :             // listening port when we have initiated the connection.
     261           0 :             addrLocal.SetIP(node.GetAddrLocal());
     262             :         }
     263           0 :     }
     264           0 :     if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
     265             :     {
     266           0 :         LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
     267           0 :         return addrLocal;
     268             :     }
     269             :     // Address is unroutable. Don't advertise.
     270           0 :     return std::nullopt;
     271           0 : }
     272             : 
     273             : /**
     274             :  * If an IPv6 address belongs to the address range used by the CJDNS network and
     275             :  * the CJDNS network is reachable (-cjdnsreachable config is set), then change
     276             :  * the type from NET_IPV6 to NET_CJDNS.
     277             :  * @param[in] service Address to potentially convert.
     278             :  * @return a copy of `service` either unmodified or changed to CJDNS.
     279             :  */
     280           0 : CService MaybeFlipIPv6toCJDNS(const CService& service)
     281             : {
     282           0 :     CService ret{service};
     283           0 :     if (ret.IsIPv6() && ret.HasCJDNSPrefix() && IsReachable(NET_CJDNS)) {
     284           0 :         ret.m_net = NET_CJDNS;
     285           0 :     }
     286           0 :     return ret;
     287           0 : }
     288             : 
     289             : // learn a new local address
     290           0 : bool AddLocal(const CService& addr_, int nScore)
     291             : {
     292           0 :     CService addr{MaybeFlipIPv6toCJDNS(addr_)};
     293             : 
     294           0 :     if (!addr.IsRoutable())
     295           0 :         return false;
     296             : 
     297           0 :     if (!fDiscover && nScore < LOCAL_MANUAL)
     298           0 :         return false;
     299             : 
     300           0 :     if (!IsReachable(addr))
     301           0 :         return false;
     302             : 
     303           0 :     LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
     304             : 
     305             :     {
     306           0 :         LOCK(g_maplocalhost_mutex);
     307           0 :         const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
     308           0 :         LocalServiceInfo &info = it->second;
     309           0 :         if (is_newly_added || nScore >= info.nScore) {
     310           0 :             info.nScore = nScore + (is_newly_added ? 0 : 1);
     311           0 :             info.nPort = addr.GetPort();
     312           0 :         }
     313           0 :     }
     314             : 
     315           0 :     return true;
     316           0 : }
     317             : 
     318           0 : bool AddLocal(const CNetAddr &addr, int nScore)
     319             : {
     320           0 :     return AddLocal(CService(addr, GetListenPort()), nScore);
     321           0 : }
     322             : 
     323           0 : void RemoveLocal(const CService& addr)
     324             : {
     325           0 :     LOCK(g_maplocalhost_mutex);
     326           0 :     LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
     327           0 :     mapLocalHost.erase(addr);
     328           0 : }
     329             : 
     330           0 : void SetReachable(enum Network net, bool reachable)
     331             : {
     332           0 :     if (net == NET_UNROUTABLE || net == NET_INTERNAL)
     333           0 :         return;
     334           0 :     LOCK(g_maplocalhost_mutex);
     335           0 :     vfLimited[net] = !reachable;
     336           0 : }
     337             : 
     338           0 : bool IsReachable(enum Network net)
     339             : {
     340           0 :     LOCK(g_maplocalhost_mutex);
     341           0 :     return !vfLimited[net];
     342           0 : }
     343             : 
     344           0 : bool IsReachable(const CNetAddr &addr)
     345             : {
     346           0 :     return IsReachable(addr.GetNetwork());
     347             : }
     348             : 
     349             : /** vote for a local address */
     350           0 : bool SeenLocal(const CService& addr)
     351             : {
     352           0 :     LOCK(g_maplocalhost_mutex);
     353           0 :     const auto it = mapLocalHost.find(addr);
     354           0 :     if (it == mapLocalHost.end()) return false;
     355           0 :     ++it->second.nScore;
     356           0 :     return true;
     357           0 : }
     358             : 
     359             : 
     360             : /** check whether a given address is potentially local */
     361           0 : bool IsLocal(const CService& addr)
     362             : {
     363           0 :     LOCK(g_maplocalhost_mutex);
     364           0 :     return mapLocalHost.count(addr) > 0;
     365           0 : }
     366             : 
     367           0 : CNode* CConnman::FindNode(const CNetAddr& ip)
     368             : {
     369           0 :     LOCK(m_nodes_mutex);
     370           0 :     for (CNode* pnode : m_nodes) {
     371           0 :       if (static_cast<CNetAddr>(pnode->addr) == ip) {
     372           0 :             return pnode;
     373             :         }
     374             :     }
     375           0 :     return nullptr;
     376           0 : }
     377             : 
     378           0 : CNode* CConnman::FindNode(const CSubNet& subNet)
     379             : {
     380           0 :     LOCK(m_nodes_mutex);
     381           0 :     for (CNode* pnode : m_nodes) {
     382           0 :         if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
     383           0 :             return pnode;
     384             :         }
     385             :     }
     386           0 :     return nullptr;
     387           0 : }
     388             : 
     389           0 : CNode* CConnman::FindNode(const std::string& addrName)
     390             : {
     391           0 :     LOCK(m_nodes_mutex);
     392           0 :     for (CNode* pnode : m_nodes) {
     393           0 :         if (pnode->m_addr_name == addrName) {
     394           0 :             return pnode;
     395             :         }
     396             :     }
     397           0 :     return nullptr;
     398           0 : }
     399             : 
     400           0 : CNode* CConnman::FindNode(const CService& addr)
     401             : {
     402           0 :     LOCK(m_nodes_mutex);
     403           0 :     for (CNode* pnode : m_nodes) {
     404           0 :         if (static_cast<CService>(pnode->addr) == addr) {
     405           0 :             return pnode;
     406             :         }
     407           0 :     }
     408           0 :     return nullptr;
     409           0 : }
     410             : 
     411           0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
     412             : {
     413           0 :     return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
     414           0 : }
     415             : 
     416           0 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
     417             : {
     418           0 :     LOCK(m_nodes_mutex);
     419           0 :     for (const CNode* pnode : m_nodes) {
     420           0 :         if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
     421           0 :             return false;
     422             :     }
     423           0 :     return true;
     424           0 : }
     425             : 
     426             : /** Get the bind address for a socket as CAddress */
     427           0 : static CAddress GetBindAddress(const Sock& sock)
     428             : {
     429           0 :     CAddress addr_bind;
     430             :     struct sockaddr_storage sockaddr_bind;
     431           0 :     socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
     432           0 :     if (sock.Get() != INVALID_SOCKET) {
     433           0 :         if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
     434           0 :             addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
     435           0 :         } else {
     436           0 :             LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
     437             :         }
     438           0 :     }
     439           0 :     return addr_bind;
     440           0 : }
     441             : 
     442           0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type)
     443             : {
     444           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
     445           0 :     assert(conn_type != ConnectionType::INBOUND);
     446             : 
     447           0 :     if (pszDest == nullptr) {
     448           0 :         if (IsLocal(addrConnect))
     449           0 :             return nullptr;
     450             : 
     451             :         // Look for an existing connection
     452           0 :         CNode* pnode = FindNode(static_cast<CService>(addrConnect));
     453           0 :         if (pnode)
     454             :         {
     455           0 :             LogPrintf("Failed to open new connection, already connected\n");
     456           0 :             return nullptr;
     457             :         }
     458           0 :     }
     459             : 
     460           0 :     LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying connection %s lastseen=%.1fhrs\n",
     461             :         pszDest ? pszDest : addrConnect.ToStringAddrPort(),
     462             :         Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
     463             : 
     464             :     // Resolve
     465           0 :     const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
     466           0 :                                                      m_params.GetDefaultPort()};
     467           0 :     if (pszDest) {
     468           0 :         const std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
     469           0 :         if (!resolved.empty()) {
     470           0 :             const CService& rnd{resolved[GetRand(resolved.size())]};
     471           0 :             addrConnect = CAddress{MaybeFlipIPv6toCJDNS(rnd), NODE_NONE};
     472           0 :             if (!addrConnect.IsValid()) {
     473           0 :                 LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
     474           0 :                 return nullptr;
     475             :             }
     476             :             // It is possible that we already have a connection to the IP/port pszDest resolved to.
     477             :             // In that case, drop the connection that was just created.
     478           0 :             LOCK(m_nodes_mutex);
     479           0 :             CNode* pnode = FindNode(static_cast<CService>(addrConnect));
     480           0 :             if (pnode) {
     481           0 :                 LogPrintf("Failed to open new connection, already connected\n");
     482           0 :                 return nullptr;
     483             :             }
     484           0 :         }
     485           0 :     }
     486             : 
     487             :     // Connect
     488           0 :     bool connected = false;
     489           0 :     std::unique_ptr<Sock> sock;
     490           0 :     Proxy proxy;
     491           0 :     CAddress addr_bind;
     492           0 :     assert(!addr_bind.IsValid());
     493           0 :     std::unique_ptr<i2p::sam::Session> i2p_transient_session;
     494             : 
     495           0 :     if (addrConnect.IsValid()) {
     496           0 :         const bool use_proxy{GetProxy(addrConnect.GetNetwork(), proxy)};
     497           0 :         bool proxyConnectionFailed = false;
     498             : 
     499           0 :         if (addrConnect.IsI2P() && use_proxy) {
     500           0 :             i2p::Connection conn;
     501             : 
     502           0 :             if (m_i2p_sam_session) {
     503           0 :                 connected = m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed);
     504           0 :             } else {
     505             :                 {
     506           0 :                     LOCK(m_unused_i2p_sessions_mutex);
     507           0 :                     if (m_unused_i2p_sessions.empty()) {
     508           0 :                         i2p_transient_session =
     509           0 :                             std::make_unique<i2p::sam::Session>(proxy.proxy, &interruptNet);
     510           0 :                     } else {
     511           0 :                         i2p_transient_session.swap(m_unused_i2p_sessions.front());
     512           0 :                         m_unused_i2p_sessions.pop();
     513             :                     }
     514           0 :                 }
     515           0 :                 connected = i2p_transient_session->Connect(addrConnect, conn, proxyConnectionFailed);
     516           0 :                 if (!connected) {
     517           0 :                     LOCK(m_unused_i2p_sessions_mutex);
     518           0 :                     if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
     519           0 :                         m_unused_i2p_sessions.emplace(i2p_transient_session.release());
     520           0 :                     }
     521           0 :                 }
     522             :             }
     523             : 
     524           0 :             if (connected) {
     525           0 :                 sock = std::move(conn.sock);
     526           0 :                 addr_bind = CAddress{conn.me, NODE_NONE};
     527           0 :             }
     528           0 :         } else if (use_proxy) {
     529           0 :             sock = CreateSock(proxy.proxy);
     530           0 :             if (!sock) {
     531           0 :                 return nullptr;
     532             :             }
     533           0 :             connected = ConnectThroughProxy(proxy, addrConnect.ToStringAddr(), addrConnect.GetPort(),
     534           0 :                                             *sock, nConnectTimeout, proxyConnectionFailed);
     535           0 :         } else {
     536             :             // no proxy needed (none set for target network)
     537           0 :             sock = CreateSock(addrConnect);
     538           0 :             if (!sock) {
     539           0 :                 return nullptr;
     540             :             }
     541           0 :             connected = ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout,
     542           0 :                                               conn_type == ConnectionType::MANUAL);
     543             :         }
     544           0 :         if (!proxyConnectionFailed) {
     545             :             // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
     546             :             // the proxy, mark this as an attempt.
     547           0 :             addrman.Attempt(addrConnect, fCountFailure);
     548           0 :         }
     549           0 :     } else if (pszDest && GetNameProxy(proxy)) {
     550           0 :         sock = CreateSock(proxy.proxy);
     551           0 :         if (!sock) {
     552           0 :             return nullptr;
     553             :         }
     554           0 :         std::string host;
     555           0 :         uint16_t port{default_port};
     556           0 :         SplitHostPort(std::string(pszDest), port, host);
     557             :         bool proxyConnectionFailed;
     558           0 :         connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout,
     559             :                                         proxyConnectionFailed);
     560           0 :     }
     561           0 :     if (!connected) {
     562           0 :         return nullptr;
     563             :     }
     564             : 
     565             :     // Add node
     566           0 :     NodeId id = GetNewNodeId();
     567           0 :     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
     568           0 :     if (!addr_bind.IsValid()) {
     569           0 :         addr_bind = GetBindAddress(*sock);
     570           0 :     }
     571           0 :     CNode* pnode = new CNode(id,
     572           0 :                              std::move(sock),
     573             :                              addrConnect,
     574           0 :                              CalculateKeyedNetGroup(addrConnect),
     575           0 :                              nonce,
     576             :                              addr_bind,
     577           0 :                              pszDest ? pszDest : "",
     578           0 :                              conn_type,
     579             :                              /*inbound_onion=*/false,
     580           0 :                              CNodeOptions{
     581           0 :                                  .i2p_sam_session = std::move(i2p_transient_session),
     582           0 :                                  .recv_flood_size = nReceiveFloodSize,
     583           0 :                              });
     584           0 :     pnode->AddRef();
     585             : 
     586             :     // We're making a new connection, harvest entropy from the time (and our peer count)
     587           0 :     RandAddEvent((uint32_t)id);
     588             : 
     589           0 :     return pnode;
     590           0 : }
     591             : 
     592           0 : void CNode::CloseSocketDisconnect()
     593             : {
     594           0 :     fDisconnect = true;
     595           0 :     LOCK(m_sock_mutex);
     596           0 :     if (m_sock) {
     597           0 :         LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
     598           0 :         m_sock.reset();
     599           0 :     }
     600           0 :     m_i2p_sam_session.reset();
     601           0 : }
     602             : 
     603           0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
     604           0 :     for (const auto& subnet : vWhitelistedRange) {
     605           0 :         if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
     606             :     }
     607           0 : }
     608             : 
     609           0 : CService CNode::GetAddrLocal() const
     610             : {
     611           0 :     AssertLockNotHeld(m_addr_local_mutex);
     612           0 :     LOCK(m_addr_local_mutex);
     613           0 :     return addrLocal;
     614           0 : }
     615             : 
     616           0 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
     617           0 :     AssertLockNotHeld(m_addr_local_mutex);
     618           0 :     LOCK(m_addr_local_mutex);
     619           0 :     if (addrLocal.IsValid()) {
     620           0 :         error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToStringAddrPort(), addrLocalIn.ToStringAddrPort());
     621           0 :     } else {
     622           0 :         addrLocal = addrLocalIn;
     623             :     }
     624           0 : }
     625             : 
     626           0 : Network CNode::ConnectedThroughNetwork() const
     627             : {
     628           0 :     return m_inbound_onion ? NET_ONION : addr.GetNetClass();
     629             : }
     630             : 
     631           0 : bool CNode::IsConnectedThroughPrivacyNet() const
     632             : {
     633           0 :     return m_inbound_onion || addr.IsPrivacyNet();
     634             : }
     635             : 
     636             : #undef X
     637             : #define X(name) stats.name = name
     638           0 : void CNode::CopyStats(CNodeStats& stats)
     639             : {
     640           0 :     stats.nodeid = this->GetId();
     641           0 :     X(addr);
     642           0 :     X(addrBind);
     643           0 :     stats.m_network = ConnectedThroughNetwork();
     644           0 :     X(m_last_send);
     645           0 :     X(m_last_recv);
     646           0 :     X(m_last_tx_time);
     647           0 :     X(m_last_block_time);
     648           0 :     X(m_connected);
     649           0 :     X(nTimeOffset);
     650           0 :     X(m_addr_name);
     651           0 :     X(nVersion);
     652             :     {
     653           0 :         LOCK(m_subver_mutex);
     654           0 :         X(cleanSubVer);
     655           0 :     }
     656           0 :     stats.fInbound = IsInboundConn();
     657           0 :     X(m_bip152_highbandwidth_to);
     658           0 :     X(m_bip152_highbandwidth_from);
     659             :     {
     660           0 :         LOCK(cs_vSend);
     661           0 :         X(mapSendBytesPerMsgType);
     662           0 :         X(nSendBytes);
     663           0 :     }
     664             :     {
     665           0 :         LOCK(cs_vRecv);
     666           0 :         X(mapRecvBytesPerMsgType);
     667           0 :         X(nRecvBytes);
     668           0 :     }
     669           0 :     X(m_permission_flags);
     670             : 
     671           0 :     X(m_last_ping_time);
     672           0 :     X(m_min_ping_time);
     673             : 
     674             :     // Leave string empty if addrLocal invalid (not filled in yet)
     675           0 :     CService addrLocalUnlocked = GetAddrLocal();
     676           0 :     stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
     677             : 
     678           0 :     X(m_conn_type);
     679           0 : }
     680             : #undef X
     681             : 
     682           0 : bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
     683             : {
     684           0 :     complete = false;
     685           0 :     const auto time = GetTime<std::chrono::microseconds>();
     686           0 :     LOCK(cs_vRecv);
     687           0 :     m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
     688           0 :     nRecvBytes += msg_bytes.size();
     689           0 :     while (msg_bytes.size() > 0) {
     690             :         // absorb network data
     691           0 :         if (!m_transport->ReceivedBytes(msg_bytes)) {
     692             :             // Serious transport problem, disconnect from the peer.
     693           0 :             return false;
     694             :         }
     695           0 : 
     696           0 :         if (m_transport->ReceivedMessageComplete()) {
     697           0 :             // decompose a transport agnostic CNetMessage from the deserializer
     698           0 :             bool reject_message{false};
     699           0 :             CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
     700           0 :             if (reject_message) {
     701           0 :                 // Message deserialization failed. Drop the message but don't disconnect the peer.
     702             :                 // store the size of the corrupt message
     703           0 :                 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
     704           0 :                 continue;
     705             :             }
     706             : 
     707             :             // Store received bytes per message type.
     708             :             // To prevent a memory DOS, only allow known message types.
     709           0 :             auto i = mapRecvBytesPerMsgType.find(msg.m_type);
     710           0 :             if (i == mapRecvBytesPerMsgType.end()) {
     711           0 :                 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
     712           0 :             }
     713           0 :             assert(i != mapRecvBytesPerMsgType.end());
     714           0 :             i->second += msg.m_raw_message_size;
     715           0 : 
     716             :             // push the message to the process queue,
     717           0 :             vRecvMsg.push_back(std::move(msg));
     718             : 
     719           0 :             complete = true;
     720           0 :         }
     721           0 :     }
     722             : 
     723           0 :     return true;
     724           0 : }
     725             : 
     726           0 : V1Transport::V1Transport(const NodeId node_id, int nTypeIn, int nVersionIn) noexcept :
     727           0 :     m_node_id(node_id), hdrbuf(nTypeIn, nVersionIn), vRecv(nTypeIn, nVersionIn)
     728           0 : {
     729           0 :     assert(std::size(Params().MessageStart()) == std::size(m_magic_bytes));
     730           0 :     m_magic_bytes = Params().MessageStart();
     731           0 :     LOCK(m_recv_mutex);
     732           0 :     Reset();
     733           0 : }
     734             : 
     735           0 : int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
     736             : {
     737           0 :     AssertLockHeld(m_recv_mutex);
     738             :     // copy data to temporary parsing buffer
     739           0 :     unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
     740           0 :     unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
     741             : 
     742           0 :     memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
     743           0 :     nHdrPos += nCopy;
     744             : 
     745             :     // if header incomplete, exit
     746           0 :     if (nHdrPos < CMessageHeader::HEADER_SIZE)
     747           0 :         return nCopy;
     748             : 
     749             :     // deserialize to CMessageHeader
     750             :     try {
     751           0 :         hdrbuf >> hdr;
     752           0 :     }
     753             :     catch (const std::exception&) {
     754           0 :         LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
     755           0 :         return -1;
     756           0 :     }
     757             : 
     758             :     // Check start string, network magic
     759           0 :     if (hdr.pchMessageStart != m_magic_bytes) {
     760           0 :         LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
     761           0 :         return -1;
     762             :     }
     763             : 
     764             :     // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
     765           0 :     if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
     766           0 :         LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
     767           0 :         return -1;
     768             :     }
     769             : 
     770             :     // switch state to reading message data
     771           0 :     in_data = true;
     772             : 
     773           0 :     return nCopy;
     774           0 : }
     775             : 
     776           0 : int V1Transport::readData(Span<const uint8_t> msg_bytes)
     777             : {
     778           0 :     AssertLockHeld(m_recv_mutex);
     779           0 :     unsigned int nRemaining = hdr.nMessageSize - nDataPos;
     780           0 :     unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
     781             : 
     782           0 :     if (vRecv.size() < nDataPos + nCopy) {
     783             :         // Allocate up to 256 KiB ahead, but never more than the total message size.
     784           0 :         vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
     785           0 :     }
     786             : 
     787           0 :     hasher.Write(msg_bytes.first(nCopy));
     788           0 :     memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
     789           0 :     nDataPos += nCopy;
     790             : 
     791           0 :     return nCopy;
     792             : }
     793             : 
     794           0 : const uint256& V1Transport::GetMessageHash() const
     795             : {
     796           0 :     AssertLockHeld(m_recv_mutex);
     797           0 :     assert(CompleteInternal());
     798           0 :     if (data_hash.IsNull())
     799           0 :         hasher.Finalize(data_hash);
     800           0 :     return data_hash;
     801             : }
     802             : 
     803           0 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
     804             : {
     805           0 :     AssertLockNotHeld(m_recv_mutex);
     806             :     // Initialize out parameter
     807           0 :     reject_message = false;
     808             :     // decompose a single CNetMessage from the TransportDeserializer
     809           0 :     LOCK(m_recv_mutex);
     810           0 :     CNetMessage msg(std::move(vRecv));
     811             : 
     812             :     // store message type string, time, and sizes
     813           0 :     msg.m_type = hdr.GetCommand();
     814           0 :     msg.m_time = time;
     815           0 :     msg.m_message_size = hdr.nMessageSize;
     816           0 :     msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
     817             : 
     818           0 :     uint256 hash = GetMessageHash();
     819             : 
     820             :     // We just received a message off the wire, harvest entropy from the time (and the message checksum)
     821           0 :     RandAddEvent(ReadLE32(hash.begin()));
     822             : 
     823             :     // Check checksum and header message type string
     824           0 :     if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
     825           0 :         LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
     826             :                  SanitizeString(msg.m_type), msg.m_message_size,
     827             :                  HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
     828             :                  HexStr(hdr.pchChecksum),
     829             :                  m_node_id);
     830           0 :         reject_message = true;
     831           0 :     } else if (!hdr.IsCommandValid()) {
     832           0 :         LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
     833             :                  SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
     834           0 :         reject_message = true;
     835           0 :     }
     836             : 
     837             :     // Always reset the network deserializer (prepare for the next message)
     838           0 :     Reset();
     839           0 :     return msg;
     840           0 : }
     841           0 : 
     842           0 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
     843             : {
     844           0 :     AssertLockNotHeld(m_send_mutex);
     845             :     // Determine whether a new message can be set.
     846           0 :     LOCK(m_send_mutex);
     847           0 :     if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
     848           0 : 
     849             :     // create dbl-sha256 checksum
     850           0 :     uint256 hash = Hash(msg.data);
     851             : 
     852           0 :     // create header
     853           0 :     CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
     854           0 :     memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
     855             : 
     856             :     // serialize header
     857           0 :     m_header_to_send.clear();
     858           0 :     CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, m_header_to_send, 0, hdr};
     859           0 : 
     860             :     // update state
     861           0 :     m_message_to_send = std::move(msg);
     862           0 :     m_sending_header = true;
     863           0 :     m_bytes_sent = 0;
     864           0 :     return true;
     865           0 : }
     866             : 
     867           0 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
     868           0 : {
     869           0 :     AssertLockNotHeld(m_send_mutex);
     870           0 :     LOCK(m_send_mutex);
     871           0 :     if (m_sending_header) {
     872           0 :         return {Span{m_header_to_send}.subspan(m_bytes_sent),
     873             :                 // We have more to send after the header if the message has payload, or if there
     874             :                 // is a next message after that.
     875           0 :                 have_next_message || !m_message_to_send.data.empty(),
     876           0 :                 m_message_to_send.m_type
     877             :                };
     878             :     } else {
     879           0 :         return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
     880             :                 // We only have more to send after this message's payload if there is another
     881             :                 // message.
     882             :                 have_next_message,
     883           0 :                 m_message_to_send.m_type
     884             :                };
     885             :     }
     886           0 : }
     887             : 
     888           0 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
     889             : {
     890           0 :     AssertLockNotHeld(m_send_mutex);
     891           0 :     LOCK(m_send_mutex);
     892           0 :     m_bytes_sent += bytes_sent;
     893           0 :     if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
     894             :         // We're done sending a message's header. Switch to sending its data bytes.
     895           0 :         m_sending_header = false;
     896           0 :         m_bytes_sent = 0;
     897           0 :     } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
     898             :         // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
     899           0 :         ClearShrink(m_message_to_send.data);
     900           0 :         m_bytes_sent = 0;
     901           0 :     }
     902           0 : }
     903             : 
     904           0 : size_t V1Transport::GetSendMemoryUsage() const noexcept
     905             : {
     906           0 :     AssertLockNotHeld(m_send_mutex);
     907           0 :     LOCK(m_send_mutex);
     908             :     // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
     909           0 :     return m_message_to_send.GetMemoryUsage();
     910           0 : }
     911             : 
     912             : namespace {
     913             : 
     914             : /** List of short messages as defined in BIP324, in order.
     915             :  *
     916             :  * Only message types that are actually implemented in this codebase need to be listed, as other
     917             :  * messages get ignored anyway - whether we know how to decode them or not.
     918             :  */
     919           2 : const std::array<std::string, 33> V2_MESSAGE_IDS = {
     920           2 :     "", // 12 bytes follow encoding the message type like in V1
     921           2 :     NetMsgType::ADDR,
     922           2 :     NetMsgType::BLOCK,
     923           2 :     NetMsgType::BLOCKTXN,
     924           2 :     NetMsgType::CMPCTBLOCK,
     925           2 :     NetMsgType::FEEFILTER,
     926           2 :     NetMsgType::FILTERADD,
     927           2 :     NetMsgType::FILTERCLEAR,
     928           2 :     NetMsgType::FILTERLOAD,
     929           2 :     NetMsgType::GETBLOCKS,
     930           2 :     NetMsgType::GETBLOCKTXN,
     931           2 :     NetMsgType::GETDATA,
     932           2 :     NetMsgType::GETHEADERS,
     933           2 :     NetMsgType::HEADERS,
     934           2 :     NetMsgType::INV,
     935           2 :     NetMsgType::MEMPOOL,
     936           2 :     NetMsgType::MERKLEBLOCK,
     937           2 :     NetMsgType::NOTFOUND,
     938           2 :     NetMsgType::PING,
     939           2 :     NetMsgType::PONG,
     940           2 :     NetMsgType::SENDCMPCT,
     941           2 :     NetMsgType::TX,
     942           2 :     NetMsgType::GETCFILTERS,
     943           2 :     NetMsgType::CFILTER,
     944           2 :     NetMsgType::GETCFHEADERS,
     945           2 :     NetMsgType::CFHEADERS,
     946           2 :     NetMsgType::GETCFCHECKPT,
     947           2 :     NetMsgType::CFCHECKPT,
     948           2 :     NetMsgType::ADDRV2,
     949             :     // Unimplemented message types that are assigned in BIP324:
     950           2 :     "",
     951           2 :     "",
     952           2 :     "",
     953           2 :     ""
     954             : };
     955             : 
     956             : class V2MessageMap
     957             : {
     958             :     std::unordered_map<std::string, uint8_t> m_map;
     959           0 : 
     960             : public:
     961           2 :     V2MessageMap() noexcept
     962             :     {
     963          66 :         for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
     964          64 :             m_map.emplace(V2_MESSAGE_IDS[i], i);
     965          64 :         }
     966           2 :     }
     967             : 
     968           0 :     std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
     969             :     {
     970           0 :         auto it = m_map.find(message_name);
     971           0 :         if (it == m_map.end()) return std::nullopt;
     972           0 :         return it->second;
     973           0 :     }
     974             : };
     975             : 
     976           2 : const V2MessageMap V2_MESSAGE_MAP;
     977             : 
     978           0 : CKey GenerateRandomKey() noexcept
     979             : {
     980           0 :     CKey key;
     981           0 :     key.MakeNewKey(/*fCompressed=*/true);
     982           0 :     return key;
     983           0 : }
     984             : 
     985           0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
     986             : {
     987           0 :     std::vector<uint8_t> ret;
     988           0 :     FastRandomContext rng;
     989           0 :     ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
     990           0 :     rng.fillrand(MakeWritableByteSpan(ret));
     991           0 :     return ret;
     992           0 : }
     993             : 
     994             : } // namespace
     995             : 
     996           0 : void V2Transport::StartSendingHandshake() noexcept
     997             : {
     998           0 :     AssertLockHeld(m_send_mutex);
     999           0 :     Assume(m_send_state == SendState::AWAITING_KEY);
    1000           0 :     Assume(m_send_buffer.empty());
    1001             :     // Initialize the send buffer with ellswift pubkey + provided garbage.
    1002           0 :     m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
    1003           0 :     std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
    1004           0 :     std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
    1005             :     // We cannot wipe m_send_garbage as it will still be used to construct the garbage
    1006             :     // authentication packet.
    1007           0 : }
    1008             : 
    1009           0 : V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept :
    1010           0 :     m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
    1011           0 :     m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
    1012           0 :     m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
    1013           0 :     m_send_garbage{std::move(garbage)},
    1014           0 :     m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
    1015           0 : {
    1016           0 :     Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
    1017             :     // Start sending immediately if we're the initiator of the connection.
    1018           0 :     if (initiating) {
    1019           0 :         LOCK(m_send_mutex);
    1020           0 :         StartSendingHandshake();
    1021           0 :     }
    1022           0 : }
    1023             : 
    1024           0 : V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
    1025           0 :     V2Transport{nodeid, initiating, type_in, version_in, GenerateRandomKey(),
    1026           0 :                 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} { }
    1027             : 
    1028           0 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
    1029             : {
    1030           0 :     AssertLockHeld(m_recv_mutex);
    1031             :     // Enforce allowed state transitions.
    1032           0 :     switch (m_recv_state) {
    1033             :     case RecvState::KEY_MAYBE_V1:
    1034           0 :         Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
    1035           0 :         break;
    1036             :     case RecvState::KEY:
    1037           0 :         Assume(recv_state == RecvState::GARB_GARBTERM);
    1038           0 :         break;
    1039             :     case RecvState::GARB_GARBTERM:
    1040           0 :         Assume(recv_state == RecvState::GARBAUTH);
    1041           0 :         break;
    1042             :     case RecvState::GARBAUTH:
    1043           0 :         Assume(recv_state == RecvState::VERSION);
    1044           0 :         break;
    1045             :     case RecvState::VERSION:
    1046           0 :         Assume(recv_state == RecvState::APP);
    1047           0 :         break;
    1048             :     case RecvState::APP:
    1049           0 :         Assume(recv_state == RecvState::APP_READY);
    1050           0 :         break;
    1051             :     case RecvState::APP_READY:
    1052           0 :         Assume(recv_state == RecvState::APP);
    1053           0 :         break;
    1054             :     case RecvState::V1:
    1055           0 :         Assume(false); // V1 state cannot be left
    1056           0 :         break;
    1057             :     }
    1058             :     // Change state.
    1059           0 :     m_recv_state = recv_state;
    1060           0 : }
    1061             : 
    1062           0 : void V2Transport::SetSendState(SendState send_state) noexcept
    1063             : {
    1064           0 :     AssertLockHeld(m_send_mutex);
    1065             :     // Enforce allowed state transitions.
    1066           0 :     switch (m_send_state) {
    1067             :     case SendState::MAYBE_V1:
    1068           0 :         Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
    1069           0 :         break;
    1070             :     case SendState::AWAITING_KEY:
    1071           0 :         Assume(send_state == SendState::READY);
    1072           0 :         break;
    1073             :     case SendState::READY:
    1074             :     case SendState::V1:
    1075           0 :         Assume(false); // Final states
    1076           0 :         break;
    1077             :     }
    1078             :     // Change state.
    1079           0 :     m_send_state = send_state;
    1080           0 : }
    1081             : 
    1082           0 : bool V2Transport::ReceivedMessageComplete() const noexcept
    1083             : {
    1084           0 :     AssertLockNotHeld(m_recv_mutex);
    1085           0 :     LOCK(m_recv_mutex);
    1086           0 :     if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
    1087             : 
    1088           0 :     return m_recv_state == RecvState::APP_READY;
    1089           0 : }
    1090             : 
    1091           0 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
    1092             : {
    1093           0 :     AssertLockHeld(m_recv_mutex);
    1094           0 :     AssertLockNotHeld(m_send_mutex);
    1095           0 :     Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
    1096             :     // We still have to determine if this is a v1 or v2 connection. The bytes being received could
    1097             :     // be the beginning of either a v1 packet (network magic + "version\x00"), or of a v2 public
    1098             :     // key. BIP324 specifies that a mismatch with this 12-byte string should trigger sending of the
    1099             :     // key.
    1100           0 :     std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0};
    1101           0 :     std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
    1102           0 :     Assume(m_recv_buffer.size() <= v1_prefix.size());
    1103           0 :     if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
    1104             :         // Mismatch with v1 prefix, so we can assume a v2 connection.
    1105           0 :         SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
    1106             :         // Transition the sender to AWAITING_KEY state and start sending.
    1107           0 :         LOCK(m_send_mutex);
    1108           0 :         SetSendState(SendState::AWAITING_KEY);
    1109           0 :         StartSendingHandshake();
    1110           0 :     } else if (m_recv_buffer.size() == v1_prefix.size()) {
    1111             :         // Full match with the v1 prefix, so fall back to v1 behavior.
    1112           0 :         LOCK(m_send_mutex);
    1113           0 :         Span<const uint8_t> feedback{m_recv_buffer};
    1114             :         // Feed already received bytes to v1 transport. It should always accept these, because it's
    1115             :         // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
    1116           0 :         bool ret = m_v1_fallback.ReceivedBytes(feedback);
    1117           0 :         Assume(feedback.empty());
    1118           0 :         Assume(ret);
    1119           0 :         SetReceiveState(RecvState::V1);
    1120           0 :         SetSendState(SendState::V1);
    1121             :         // Reset v2 transport buffers to save memory.
    1122           0 :         ClearShrink(m_recv_buffer);
    1123           0 :         ClearShrink(m_send_buffer);
    1124           0 :     } else {
    1125             :         // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
    1126             :     }
    1127           0 : }
    1128             : 
    1129           0 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
    1130             : {
    1131           0 :     AssertLockHeld(m_recv_mutex);
    1132           0 :     AssertLockNotHeld(m_send_mutex);
    1133           0 :     Assume(m_recv_state == RecvState::KEY);
    1134           0 :     Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
    1135             : 
    1136             :     // As a special exception, if bytes 4-16 of the key on a responder connection match the
    1137             :     // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
    1138             :     // (if they did, we'd have switched to V1 state already), assume this is a peer from
    1139             :     // another network, and disconnect them. They will almost certainly disconnect us too when
    1140             :     // they receive our uniformly random key and garbage, but detecting this case specially
    1141             :     // means we can log it.
    1142             :     static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
    1143             :     static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
    1144           0 :     if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
    1145           0 :         if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
    1146           0 :             LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
    1147             :                      HexStr(Span(m_recv_buffer).first(OFFSET)));
    1148           0 :             return false;
    1149             :         }
    1150           0 :     }
    1151             : 
    1152           0 :     if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
    1153             :         // Other side's key has been fully received, and can now be Diffie-Hellman combined with
    1154             :         // our key to initialize the encryption ciphers.
    1155             : 
    1156             :         // Initialize the ciphers.
    1157           0 :         EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
    1158           0 :         LOCK(m_send_mutex);
    1159           0 :         m_cipher.Initialize(ellswift, m_initiating);
    1160             : 
    1161             :         // Switch receiver state to GARB_GARBTERM.
    1162           0 :         SetReceiveState(RecvState::GARB_GARBTERM);
    1163           0 :         m_recv_buffer.clear();
    1164             : 
    1165             :         // Switch sender state to READY.
    1166           0 :         SetSendState(SendState::READY);
    1167             : 
    1168             :         // Append the garbage terminator to the send buffer.
    1169           0 :         m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
    1170           0 :         std::copy(m_cipher.GetSendGarbageTerminator().begin(),
    1171           0 :                   m_cipher.GetSendGarbageTerminator().end(),
    1172           0 :                   MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
    1173             : 
    1174             :         // Construct garbage authentication packet in the send buffer (using the garbage data which
    1175             :         // is still there).
    1176           0 :         m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
    1177           0 :         m_cipher.Encrypt(
    1178           0 :             /*contents=*/{},
    1179           0 :             /*aad=*/MakeByteSpan(m_send_garbage),
    1180             :             /*ignore=*/false,
    1181           0 :             /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
    1182             :         // We no longer need the garbage.
    1183           0 :         ClearShrink(m_send_garbage);
    1184             : 
    1185             :         // Construct version packet in the send buffer.
    1186           0 :         m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
    1187           0 :         m_cipher.Encrypt(
    1188           0 :             /*contents=*/VERSION_CONTENTS,
    1189           0 :             /*aad=*/{},
    1190             :             /*ignore=*/false,
    1191           0 :             /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
    1192           0 :     } else {
    1193             :         // We still have to receive more key bytes.
    1194             :     }
    1195           0 :     return true;
    1196           0 : }
    1197             : 
    1198           0 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
    1199             : {
    1200           0 :     AssertLockHeld(m_recv_mutex);
    1201           0 :     Assume(m_recv_state == RecvState::GARB_GARBTERM);
    1202           0 :     Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
    1203           0 :     if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
    1204           0 :         if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
    1205             :             // Garbage terminator received. Switch to receiving garbage authentication packet.
    1206           0 :             m_recv_garbage = std::move(m_recv_buffer);
    1207           0 :             m_recv_garbage.resize(m_recv_garbage.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
    1208           0 :             m_recv_buffer.clear();
    1209           0 :             SetReceiveState(RecvState::GARBAUTH);
    1210           0 :         } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
    1211             :             // We've reached the maximum length for garbage + garbage terminator, and the
    1212             :             // terminator still does not match. Abort.
    1213           0 :             LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
    1214           0 :             return false;
    1215             :         } else {
    1216             :             // We still need to receive more garbage and/or garbage terminator bytes.
    1217             :         }
    1218           0 :     } else {
    1219             :         // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
    1220             :         // more first.
    1221             :     }
    1222           0 :     return true;
    1223           0 : }
    1224             : 
    1225           0 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
    1226             : {
    1227           0 :     AssertLockHeld(m_recv_mutex);
    1228           0 :     Assume(m_recv_state == RecvState::GARBAUTH || m_recv_state == RecvState::VERSION ||
    1229             :            m_recv_state == RecvState::APP);
    1230             : 
    1231             :     // The maximum permitted contents length for a packet, consisting of:
    1232             :     // - 0x00 byte: indicating long message type encoding
    1233             :     // - 12 bytes of message type
    1234             :     // - payload
    1235             :     static constexpr size_t MAX_CONTENTS_LEN =
    1236             :         1 + CMessageHeader::COMMAND_SIZE +
    1237             :         std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
    1238             : 
    1239           0 :     if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
    1240             :         // Length descriptor received.
    1241           0 :         m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
    1242           0 :         if (m_recv_len > MAX_CONTENTS_LEN) {
    1243           0 :             LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
    1244           0 :             return false;
    1245             :         }
    1246           0 :     } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
    1247             :         // Ciphertext received, decrypt it into m_recv_decode_buffer.
    1248             :         // Note that it is impossible to reach this branch without hitting the branch above first,
    1249             :         // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
    1250           0 :         m_recv_decode_buffer.resize(m_recv_len);
    1251           0 :         bool ignore{false};
    1252           0 :         Span<const std::byte> aad;
    1253           0 :         if (m_recv_state == RecvState::GARBAUTH) aad = MakeByteSpan(m_recv_garbage);
    1254           0 :         bool ret = m_cipher.Decrypt(
    1255           0 :             /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
    1256           0 :             /*aad=*/aad,
    1257             :             /*ignore=*/ignore,
    1258           0 :             /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
    1259           0 :         if (!ret) {
    1260           0 :             LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
    1261           0 :             return false;
    1262             :         }
    1263             :         // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
    1264           0 :         RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
    1265             : 
    1266             :         // At this point we have a valid packet decrypted into m_recv_decode_buffer. Depending on
    1267             :         // the current state, decide what to do with it.
    1268           0 :         switch (m_recv_state) {
    1269             :         case RecvState::GARBAUTH:
    1270             :             // Ignore flag does not matter for garbage authentication. Any valid packet functions
    1271             :             // as authentication. Receive and process the version packet next.
    1272           0 :             SetReceiveState(RecvState::VERSION);
    1273           0 :             ClearShrink(m_recv_garbage);
    1274           0 :             break;
    1275             :         case RecvState::VERSION:
    1276           0 :             if (!ignore) {
    1277             :                 // Version message received; transition to application phase. The contents is
    1278             :                 // ignored, but can be used for future extensions.
    1279           0 :                 SetReceiveState(RecvState::APP);
    1280           0 :             }
    1281           0 :             break;
    1282             :         case RecvState::APP:
    1283           0 :             if (!ignore) {
    1284             :                 // Application message decrypted correctly. It can be extracted using GetMessage().
    1285           0 :                 SetReceiveState(RecvState::APP_READY);
    1286           0 :             }
    1287           0 :             break;
    1288             :         default:
    1289             :             // Any other state is invalid (this function should not have been called).
    1290           0 :             Assume(false);
    1291           0 :         }
    1292             :         // Wipe the receive buffer where the next packet will be received into.
    1293           0 :         ClearShrink(m_recv_buffer);
    1294             :         // In all but APP_READY state, we can wipe the decoded contents.
    1295           0 :         if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
    1296           0 :     } else {
    1297             :         // We either have less than 3 bytes, so we don't know the packet's length yet, or more
    1298             :         // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
    1299             :     }
    1300           0 :     return true;
    1301           0 : }
    1302             : 
    1303           0 : size_t V2Transport::GetMaxBytesToProcess() noexcept
    1304             : {
    1305           0 :     AssertLockHeld(m_recv_mutex);
    1306           0 :     switch (m_recv_state) {
    1307             :     case RecvState::KEY_MAYBE_V1:
    1308             :         // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
    1309             :         // receive buffer.
    1310           0 :         Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
    1311             :         // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
    1312             :         // is strictly necessary to distinguish the two (12 bytes). If we permitted more than
    1313             :         // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
    1314             :         // back into the m_v1_fallback V1 transport.
    1315           0 :         return V1_PREFIX_LEN - m_recv_buffer.size();
    1316             :     case RecvState::KEY:
    1317             :         // During the KEY state, we only allow the 64-byte key into the receive buffer.
    1318           0 :         Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
    1319             :         // As long as we have not received the other side's public key, don't receive more than
    1320             :         // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
    1321             :         // key exchange first.
    1322           0 :         return EllSwiftPubKey::size() - m_recv_buffer.size();
    1323             :     case RecvState::GARB_GARBTERM:
    1324             :         // Process garbage bytes one by one (because terminator may appear anywhere).
    1325           0 :         return 1;
    1326             :     case RecvState::GARBAUTH:
    1327             :     case RecvState::VERSION:
    1328             :     case RecvState::APP:
    1329             :         // These three states all involve decoding a packet. Process the length descriptor first,
    1330             :         // so that we know where the current packet ends (and we don't process bytes from the next
    1331             :         // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
    1332           0 :         if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
    1333           0 :             return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
    1334             :         } else {
    1335             :             // Note that BIP324Cipher::EXPANSION is the total difference between contents size
    1336             :             // and encoded packet size, which includes the 3 bytes due to the packet length.
    1337             :             // When transitioning from receiving the packet length to receiving its ciphertext,
    1338             :             // the encrypted packet length is left in the receive buffer.
    1339           0 :             return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
    1340             :         }
    1341             :     case RecvState::APP_READY:
    1342             :         // No bytes can be processed until GetMessage() is called.
    1343           0 :         return 0;
    1344             :     case RecvState::V1:
    1345             :         // Not allowed (must be dealt with by the caller).
    1346           0 :         Assume(false);
    1347           0 :         return 0;
    1348             :     }
    1349           0 :     Assume(false); // unreachable
    1350           0 :     return 0;
    1351           0 : }
    1352             : 
    1353           0 : bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
    1354             : {
    1355           0 :     AssertLockNotHeld(m_recv_mutex);
    1356             :     /** How many bytes to allocate in the receive buffer at most above what is received so far. */
    1357             :     static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
    1358             : 
    1359           0 :     LOCK(m_recv_mutex);
    1360           0 :     if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
    1361             : 
    1362             :     // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
    1363             :     // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
    1364             :     // appended to m_recv_buffer. Then, depending on the receiver state, one of the
    1365             :     // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
    1366           0 :     while (!msg_bytes.empty()) {
    1367           1 :         // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
    1368           1 :         size_t max_read = GetMaxBytesToProcess();
    1369             : 
    1370             :         // Reserve space in the buffer if there is not enough.
    1371           1 :         if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
    1372           1 :             switch (m_recv_state) {
    1373             :             case RecvState::KEY_MAYBE_V1:
    1374             :             case RecvState::KEY:
    1375             :             case RecvState::GARB_GARBTERM:
    1376             :                 // During the initial states (key/garbage), allocate once to fit the maximum (4111
    1377             :                 // bytes).
    1378           0 :                 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
    1379           0 :                 break;
    1380             :             case RecvState::GARBAUTH:
    1381             :             case RecvState::VERSION:
    1382           1 :             case RecvState::APP: {
    1383           1 :                 // During states where a packet is being received, as much as is expected but never
    1384             :                 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
    1385             :                 // This means attackers that want to cause us to waste allocated memory are limited
    1386           1 :                 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
    1387           1 :                 // MAX_RESERVE_AHEAD more than they've actually sent us.
    1388           0 :                 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
    1389           0 :                 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
    1390           0 :                 break;
    1391             :             }
    1392             :             case RecvState::APP_READY:
    1393             :                 // The buffer is empty in this state.
    1394           0 :                 Assume(m_recv_buffer.empty());
    1395           0 :                 break;
    1396             :             case RecvState::V1:
    1397           1 :                 // Should have bailed out above.
    1398           1 :                 Assume(false);
    1399           0 :                 break;
    1400             :             }
    1401           1 :         }
    1402             : 
    1403             :         // Can't read more than provided input.
    1404           0 :         max_read = std::min(msg_bytes.size(), max_read);
    1405             :         // Copy data to buffer.
    1406           0 :         m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
    1407           0 :         msg_bytes = msg_bytes.subspan(max_read);
    1408             : 
    1409             :         // Process data in the buffer.
    1410           0 :         switch (m_recv_state) {
    1411           0 :         case RecvState::KEY_MAYBE_V1:
    1412           0 :             ProcessReceivedMaybeV1Bytes();
    1413           0 :             if (m_recv_state == RecvState::V1) return true;
    1414           0 :             break;
    1415             : 
    1416             :         case RecvState::KEY:
    1417           0 :             if (!ProcessReceivedKeyBytes()) return false;
    1418           0 :             break;
    1419             : 
    1420             :         case RecvState::GARB_GARBTERM:
    1421           0 :             if (!ProcessReceivedGarbageBytes()) return false;
    1422           0 :             break;
    1423             : 
    1424             :         case RecvState::GARBAUTH:
    1425             :         case RecvState::VERSION:
    1426             :         case RecvState::APP:
    1427           0 :             if (!ProcessReceivedPacketBytes()) return false;
    1428           0 :             break;
    1429             : 
    1430             :         case RecvState::APP_READY:
    1431           0 :             return true;
    1432             : 
    1433             :         case RecvState::V1:
    1434             :             // We should have bailed out before.
    1435           0 :             Assume(false);
    1436           0 :             break;
    1437             :         }
    1438             :         // Make sure we have made progress before continuing.
    1439           0 :         Assume(max_read > 0);
    1440             :     }
    1441             : 
    1442           0 :     return true;
    1443           0 : }
    1444             : 
    1445           0 : std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
    1446             : {
    1447           0 :     if (contents.size() == 0) return std::nullopt; // Empty contents
    1448           0 :     uint8_t first_byte = contents[0];
    1449           0 :     contents = contents.subspan(1); // Strip first byte.
    1450             : 
    1451           0 :     if (first_byte != 0) {
    1452             :         // Short (1 byte) encoding.
    1453           0 :         if (first_byte < std::size(V2_MESSAGE_IDS)) {
    1454             :             // Valid short message id.
    1455           0 :             return V2_MESSAGE_IDS[first_byte];
    1456             :         } else {
    1457             :             // Unknown short message id.
    1458           0 :             return std::nullopt;
    1459             :         }
    1460             :     }
    1461             : 
    1462           0 :     if (contents.size() < CMessageHeader::COMMAND_SIZE) {
    1463           0 :         return std::nullopt; // Long encoding needs 12 message type bytes.
    1464             :     }
    1465             : 
    1466           0 :     size_t msg_type_len{0};
    1467           0 :     while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
    1468             :         // Verify that message type bytes before the first 0x00 are in range.
    1469           0 :         if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
    1470           0 :             return {};
    1471             :         }
    1472           0 :         ++msg_type_len;
    1473             :     }
    1474           0 :     std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
    1475           0 :     while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
    1476           1 :         // Verify that message type bytes after the first 0x00 are also 0x00.
    1477           0 :         if (contents[msg_type_len] != 0) return {};
    1478           0 :         ++msg_type_len;
    1479             :     }
    1480             :     // Strip message type bytes of contents.
    1481           0 :     contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
    1482           0 :     return {std::move(ret)};
    1483           0 : }
    1484             : 
    1485           0 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
    1486             : {
    1487           0 :     AssertLockNotHeld(m_recv_mutex);
    1488           0 :     LOCK(m_recv_mutex);
    1489           0 :     if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
    1490             : 
    1491           0 :     Assume(m_recv_state == RecvState::APP_READY);
    1492           0 :     Span<const uint8_t> contents{m_recv_decode_buffer};
    1493           0 :     auto msg_type = GetMessageType(contents);
    1494           0 :     CDataStream ret(m_recv_type, m_recv_version);
    1495           0 :     CNetMessage msg{std::move(ret)};
    1496             :     // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
    1497           0 :     msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
    1498           0 :     if (msg_type) {
    1499           0 :         reject_message = false;
    1500           0 :         msg.m_type = std::move(*msg_type);
    1501           0 :         msg.m_time = time;
    1502           0 :         msg.m_message_size = contents.size();
    1503           0 :         msg.m_recv.resize(contents.size());
    1504           0 :         std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
    1505           0 :     } else {
    1506           0 :         LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
    1507           0 :         reject_message = true;
    1508             :     }
    1509           1 :     ClearShrink(m_recv_decode_buffer);
    1510           0 :     SetReceiveState(RecvState::APP);
    1511             : 
    1512           0 :     return msg;
    1513           0 : }
    1514             : 
    1515           0 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
    1516             : {
    1517           0 :     AssertLockNotHeld(m_send_mutex);
    1518           0 :     LOCK(m_send_mutex);
    1519           0 :     if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
    1520             :     // We only allow adding a new message to be sent when in the READY state (so the packet cipher
    1521             :     // is available) and the send buffer is empty. This limits the number of messages in the send
    1522             :     // buffer to just one, and leaves the responsibility for queueing them up to the caller.
    1523           0 :     if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
    1524             :     // Construct contents (encoding message type + payload).
    1525           0 :     std::vector<uint8_t> contents;
    1526           0 :     auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
    1527           0 :     if (short_message_id) {
    1528           0 :         contents.resize(1 + msg.data.size());
    1529           0 :         contents[0] = *short_message_id;
    1530           0 :         std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
    1531           0 :     } else {
    1532             :         // Initialize with zeroes, and then write the message type string starting at offset 1.
    1533             :         // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
    1534           0 :         contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
    1535           0 :         std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
    1536           0 :         std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
    1537             :     }
    1538             :     // Construct ciphertext in send buffer.
    1539           0 :     m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
    1540           0 :     m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
    1541           0 :     m_send_type = msg.m_type;
    1542             :     // Release memory
    1543           0 :     ClearShrink(msg.data);
    1544           0 :     return true;
    1545           0 : }
    1546             : 
    1547           0 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
    1548             : {
    1549           0 :     AssertLockNotHeld(m_send_mutex);
    1550           0 :     LOCK(m_send_mutex);
    1551           0 :     if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
    1552             : 
    1553           0 :     if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
    1554           0 :     Assume(m_send_pos <= m_send_buffer.size());
    1555           0 :     return {
    1556           0 :         Span{m_send_buffer}.subspan(m_send_pos),
    1557             :         // We only have more to send after the current m_send_buffer if there is a (next)
    1558             :         // message to be sent, and we're capable of sending packets. */
    1559           0 :         have_next_message && m_send_state == SendState::READY,
    1560           0 :         m_send_type
    1561             :     };
    1562           0 : }
    1563             : 
    1564           0 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
    1565             : {
    1566           0 :     AssertLockNotHeld(m_send_mutex);
    1567           0 :     LOCK(m_send_mutex);
    1568           0 :     if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
    1569             : 
    1570           0 :     m_send_pos += bytes_sent;
    1571           0 :     Assume(m_send_pos <= m_send_buffer.size());
    1572             :     // Wipe the buffer when everything is sent.
    1573           0 :     if (m_send_pos == m_send_buffer.size()) {
    1574           0 :         m_send_pos = 0;
    1575           0 :         ClearShrink(m_send_buffer);
    1576           0 :     }
    1577           0 : }
    1578             : 
    1579           0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
    1580             : {
    1581           0 :     AssertLockNotHeld(m_send_mutex);
    1582           0 :     LOCK(m_send_mutex);
    1583           0 :     if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
    1584             : 
    1585           0 :     return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
    1586           0 : }
    1587             : 
    1588           0 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
    1589             : {
    1590           0 :     auto it = node.vSendMsg.begin();
    1591           0 :     size_t nSentSize = 0;
    1592           0 :     bool data_left{false}; //!< second return value (whether unsent data remains)
    1593           0 :     std::optional<bool> expected_more;
    1594             : 
    1595           0 :     while (true) {
    1596           0 :         if (it != node.vSendMsg.end()) {
    1597             :             // If possible, move one message from the send queue to the transport. This fails when
    1598             :             // there is an existing message still being sent, or (for v2 transports) when the
    1599             :             // handshake has not yet completed.
    1600           0 :             size_t memusage = it->GetMemoryUsage();
    1601           0 :             if (node.m_transport->SetMessageToSend(*it)) {
    1602             :                 // Update memory usage of send buffer (as *it will be deleted).
    1603           0 :                 node.m_send_memusage -= memusage;
    1604           0 :                 ++it;
    1605           0 :             }
    1606           0 :         }
    1607           0 :         const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
    1608             :         // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
    1609             :         // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
    1610             :         // verify that the previously returned 'more' was correct.
    1611           0 :         if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
    1612           0 :         expected_more = more;
    1613           0 :         data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
    1614           0 :         int nBytes = 0;
    1615           0 :         if (!data.empty()) {
    1616           0 :             LOCK(node.m_sock_mutex);
    1617             :             // There is no socket in case we've already disconnected, or in test cases without
    1618             :             // real connections. In these cases, we bail out immediately and just leave things
    1619             :             // in the send queue and transport.
    1620           0 :             if (!node.m_sock) {
    1621           0 :                 break;
    1622             :             }
    1623           0 :             int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
    1624             : #ifdef MSG_MORE
    1625           0 :             if (more) {
    1626           0 :                 flags |= MSG_MORE;
    1627           0 :             }
    1628             : #endif
    1629           0 :             nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
    1630           0 :         }
    1631           0 :         if (nBytes > 0) {
    1632           0 :             node.m_last_send = GetTime<std::chrono::seconds>();
    1633           0 :             node.nSendBytes += nBytes;
    1634             :             // Notify transport that bytes have been processed.
    1635           0 :             node.m_transport->MarkBytesSent(nBytes);
    1636             :             // Update statistics per message type.
    1637           0 :             node.AccountForSentBytes(msg_type, nBytes);
    1638           0 :             nSentSize += nBytes;
    1639           0 :             if ((size_t)nBytes != data.size()) {
    1640             :                 // could not send full message; stop sending more
    1641           0 :                 break;
    1642             :             }
    1643           0 :         } else {
    1644           0 :             if (nBytes < 0) {
    1645             :                 // error
    1646           0 :                 int nErr = WSAGetLastError();
    1647           0 :                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
    1648           0 :                     LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
    1649           0 :                     node.CloseSocketDisconnect();
    1650           0 :                 }
    1651           0 :             }
    1652           0 :             break;
    1653             :         }
    1654             :     }
    1655             : 
    1656           0 :     node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
    1657             : 
    1658           0 :     if (it == node.vSendMsg.end()) {
    1659           0 :         assert(node.m_send_memusage == 0);
    1660           0 :     }
    1661           0 :     node.vSendMsg.erase(node.vSendMsg.begin(), it);
    1662           0 :     return {nSentSize, data_left};
    1663           0 : }
    1664             : 
    1665             : /** Try to find a connection to evict when the node is full.
    1666             :  *  Extreme care must be taken to avoid opening the node to attacker
    1667             :  *   triggered network partitioning.
    1668             :  *  The strategy used here is to protect a small number of peers
    1669             :  *   for each of several distinct characteristics which are difficult
    1670             :  *   to forge.  In order to partition a node the attacker must be
    1671             :  *   simultaneously better at all of them than honest peers.
    1672             :  */
    1673           0 : bool CConnman::AttemptToEvictConnection()
    1674             : {
    1675           0 :     std::vector<NodeEvictionCandidate> vEvictionCandidates;
    1676             :     {
    1677             : 
    1678           0 :         LOCK(m_nodes_mutex);
    1679           0 :         for (const CNode* node : m_nodes) {
    1680           0 :             if (node->fDisconnect)
    1681           0 :                 continue;
    1682           0 :             NodeEvictionCandidate candidate{
    1683           0 :                 .id = node->GetId(),
    1684           0 :                 .m_connected = node->m_connected,
    1685           0 :                 .m_min_ping_time = node->m_min_ping_time,
    1686           0 :                 .m_last_block_time = node->m_last_block_time,
    1687           0 :                 .m_last_tx_time = node->m_last_tx_time,
    1688           0 :                 .fRelevantServices = node->m_has_all_wanted_services,
    1689           0 :                 .m_relay_txs = node->m_relays_txs.load(),
    1690           0 :                 .fBloomFilter = node->m_bloom_filter_loaded.load(),
    1691           0 :                 .nKeyedNetGroup = node->nKeyedNetGroup,
    1692           0 :                 .prefer_evict = node->m_prefer_evict,
    1693           0 :                 .m_is_local = node->addr.IsLocal(),
    1694           0 :                 .m_network = node->ConnectedThroughNetwork(),
    1695           0 :                 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
    1696           0 :                 .m_conn_type = node->m_conn_type,
    1697             :             };
    1698           0 :             vEvictionCandidates.push_back(candidate);
    1699             :         }
    1700           0 :     }
    1701           0 :     const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
    1702           0 :     if (!node_id_to_evict) {
    1703           0 :         return false;
    1704             :     }
    1705           0 :     LOCK(m_nodes_mutex);
    1706           0 :     for (CNode* pnode : m_nodes) {
    1707           0 :         if (pnode->GetId() == *node_id_to_evict) {
    1708           0 :             LogPrint(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
    1709           0 :             pnode->fDisconnect = true;
    1710           0 :             return true;
    1711             :         }
    1712             :     }
    1713           0 :     return false;
    1714           0 : }
    1715             : 
    1716           0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
    1717             :     struct sockaddr_storage sockaddr;
    1718           0 :     socklen_t len = sizeof(sockaddr);
    1719           0 :     auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
    1720           0 :     CAddress addr;
    1721             : 
    1722           0 :     if (!sock) {
    1723           0 :         const int nErr = WSAGetLastError();
    1724           0 :         if (nErr != WSAEWOULDBLOCK) {
    1725           0 :             LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
    1726           0 :         }
    1727           0 :         return;
    1728             :     }
    1729             : 
    1730           0 :     if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
    1731           0 :         LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
    1732           0 :     } else {
    1733           0 :         addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
    1734             :     }
    1735             : 
    1736           0 :     const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
    1737             : 
    1738           0 :     NetPermissionFlags permission_flags = NetPermissionFlags::None;
    1739           0 :     hListenSocket.AddSocketPermissionFlags(permission_flags);
    1740             : 
    1741           0 :     CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
    1742           0 : }
    1743             : 
    1744           0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
    1745             :                                             NetPermissionFlags permission_flags,
    1746             :                                             const CAddress& addr_bind,
    1747             :                                             const CAddress& addr)
    1748             : {
    1749           0 :     int nInbound = 0;
    1750           0 :     int nMaxInbound = nMaxConnections - m_max_outbound;
    1751             : 
    1752           0 :     AddWhitelistPermissionFlags(permission_flags, addr);
    1753           0 :     if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::Implicit)) {
    1754           0 :         NetPermissions::ClearFlag(permission_flags, NetPermissionFlags::Implicit);
    1755           0 :         if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::ForceRelay);
    1756           0 :         if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Relay);
    1757           0 :         NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Mempool);
    1758           0 :         NetPermissions::AddFlag(permission_flags, NetPermissionFlags::NoBan);
    1759           0 :     }
    1760             : 
    1761             :     {
    1762           0 :         LOCK(m_nodes_mutex);
    1763           0 :         for (const CNode* pnode : m_nodes) {
    1764           0 :             if (pnode->IsInboundConn()) nInbound++;
    1765             :         }
    1766           0 :     }
    1767             : 
    1768           0 :     if (!fNetworkActive) {
    1769           0 :         LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
    1770           0 :         return;
    1771             :     }
    1772             : 
    1773           0 :     if (!sock->IsSelectable()) {
    1774           0 :         LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
    1775           0 :         return;
    1776             :     }
    1777             : 
    1778             :     // According to the internet TCP_NODELAY is not carried into accepted sockets
    1779             :     // on all platforms.  Set it again here just to be sure.
    1780           0 :     const int on{1};
    1781           0 :     if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
    1782           0 :         LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
    1783             :                  addr.ToStringAddrPort());
    1784           0 :     }
    1785             : 
    1786             :     // Don't accept connections from banned peers.
    1787           0 :     bool banned = m_banman && m_banman->IsBanned(addr);
    1788           0 :     if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
    1789             :     {
    1790           0 :         LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
    1791           0 :         return;
    1792             :     }
    1793             : 
    1794             :     // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
    1795           0 :     bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
    1796           0 :     if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged)
    1797             :     {
    1798           0 :         LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
    1799           0 :         return;
    1800             :     }
    1801             : 
    1802           0 :     if (nInbound >= nMaxInbound)
    1803             :     {
    1804           0 :         if (!AttemptToEvictConnection()) {
    1805             :             // No connection to evict, disconnect the new connection
    1806           0 :             LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
    1807           0 :             return;
    1808             :         }
    1809           0 :     }
    1810             : 
    1811           0 :     NodeId id = GetNewNodeId();
    1812           0 :     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
    1813             : 
    1814           0 :     ServiceFlags nodeServices = nLocalServices;
    1815           0 :     if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::BloomFilter)) {
    1816           0 :         nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
    1817           0 :     }
    1818             : 
    1819           0 :     const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
    1820           0 :     CNode* pnode = new CNode(id,
    1821           0 :                              std::move(sock),
    1822           0 :                              addr,
    1823           0 :                              CalculateKeyedNetGroup(addr),
    1824           0 :                              nonce,
    1825           0 :                              addr_bind,
    1826           0 :                              /*addrNameIn=*/"",
    1827             :                              ConnectionType::INBOUND,
    1828           0 :                              inbound_onion,
    1829           0 :                              CNodeOptions{
    1830           0 :                                  .permission_flags = permission_flags,
    1831           0 :                                  .prefer_evict = discouraged,
    1832           0 :                                  .recv_flood_size = nReceiveFloodSize,
    1833             :                              });
    1834           0 :     pnode->AddRef();
    1835           0 :     m_msgproc->InitializeNode(*pnode, nodeServices);
    1836             : 
    1837           0 :     LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
    1838             : 
    1839             :     {
    1840           0 :         LOCK(m_nodes_mutex);
    1841           0 :         m_nodes.push_back(pnode);
    1842           0 :     }
    1843             : 
    1844             :     // We received a new connection, harvest entropy from the time (and our peer count)
    1845           0 :     RandAddEvent((uint32_t)id);
    1846           0 : }
    1847             : 
    1848           0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type)
    1849             : {
    1850           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
    1851           0 :     std::optional<int> max_connections;
    1852           0 :     switch (conn_type) {
    1853             :     case ConnectionType::INBOUND:
    1854             :     case ConnectionType::MANUAL:
    1855           0 :         return false;
    1856             :     case ConnectionType::OUTBOUND_FULL_RELAY:
    1857           0 :         max_connections = m_max_outbound_full_relay;
    1858           0 :         break;
    1859             :     case ConnectionType::BLOCK_RELAY:
    1860           0 :         max_connections = m_max_outbound_block_relay;
    1861           0 :         break;
    1862             :     // no limit for ADDR_FETCH because -seednode has no limit either
    1863             :     case ConnectionType::ADDR_FETCH:
    1864           0 :         break;
    1865             :     // no limit for FEELER connections since they're short-lived
    1866             :     case ConnectionType::FEELER:
    1867           0 :         break;
    1868             :     } // no default case, so the compiler can warn about missing cases
    1869             : 
    1870             :     // Count existing connections
    1871           0 :     int existing_connections = WITH_LOCK(m_nodes_mutex,
    1872             :                                          return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
    1873             : 
    1874             :     // Max connections of specified type already exist
    1875           0 :     if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
    1876             : 
    1877             :     // Max total outbound connections already exist
    1878           0 :     CSemaphoreGrant grant(*semOutbound, true);
    1879           0 :     if (!grant) return false;
    1880             : 
    1881           0 :     OpenNetworkConnection(CAddress(), false, &grant, address.c_str(), conn_type);
    1882           0 :     return true;
    1883           0 : }
    1884             : 
    1885           0 : void CConnman::DisconnectNodes()
    1886             : {
    1887             :     {
    1888           0 :         LOCK(m_nodes_mutex);
    1889             : 
    1890           0 :         if (!fNetworkActive) {
    1891             :             // Disconnect any connected nodes
    1892           0 :             for (CNode* pnode : m_nodes) {
    1893           0 :                 if (!pnode->fDisconnect) {
    1894           0 :                     LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
    1895           0 :                     pnode->fDisconnect = true;
    1896           0 :                 }
    1897             :             }
    1898           0 :         }
    1899             : 
    1900             :         // Disconnect unused nodes
    1901           0 :         std::vector<CNode*> nodes_copy = m_nodes;
    1902           0 :         for (CNode* pnode : nodes_copy)
    1903             :         {
    1904           0 :             if (pnode->fDisconnect)
    1905             :             {
    1906             :                 // remove from m_nodes
    1907           0 :                 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
    1908             : 
    1909             :                 // release outbound grant (if any)
    1910           0 :                 pnode->grantOutbound.Release();
    1911             : 
    1912             :                 // close socket and cleanup
    1913           0 :                 pnode->CloseSocketDisconnect();
    1914             : 
    1915             :                 // update connection count by network
    1916           0 :                 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
    1917             : 
    1918             :                 // hold in disconnected pool until all refs are released
    1919           0 :                 pnode->Release();
    1920           0 :                 m_nodes_disconnected.push_back(pnode);
    1921           0 :             }
    1922             :         }
    1923           0 :     }
    1924             :     {
    1925             :         // Delete disconnected nodes
    1926           0 :         std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
    1927           0 :         for (CNode* pnode : nodes_disconnected_copy)
    1928             :         {
    1929             :             // Destroy the object only after other threads have stopped using it.
    1930           0 :             if (pnode->GetRefCount() <= 0) {
    1931           0 :                 m_nodes_disconnected.remove(pnode);
    1932           0 :                 DeleteNode(pnode);
    1933           0 :             }
    1934             :         }
    1935           0 :     }
    1936           0 : }
    1937             : 
    1938           0 : void CConnman::NotifyNumConnectionsChanged()
    1939             : {
    1940             :     size_t nodes_size;
    1941             :     {
    1942           0 :         LOCK(m_nodes_mutex);
    1943           0 :         nodes_size = m_nodes.size();
    1944           0 :     }
    1945           0 :     if(nodes_size != nPrevNodeCount) {
    1946           0 :         nPrevNodeCount = nodes_size;
    1947           0 :         if (m_client_interface) {
    1948           0 :             m_client_interface->NotifyNumConnectionsChanged(nodes_size);
    1949           0 :         }
    1950           0 :     }
    1951           0 : }
    1952             : 
    1953           0 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
    1954             : {
    1955           0 :     return node.m_connected + m_peer_connect_timeout < now;
    1956             : }
    1957             : 
    1958           0 : bool CConnman::InactivityCheck(const CNode& node) const
    1959             : {
    1960             :     // Tests that see disconnects after using mocktime can start nodes with a
    1961             :     // large timeout. For example, -peertimeout=999999999.
    1962           0 :     const auto now{GetTime<std::chrono::seconds>()};
    1963           0 :     const auto last_send{node.m_last_send.load()};
    1964           0 :     const auto last_recv{node.m_last_recv.load()};
    1965             : 
    1966           0 :     if (!ShouldRunInactivityChecks(node, now)) return false;
    1967             : 
    1968           0 :     if (last_recv.count() == 0 || last_send.count() == 0) {
    1969           0 :         LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
    1970           0 :         return true;
    1971             :     }
    1972             : 
    1973           0 :     if (now > last_send + TIMEOUT_INTERVAL) {
    1974           0 :         LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
    1975           0 :         return true;
    1976             :     }
    1977             : 
    1978           0 :     if (now > last_recv + TIMEOUT_INTERVAL) {
    1979           0 :         LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
    1980           0 :         return true;
    1981             :     }
    1982             : 
    1983           0 :     if (!node.fSuccessfullyConnected) {
    1984           0 :         LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
    1985           0 :         return true;
    1986             :     }
    1987             : 
    1988           0 :     return false;
    1989           0 : }
    1990             : 
    1991           0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
    1992             : {
    1993           0 :     Sock::EventsPerSock events_per_sock;
    1994             : 
    1995           0 :     for (const ListenSocket& hListenSocket : vhListenSocket) {
    1996           0 :         events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
    1997             :     }
    1998             : 
    1999           0 :     for (CNode* pnode : nodes) {
    2000           0 :         bool select_recv = !pnode->fPauseRecv;
    2001             :         bool select_send;
    2002             :         {
    2003           0 :             LOCK(pnode->cs_vSend);
    2004             :             // Sending is possible if either there are bytes to send right now, or if there will be
    2005             :             // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
    2006             :             // determines both of these in a single call.
    2007           0 :             const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
    2008           0 :             select_send = !to_send.empty() || more;
    2009           0 :         }
    2010           0 :         if (!select_recv && !select_send) continue;
    2011             : 
    2012           0 :         LOCK(pnode->m_sock_mutex);
    2013           0 :         if (pnode->m_sock) {
    2014           0 :             Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
    2015           0 :             events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
    2016           0 :         }
    2017           0 :     }
    2018             : 
    2019           0 :     return events_per_sock;
    2020           0 : }
    2021             : 
    2022           0 : void CConnman::SocketHandler()
    2023             : {
    2024           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    2025             : 
    2026           0 :     Sock::EventsPerSock events_per_sock;
    2027             : 
    2028             :     {
    2029           0 :         const NodesSnapshot snap{*this, /*shuffle=*/false};
    2030             : 
    2031           0 :         const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
    2032             : 
    2033             :         // Check for the readiness of the already connected sockets and the
    2034             :         // listening sockets in one call ("readiness" as in poll(2) or
    2035             :         // select(2)). If none are ready, wait for a short while and return
    2036             :         // empty sets.
    2037           0 :         events_per_sock = GenerateWaitSockets(snap.Nodes());
    2038           0 :         if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
    2039           0 :             interruptNet.sleep_for(timeout);
    2040           0 :         }
    2041             : 
    2042             :         // Service (send/receive) each of the already connected nodes.
    2043           0 :         SocketHandlerConnected(snap.Nodes(), events_per_sock);
    2044           0 :     }
    2045             : 
    2046             :     // Accept new connections from listening sockets.
    2047           0 :     SocketHandlerListening(events_per_sock);
    2048           0 : }
    2049             : 
    2050           0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
    2051             :                                       const Sock::EventsPerSock& events_per_sock)
    2052             : {
    2053           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    2054             : 
    2055           0 :     for (CNode* pnode : nodes) {
    2056           0 :         if (interruptNet)
    2057           0 :             return;
    2058             : 
    2059             :         //
    2060             :         // Receive
    2061             :         //
    2062           0 :         bool recvSet = false;
    2063           0 :         bool sendSet = false;
    2064           0 :         bool errorSet = false;
    2065             :         {
    2066           0 :             LOCK(pnode->m_sock_mutex);
    2067           0 :             if (!pnode->m_sock) {
    2068           0 :                 continue;
    2069             :             }
    2070           0 :             const auto it = events_per_sock.find(pnode->m_sock);
    2071           0 :             if (it != events_per_sock.end()) {
    2072           0 :                 recvSet = it->second.occurred & Sock::RECV;
    2073           0 :                 sendSet = it->second.occurred & Sock::SEND;
    2074           0 :                 errorSet = it->second.occurred & Sock::ERR;
    2075           0 :             }
    2076           0 :         }
    2077             : 
    2078           0 :         if (sendSet) {
    2079             :             // Send data
    2080           0 :             auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
    2081           0 :             if (bytes_sent) {
    2082           0 :                 RecordBytesSent(bytes_sent);
    2083             : 
    2084             :                 // If both receiving and (non-optimistic) sending were possible, we first attempt
    2085             :                 // sending. If that succeeds, but does not fully drain the send queue, do not
    2086             :                 // attempt to receive. This avoids needlessly queueing data if the remote peer
    2087             :                 // is slow at receiving data, by means of TCP flow control. We only do this when
    2088             :                 // sending actually succeeded to make sure progress is always made; otherwise a
    2089             :                 // deadlock would be possible when both sides have data to send, but neither is
    2090             :                 // receiving.
    2091           0 :                 if (data_left) recvSet = false;
    2092           0 :             }
    2093           0 :         }
    2094             : 
    2095           0 :         if (recvSet || errorSet)
    2096             :         {
    2097             :             // typical socket buffer is 8K-64K
    2098             :             uint8_t pchBuf[0x10000];
    2099           0 :             int nBytes = 0;
    2100             :             {
    2101           0 :                 LOCK(pnode->m_sock_mutex);
    2102           0 :                 if (!pnode->m_sock) {
    2103           0 :                     continue;
    2104             :                 }
    2105           0 :                 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
    2106           0 :             }
    2107           0 :             if (nBytes > 0)
    2108             :             {
    2109           0 :                 bool notify = false;
    2110           0 :                 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
    2111           0 :                     pnode->CloseSocketDisconnect();
    2112           0 :                 }
    2113           0 :                 RecordBytesRecv(nBytes);
    2114           0 :                 if (notify) {
    2115           0 :                     pnode->MarkReceivedMsgsForProcessing();
    2116           0 :                     WakeMessageHandler();
    2117           0 :                 }
    2118           0 :             }
    2119           0 :             else if (nBytes == 0)
    2120             :             {
    2121             :                 // socket closed gracefully
    2122           0 :                 if (!pnode->fDisconnect) {
    2123           0 :                     LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
    2124           0 :                 }
    2125           0 :                 pnode->CloseSocketDisconnect();
    2126           0 :             }
    2127           0 :             else if (nBytes < 0)
    2128             :             {
    2129             :                 // error
    2130           0 :                 int nErr = WSAGetLastError();
    2131           0 :                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
    2132             :                 {
    2133           0 :                     if (!pnode->fDisconnect) {
    2134           0 :                         LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
    2135           0 :                     }
    2136           0 :                     pnode->CloseSocketDisconnect();
    2137           0 :                 }
    2138           0 :             }
    2139           0 :         }
    2140             : 
    2141           0 :         if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
    2142             :     }
    2143           0 : }
    2144             : 
    2145           0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
    2146             : {
    2147           0 :     for (const ListenSocket& listen_socket : vhListenSocket) {
    2148           0 :         if (interruptNet) {
    2149           0 :             return;
    2150             :         }
    2151           0 :         const auto it = events_per_sock.find(listen_socket.sock);
    2152           0 :         if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
    2153           0 :             AcceptConnection(listen_socket);
    2154           0 :         }
    2155             :     }
    2156           0 : }
    2157             : 
    2158           0 : void CConnman::ThreadSocketHandler()
    2159             : {
    2160           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    2161             : 
    2162           0 :     while (!interruptNet)
    2163             :     {
    2164           0 :         DisconnectNodes();
    2165           0 :         NotifyNumConnectionsChanged();
    2166           0 :         SocketHandler();
    2167             :     }
    2168           0 : }
    2169             : 
    2170           0 : void CConnman::WakeMessageHandler()
    2171             : {
    2172             :     {
    2173           0 :         LOCK(mutexMsgProc);
    2174           0 :         fMsgProcWake = true;
    2175           0 :     }
    2176           0 :     condMsgProc.notify_one();
    2177           0 : }
    2178             : 
    2179           0 : void CConnman::ThreadDNSAddressSeed()
    2180             : {
    2181           0 :     FastRandomContext rng;
    2182           0 :     std::vector<std::string> seeds = m_params.DNSSeeds();
    2183           0 :     Shuffle(seeds.begin(), seeds.end(), rng);
    2184           0 :     int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
    2185           0 :     int found = 0;
    2186             : 
    2187           0 :     if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
    2188             :         // When -forcednsseed is provided, query all.
    2189           0 :         seeds_right_now = seeds.size();
    2190           0 :     } else if (addrman.Size() == 0) {
    2191             :         // If we have no known peers, query all.
    2192             :         // This will occur on the first run, or if peers.dat has been
    2193             :         // deleted.
    2194           0 :         seeds_right_now = seeds.size();
    2195           0 :     }
    2196             : 
    2197             :     // goal: only query DNS seed if address need is acute
    2198             :     // * If we have a reasonable number of peers in addrman, spend
    2199             :     //   some time trying them first. This improves user privacy by
    2200             :     //   creating fewer identifying DNS requests, reduces trust by
    2201             :     //   giving seeds less influence on the network topology, and
    2202             :     //   reduces traffic to the seeds.
    2203             :     // * When querying DNS seeds query a few at once, this ensures
    2204             :     //   that we don't give DNS seeds the ability to eclipse nodes
    2205             :     //   that query them.
    2206             :     // * If we continue having problems, eventually query all the
    2207             :     //   DNS seeds, and if that fails too, also try the fixed seeds.
    2208             :     //   (done in ThreadOpenConnections)
    2209           0 :     const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
    2210             : 
    2211           0 :     for (const std::string& seed : seeds) {
    2212           0 :         if (seeds_right_now == 0) {
    2213           0 :             seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
    2214             : 
    2215           0 :             if (addrman.Size() > 0) {
    2216           0 :                 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
    2217           0 :                 std::chrono::seconds to_wait = seeds_wait_time;
    2218           0 :                 while (to_wait.count() > 0) {
    2219             :                     // if sleeping for the MANY_PEERS interval, wake up
    2220             :                     // early to see if we have enough peers and can stop
    2221             :                     // this thread entirely freeing up its resources
    2222           0 :                     std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
    2223           0 :                     if (!interruptNet.sleep_for(w)) return;
    2224           0 :                     to_wait -= w;
    2225             : 
    2226           0 :                     int nRelevant = 0;
    2227             :                     {
    2228           0 :                         LOCK(m_nodes_mutex);
    2229           0 :                         for (const CNode* pnode : m_nodes) {
    2230           0 :                             if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
    2231             :                         }
    2232           0 :                     }
    2233           0 :                     if (nRelevant >= 2) {
    2234           0 :                         if (found > 0) {
    2235           0 :                             LogPrintf("%d addresses found from DNS seeds\n", found);
    2236           0 :                             LogPrintf("P2P peers available. Finished DNS seeding.\n");
    2237           0 :                         } else {
    2238           0 :                             LogPrintf("P2P peers available. Skipped DNS seeding.\n");
    2239             :                         }
    2240           0 :                         return;
    2241             :                     }
    2242             :                 }
    2243           0 :             }
    2244           0 :         }
    2245             : 
    2246           0 :         if (interruptNet) return;
    2247             : 
    2248             :         // hold off on querying seeds if P2P network deactivated
    2249           0 :         if (!fNetworkActive) {
    2250           0 :             LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
    2251           0 :             do {
    2252           0 :                 if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
    2253           0 :             } while (!fNetworkActive);
    2254           0 :         }
    2255             : 
    2256           0 :         LogPrintf("Loading addresses from DNS seed %s\n", seed);
    2257             :         // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
    2258             :         // for the base dns seed domain in chainparams
    2259           0 :         if (HaveNameProxy()) {
    2260           0 :             AddAddrFetch(seed);
    2261           0 :         } else {
    2262           0 :             std::vector<CAddress> vAdd;
    2263           0 :             ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
    2264           0 :             std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
    2265           0 :             CNetAddr resolveSource;
    2266           0 :             if (!resolveSource.SetInternal(host)) {
    2267           0 :                 continue;
    2268             :             }
    2269           0 :             unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
    2270           0 :             const auto addresses{LookupHost(host, nMaxIPs, true)};
    2271           0 :             if (!addresses.empty()) {
    2272           0 :                 for (const CNetAddr& ip : addresses) {
    2273           0 :                     CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
    2274           0 :                     addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
    2275           0 :                     vAdd.push_back(addr);
    2276           0 :                     found++;
    2277           0 :                 }
    2278           0 :                 addrman.Add(vAdd, resolveSource);
    2279           0 :             } else {
    2280             :                 // If the seed does not support a subdomain with our desired service bits,
    2281             :                 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
    2282             :                 // base dns seed domain in chainparams
    2283           0 :                 AddAddrFetch(seed);
    2284             :             }
    2285           0 :         }
    2286           0 :         --seeds_right_now;
    2287             :     }
    2288           0 :     LogPrintf("%d addresses found from DNS seeds\n", found);
    2289           0 : }
    2290             : 
    2291           0 : void CConnman::DumpAddresses()
    2292             : {
    2293           0 :     const auto start{SteadyClock::now()};
    2294             : 
    2295           0 :     DumpPeerAddresses(::gArgs, addrman);
    2296             : 
    2297           0 :     LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
    2298             :              addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
    2299           0 : }
    2300             : 
    2301           0 : void CConnman::ProcessAddrFetch()
    2302             : {
    2303           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
    2304           0 :     std::string strDest;
    2305             :     {
    2306           0 :         LOCK(m_addr_fetches_mutex);
    2307           0 :         if (m_addr_fetches.empty())
    2308           0 :             return;
    2309           0 :         strDest = m_addr_fetches.front();
    2310           0 :         m_addr_fetches.pop_front();
    2311           0 :     }
    2312           0 :     CAddress addr;
    2313           0 :     CSemaphoreGrant grant(*semOutbound, true);
    2314           0 :     if (grant) {
    2315           0 :         OpenNetworkConnection(addr, false, &grant, strDest.c_str(), ConnectionType::ADDR_FETCH);
    2316           0 :     }
    2317           0 : }
    2318             : 
    2319           0 : bool CConnman::GetTryNewOutboundPeer() const
    2320             : {
    2321           0 :     return m_try_another_outbound_peer;
    2322             : }
    2323             : 
    2324           1 : void CConnman::SetTryNewOutboundPeer(bool flag)
    2325             : {
    2326           1 :     m_try_another_outbound_peer = flag;
    2327           1 :     LogPrint(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
    2328           1 : }
    2329             : 
    2330           0 : void CConnman::StartExtraBlockRelayPeers()
    2331             : {
    2332           0 :     LogPrint(BCLog::NET, "enabling extra block-relay-only peers\n");
    2333           0 :     m_start_extra_block_relay_peers = true;
    2334           0 : }
    2335             : 
    2336             : // Return the number of peers we have over our outbound connection limit
    2337             : // Exclude peers that are marked for disconnect, or are going to be
    2338             : // disconnected soon (eg ADDR_FETCH and FEELER)
    2339             : // Also exclude peers that haven't finished initial connection handshake yet
    2340             : // (so that we don't decide we're over our desired connection limit, and then
    2341             : // evict some peer that has finished the handshake)
    2342           0 : int CConnman::GetExtraFullOutboundCount() const
    2343             : {
    2344           0 :     int full_outbound_peers = 0;
    2345             :     {
    2346           0 :         LOCK(m_nodes_mutex);
    2347           0 :         for (const CNode* pnode : m_nodes) {
    2348           0 :             if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
    2349           0 :                 ++full_outbound_peers;
    2350           0 :             }
    2351             :         }
    2352           0 :     }
    2353           0 :     return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
    2354           0 : }
    2355             : 
    2356           0 : int CConnman::GetExtraBlockRelayCount() const
    2357             : {
    2358           0 :     int block_relay_peers = 0;
    2359             :     {
    2360           0 :         LOCK(m_nodes_mutex);
    2361           0 :         for (const CNode* pnode : m_nodes) {
    2362           0 :             if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
    2363           0 :                 ++block_relay_peers;
    2364           0 :             }
    2365             :         }
    2366           0 :     }
    2367           0 :     return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
    2368           0 : }
    2369             : 
    2370           0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
    2371             : {
    2372           0 :     std::unordered_set<Network> networks{};
    2373           0 :     for (int n = 0; n < NET_MAX; n++) {
    2374           0 :         enum Network net = (enum Network)n;
    2375           0 :         if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
    2376           0 :         if (IsReachable(net) && addrman.Size(net, std::nullopt) == 0) {
    2377           0 :             networks.insert(net);
    2378           0 :         }
    2379           0 :     }
    2380           0 :     return networks;
    2381           0 : }
    2382             : 
    2383           0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
    2384             : {
    2385           0 :     AssertLockHeld(m_nodes_mutex);
    2386           0 :     return m_network_conn_counts[net] > 1;
    2387             : }
    2388             : 
    2389           0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
    2390             : {
    2391           0 :     std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
    2392           0 :     Shuffle(nets.begin(), nets.end(), FastRandomContext());
    2393             : 
    2394           0 :     LOCK(m_nodes_mutex);
    2395           0 :     for (const auto net : nets) {
    2396           0 :         if (IsReachable(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
    2397           0 :             network = net;
    2398           0 :             return true;
    2399             :         }
    2400             :     }
    2401             : 
    2402           0 :     return false;
    2403           0 : }
    2404             : 
    2405           0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
    2406             : {
    2407           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
    2408           0 :     FastRandomContext rng;
    2409             :     // Connect to specific addresses
    2410           0 :     if (!connect.empty())
    2411             :     {
    2412           0 :         for (int64_t nLoop = 0;; nLoop++)
    2413             :         {
    2414           0 :             for (const std::string& strAddr : connect)
    2415             :             {
    2416           0 :                 CAddress addr(CService(), NODE_NONE);
    2417           0 :                 OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), ConnectionType::MANUAL);
    2418           0 :                 for (int i = 0; i < 10 && i < nLoop; i++)
    2419             :                 {
    2420           0 :                     if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
    2421           0 :                         return;
    2422           0 :                 }
    2423           0 :             }
    2424           0 :             if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
    2425           0 :                 return;
    2426           0 :         }
    2427             :     }
    2428             : 
    2429             :     // Initiate network connections
    2430           0 :     auto start = GetTime<std::chrono::microseconds>();
    2431             : 
    2432             :     // Minimum time before next feeler connection (in microseconds).
    2433           0 :     auto next_feeler = GetExponentialRand(start, FEELER_INTERVAL);
    2434           0 :     auto next_extra_block_relay = GetExponentialRand(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
    2435           0 :     auto next_extra_network_peer{GetExponentialRand(start, EXTRA_NETWORK_PEER_INTERVAL)};
    2436           0 :     const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
    2437           0 :     bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
    2438           0 :     const bool use_seednodes{gArgs.IsArgSet("-seednode")};
    2439             : 
    2440           0 :     if (!add_fixed_seeds) {
    2441           0 :         LogPrintf("Fixed seeds are disabled\n");
    2442           0 :     }
    2443             : 
    2444           0 :     while (!interruptNet)
    2445             :     {
    2446           0 :         ProcessAddrFetch();
    2447             : 
    2448           0 :         if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
    2449           0 :             return;
    2450             : 
    2451           0 :         CSemaphoreGrant grant(*semOutbound);
    2452           0 :         if (interruptNet)
    2453           0 :             return;
    2454             : 
    2455           0 :         const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
    2456           0 :         if (add_fixed_seeds && !fixed_seed_networks.empty()) {
    2457             :             // When the node starts with an empty peers.dat, there are a few other sources of peers before
    2458             :             // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
    2459             :             // If none of those are available, we fallback on to fixed seeds immediately, else we allow
    2460             :             // 60 seconds for any of those sources to populate addrman.
    2461           0 :             bool add_fixed_seeds_now = false;
    2462             :             // It is cheapest to check if enough time has passed first.
    2463           0 :             if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
    2464           0 :                 add_fixed_seeds_now = true;
    2465           0 :                 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
    2466           0 :             }
    2467             : 
    2468             :             // Perform cheap checks before locking a mutex.
    2469           0 :             else if (!dnsseed && !use_seednodes) {
    2470           0 :                 LOCK(m_added_nodes_mutex);
    2471           0 :                 if (m_added_nodes.empty()) {
    2472           0 :                     add_fixed_seeds_now = true;
    2473           0 :                     LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
    2474           0 :                 }
    2475           0 :             }
    2476             : 
    2477           0 :             if (add_fixed_seeds_now) {
    2478           0 :                 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
    2479             :                 // We will not make outgoing connections to peers that are unreachable
    2480             :                 // (e.g. because of -onlynet configuration).
    2481             :                 // Therefore, we do not add them to addrman in the first place.
    2482             :                 // In case previously unreachable networks become reachable
    2483             :                 // (e.g. in case of -onlynet changes by the user), fixed seeds will
    2484             :                 // be loaded only for networks for which we have no addresses.
    2485           0 :                 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
    2486           0 :                                                 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
    2487           0 :                                  seed_addrs.end());
    2488           0 :                 CNetAddr local;
    2489           0 :                 local.SetInternal("fixedseeds");
    2490           0 :                 addrman.Add(seed_addrs, local);
    2491           0 :                 add_fixed_seeds = false;
    2492           0 :                 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
    2493           0 :             }
    2494           0 :         }
    2495             : 
    2496             :         //
    2497             :         // Choose an address to connect to based on most recently seen
    2498             :         //
    2499           0 :         CAddress addrConnect;
    2500             : 
    2501             :         // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
    2502           0 :         int nOutboundFullRelay = 0;
    2503           0 :         int nOutboundBlockRelay = 0;
    2504           0 :         int outbound_privacy_network_peers = 0;
    2505           0 :         std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
    2506             : 
    2507             :         {
    2508           0 :             LOCK(m_nodes_mutex);
    2509           0 :             for (const CNode* pnode : m_nodes) {
    2510           0 :                 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
    2511           0 :                 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
    2512             : 
    2513             :                 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
    2514           0 :                 switch (pnode->m_conn_type) {
    2515             :                     // We currently don't take inbound connections into account. Since they are
    2516             :                     // free to make, an attacker could make them to prevent us from connecting to
    2517             :                     // certain peers.
    2518             :                     case ConnectionType::INBOUND:
    2519             :                     // Short-lived outbound connections should not affect how we select outbound
    2520             :                     // peers from addrman.
    2521             :                     case ConnectionType::ADDR_FETCH:
    2522             :                     case ConnectionType::FEELER:
    2523           0 :                         break;
    2524             :                     case ConnectionType::MANUAL:
    2525             :                     case ConnectionType::OUTBOUND_FULL_RELAY:
    2526             :                     case ConnectionType::BLOCK_RELAY:
    2527           0 :                         const CAddress address{pnode->addr};
    2528           0 :                         if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
    2529             :                             // Since our addrman-groups for these networks are
    2530             :                             // random, without relation to the route we
    2531             :                             // take to connect to these peers or to the
    2532             :                             // difficulty in obtaining addresses with diverse
    2533             :                             // groups, we don't worry about diversity with
    2534             :                             // respect to our addrman groups when connecting to
    2535             :                             // these networks.
    2536           0 :                             ++outbound_privacy_network_peers;
    2537           0 :                         } else {
    2538           0 :                             outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
    2539             :                         }
    2540           0 :                 } // no default case, so the compiler can warn about missing cases
    2541             :             }
    2542           0 :         }
    2543             : 
    2544           0 :         ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
    2545           0 :         auto now = GetTime<std::chrono::microseconds>();
    2546           0 :         bool anchor = false;
    2547           0 :         bool fFeeler = false;
    2548           0 :         std::optional<Network> preferred_net;
    2549             : 
    2550             :         // Determine what type of connection to open. Opening
    2551             :         // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
    2552             :         // priority. Then we open OUTBOUND_FULL_RELAY priority until we
    2553             :         // meet our full-relay capacity. Then we open BLOCK_RELAY connection
    2554             :         // until we hit our block-relay-only peer limit.
    2555             :         // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
    2556             :         // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
    2557             :         // these conditions are met, check to see if it's time to try an extra
    2558             :         // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
    2559             :         // timer to decide if we should open a FEELER.
    2560             : 
    2561           0 :         if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
    2562           0 :             conn_type = ConnectionType::BLOCK_RELAY;
    2563           0 :             anchor = true;
    2564           0 :         } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
    2565             :             // OUTBOUND_FULL_RELAY
    2566           0 :         } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
    2567           0 :             conn_type = ConnectionType::BLOCK_RELAY;
    2568           0 :         } else if (GetTryNewOutboundPeer()) {
    2569             :             // OUTBOUND_FULL_RELAY
    2570           0 :         } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
    2571             :             // Periodically connect to a peer (using regular outbound selection
    2572             :             // methodology from addrman) and stay connected long enough to sync
    2573             :             // headers, but not much else.
    2574             :             //
    2575             :             // Then disconnect the peer, if we haven't learned anything new.
    2576             :             //
    2577             :             // The idea is to make eclipse attacks very difficult to pull off,
    2578             :             // because every few minutes we're finding a new peer to learn headers
    2579             :             // from.
    2580             :             //
    2581             :             // This is similar to the logic for trying extra outbound (full-relay)
    2582             :             // peers, except:
    2583             :             // - we do this all the time on an exponential timer, rather than just when
    2584             :             //   our tip is stale
    2585             :             // - we potentially disconnect our next-youngest block-relay-only peer, if our
    2586             :             //   newest block-relay-only peer delivers a block more recently.
    2587             :             //   See the eviction logic in net_processing.cpp.
    2588             :             //
    2589             :             // Because we can promote these connections to block-relay-only
    2590             :             // connections, they do not get their own ConnectionType enum
    2591             :             // (similar to how we deal with extra outbound peers).
    2592           0 :             next_extra_block_relay = GetExponentialRand(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
    2593           0 :             conn_type = ConnectionType::BLOCK_RELAY;
    2594           0 :         } else if (now > next_feeler) {
    2595           0 :             next_feeler = GetExponentialRand(now, FEELER_INTERVAL);
    2596           0 :             conn_type = ConnectionType::FEELER;
    2597           0 :             fFeeler = true;
    2598           0 :         } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
    2599           0 :                    m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
    2600           0 :                    now > next_extra_network_peer &&
    2601           0 :                    MaybePickPreferredNetwork(preferred_net)) {
    2602             :             // Full outbound connection management: Attempt to get at least one
    2603             :             // outbound peer from each reachable network by making extra connections
    2604             :             // and then protecting "only" peers from a network during outbound eviction.
    2605             :             // This is not attempted if the user changed -maxconnections to a value
    2606             :             // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
    2607             :             // to prevent interactions with otherwise protected outbound peers.
    2608           0 :             next_extra_network_peer = GetExponentialRand(now, EXTRA_NETWORK_PEER_INTERVAL);
    2609           0 :         } else {
    2610             :             // skip to next iteration of while loop
    2611           0 :             continue;
    2612             :         }
    2613             : 
    2614           0 :         addrman.ResolveCollisions();
    2615             : 
    2616           0 :         const auto current_time{NodeClock::now()};
    2617           0 :         int nTries = 0;
    2618           0 :         while (!interruptNet)
    2619             :         {
    2620           0 :             if (anchor && !m_anchors.empty()) {
    2621           0 :                 const CAddress addr = m_anchors.back();
    2622           0 :                 m_anchors.pop_back();
    2623           0 :                 if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) ||
    2624           0 :                     !HasAllDesirableServiceFlags(addr.nServices) ||
    2625           0 :                     outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
    2626           0 :                 addrConnect = addr;
    2627           0 :                 LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
    2628           0 :                 break;
    2629           0 :             }
    2630             : 
    2631             :             // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
    2632             :             // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
    2633             :             // already-connected network ranges, ...) before trying new addrman addresses.
    2634           0 :             nTries++;
    2635           0 :             if (nTries > 100)
    2636           0 :                 break;
    2637             : 
    2638           0 :             CAddress addr;
    2639           0 :             NodeSeconds addr_last_try{0s};
    2640             : 
    2641           0 :             if (fFeeler) {
    2642             :                 // First, try to get a tried table collision address. This returns
    2643             :                 // an empty (invalid) address if there are no collisions to try.
    2644           0 :                 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
    2645             : 
    2646           0 :                 if (!addr.IsValid()) {
    2647             :                     // No tried table collisions. Select a new table address
    2648             :                     // for our feeler.
    2649           0 :                     std::tie(addr, addr_last_try) = addrman.Select(true);
    2650           0 :                 } else if (AlreadyConnectedToAddress(addr)) {
    2651             :                     // If test-before-evict logic would have us connect to a
    2652             :                     // peer that we're already connected to, just mark that
    2653             :                     // address as Good(). We won't be able to initiate the
    2654             :                     // connection anyway, so this avoids inadvertently evicting
    2655             :                     // a currently-connected peer.
    2656           0 :                     addrman.Good(addr);
    2657             :                     // Select a new table address for our feeler instead.
    2658           0 :                     std::tie(addr, addr_last_try) = addrman.Select(true);
    2659           0 :                 }
    2660           0 :             } else {
    2661             :                 // Not a feeler
    2662             :                 // If preferred_net has a value set, pick an extra outbound
    2663             :                 // peer from that network. The eviction logic in net_processing
    2664             :                 // ensures that a peer from another network will be evicted.
    2665           0 :                 std::tie(addr, addr_last_try) = addrman.Select(false, preferred_net);
    2666             :             }
    2667             : 
    2668             :             // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
    2669           0 :             if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
    2670           0 :                 continue;
    2671             :             }
    2672             : 
    2673             :             // if we selected an invalid or local address, restart
    2674           0 :             if (!addr.IsValid() || IsLocal(addr)) {
    2675           0 :                 break;
    2676             :             }
    2677             : 
    2678           0 :             if (!IsReachable(addr))
    2679           0 :                 continue;
    2680             : 
    2681             :             // only consider very recently tried nodes after 30 failed attempts
    2682           0 :             if (current_time - addr_last_try < 10min && nTries < 30) {
    2683           0 :                 continue;
    2684             :             }
    2685             : 
    2686             :             // for non-feelers, require all the services we'll want,
    2687             :             // for feelers, only require they be a full node (only because most
    2688             :             // SPV clients don't have a good address DB available)
    2689           0 :             if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
    2690           0 :                 continue;
    2691           0 :             } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
    2692           0 :                 continue;
    2693             :             }
    2694             : 
    2695             :             // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
    2696           0 :             if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
    2697           0 :                 continue;
    2698             :             }
    2699             : 
    2700           0 :             addrConnect = addr;
    2701           0 :             break;
    2702           0 :         }
    2703             : 
    2704           0 :         if (addrConnect.IsValid()) {
    2705           0 :             if (fFeeler) {
    2706             :                 // Add small amount of random noise before connection to avoid synchronization.
    2707           0 :                 if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
    2708           0 :                     return;
    2709             :                 }
    2710           0 :                 LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
    2711           0 :             }
    2712             : 
    2713           0 :             if (preferred_net != std::nullopt) LogPrint(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
    2714             : 
    2715             :             // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
    2716             :             // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
    2717             :             // Don't record addrman failure attempts when node is offline. This can be identified since all local
    2718             :             // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
    2719           0 :             const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(nMaxConnections - 1, 2)};
    2720           0 :             OpenNetworkConnection(addrConnect, count_failures, &grant, /*strDest=*/nullptr, conn_type);
    2721           0 :         }
    2722           0 :     }
    2723           0 : }
    2724             : 
    2725           0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
    2726             : {
    2727           0 :     std::vector<CAddress> ret;
    2728           0 :     LOCK(m_nodes_mutex);
    2729           0 :     for (const CNode* pnode : m_nodes) {
    2730           0 :         if (pnode->IsBlockOnlyConn()) {
    2731           0 :             ret.push_back(pnode->addr);
    2732           0 :         }
    2733             :     }
    2734             : 
    2735           0 :     return ret;
    2736           0 : }
    2737             : 
    2738           0 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() const
    2739             : {
    2740           0 :     std::vector<AddedNodeInfo> ret;
    2741             : 
    2742           0 :     std::list<std::string> lAddresses(0);
    2743             :     {
    2744           0 :         LOCK(m_added_nodes_mutex);
    2745           0 :         ret.reserve(m_added_nodes.size());
    2746           0 :         std::copy(m_added_nodes.cbegin(), m_added_nodes.cend(), std::back_inserter(lAddresses));
    2747           0 :     }
    2748             : 
    2749             : 
    2750             :     // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
    2751           0 :     std::map<CService, bool> mapConnected;
    2752           0 :     std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
    2753             :     {
    2754           0 :         LOCK(m_nodes_mutex);
    2755           0 :         for (const CNode* pnode : m_nodes) {
    2756           0 :             if (pnode->addr.IsValid()) {
    2757           0 :                 mapConnected[pnode->addr] = pnode->IsInboundConn();
    2758           0 :             }
    2759           0 :             std::string addrName{pnode->m_addr_name};
    2760           0 :             if (!addrName.empty()) {
    2761           0 :                 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
    2762           0 :             }
    2763           0 :         }
    2764           0 :     }
    2765             : 
    2766           0 :     for (const std::string& strAddNode : lAddresses) {
    2767           0 :         CService service(LookupNumeric(strAddNode, GetDefaultPort(strAddNode)));
    2768           0 :         AddedNodeInfo addedNode{strAddNode, CService(), false, false};
    2769           0 :         if (service.IsValid()) {
    2770             :             // strAddNode is an IP:port
    2771           0 :             auto it = mapConnected.find(service);
    2772           0 :             if (it != mapConnected.end()) {
    2773           0 :                 addedNode.resolvedAddress = service;
    2774           0 :                 addedNode.fConnected = true;
    2775           0 :                 addedNode.fInbound = it->second;
    2776           0 :             }
    2777           0 :         } else {
    2778             :             // strAddNode is a name
    2779           0 :             auto it = mapConnectedByName.find(strAddNode);
    2780           0 :             if (it != mapConnectedByName.end()) {
    2781           0 :                 addedNode.resolvedAddress = it->second.second;
    2782           0 :                 addedNode.fConnected = true;
    2783           0 :                 addedNode.fInbound = it->second.first;
    2784           0 :             }
    2785             :         }
    2786           0 :         ret.emplace_back(std::move(addedNode));
    2787           0 :     }
    2788             : 
    2789           0 :     return ret;
    2790           0 : }
    2791             : 
    2792           0 : void CConnman::ThreadOpenAddedConnections()
    2793             : {
    2794           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
    2795           0 :     while (true)
    2796             :     {
    2797           0 :         CSemaphoreGrant grant(*semAddnode);
    2798           0 :         std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
    2799           0 :         bool tried = false;
    2800           0 :         for (const AddedNodeInfo& info : vInfo) {
    2801           0 :             if (!info.fConnected) {
    2802           0 :                 if (!grant.TryAcquire()) {
    2803             :                     // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
    2804             :                     // the addednodeinfo state might change.
    2805           0 :                     break;
    2806             :                 }
    2807           0 :                 tried = true;
    2808           0 :                 CAddress addr(CService(), NODE_NONE);
    2809           0 :                 OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), ConnectionType::MANUAL);
    2810           0 :                 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
    2811           0 :                     return;
    2812           0 :             }
    2813             :         }
    2814             :         // Retry every 60 seconds if a connection was attempted, otherwise two seconds
    2815           0 :         if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
    2816           0 :             return;
    2817           0 :     }
    2818           0 : }
    2819             : 
    2820             : // if successful, this moves the passed grant to the constructed node
    2821           0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, ConnectionType conn_type)
    2822             : {
    2823           0 :     AssertLockNotHeld(m_unused_i2p_sessions_mutex);
    2824           0 :     assert(conn_type != ConnectionType::INBOUND);
    2825             : 
    2826             :     //
    2827             :     // Initiate outbound network connection
    2828             :     //
    2829           0 :     if (interruptNet) {
    2830           0 :         return;
    2831             :     }
    2832           0 :     if (!fNetworkActive) {
    2833           0 :         return;
    2834             :     }
    2835           0 :     if (!pszDest) {
    2836           0 :         bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
    2837           0 :         if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
    2838           0 :             return;
    2839             :         }
    2840           0 :     } else if (FindNode(std::string(pszDest)))
    2841           0 :         return;
    2842             : 
    2843           0 :     CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
    2844             : 
    2845           0 :     if (!pnode)
    2846           0 :         return;
    2847           0 :     if (grantOutbound)
    2848           0 :         grantOutbound->MoveTo(pnode->grantOutbound);
    2849             : 
    2850           0 :     m_msgproc->InitializeNode(*pnode, nLocalServices);
    2851             :     {
    2852           0 :         LOCK(m_nodes_mutex);
    2853           0 :         m_nodes.push_back(pnode);
    2854             : 
    2855             :         // update connection count by network
    2856           0 :         if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
    2857           0 :     }
    2858           0 : }
    2859             : 
    2860             : Mutex NetEventsInterface::g_msgproc_mutex;
    2861             : 
    2862           0 : void CConnman::ThreadMessageHandler()
    2863             : {
    2864           0 :     LOCK(NetEventsInterface::g_msgproc_mutex);
    2865             : 
    2866           0 :     while (!flagInterruptMsgProc)
    2867             :     {
    2868           0 :         bool fMoreWork = false;
    2869             : 
    2870             :         {
    2871             :             // Randomize the order in which we process messages from/to our peers.
    2872             :             // This prevents attacks in which an attacker exploits having multiple
    2873             :             // consecutive connections in the m_nodes list.
    2874           0 :             const NodesSnapshot snap{*this, /*shuffle=*/true};
    2875             : 
    2876           0 :             for (CNode* pnode : snap.Nodes()) {
    2877           0 :                 if (pnode->fDisconnect)
    2878           0 :                     continue;
    2879             : 
    2880             :                 // Receive messages
    2881           0 :                 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
    2882           0 :                 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
    2883           0 :                 if (flagInterruptMsgProc)
    2884           0 :                     return;
    2885             :                 // Send messages
    2886           0 :                 m_msgproc->SendMessages(pnode);
    2887             : 
    2888           0 :                 if (flagInterruptMsgProc)
    2889           0 :                     return;
    2890             :             }
    2891           0 :         }
    2892             : 
    2893           0 :         WAIT_LOCK(mutexMsgProc, lock);
    2894           0 :         if (!fMoreWork) {
    2895           0 :             condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
    2896           0 :         }
    2897           0 :         fMsgProcWake = false;
    2898           0 :     }
    2899           0 : }
    2900             : 
    2901           0 : void CConnman::ThreadI2PAcceptIncoming()
    2902             : {
    2903             :     static constexpr auto err_wait_begin = 1s;
    2904             :     static constexpr auto err_wait_cap = 5min;
    2905           0 :     auto err_wait = err_wait_begin;
    2906             : 
    2907           0 :     bool advertising_listen_addr = false;
    2908           0 :     i2p::Connection conn;
    2909             : 
    2910           0 :     while (!interruptNet) {
    2911             : 
    2912           0 :         if (!m_i2p_sam_session->Listen(conn)) {
    2913           0 :             if (advertising_listen_addr && conn.me.IsValid()) {
    2914           0 :                 RemoveLocal(conn.me);
    2915           0 :                 advertising_listen_addr = false;
    2916           0 :             }
    2917             : 
    2918           0 :             interruptNet.sleep_for(err_wait);
    2919           0 :             if (err_wait < err_wait_cap) {
    2920           0 :                 err_wait *= 2;
    2921           0 :             }
    2922             : 
    2923           0 :             continue;
    2924             :         }
    2925             : 
    2926           0 :         if (!advertising_listen_addr) {
    2927           0 :             AddLocal(conn.me, LOCAL_MANUAL);
    2928           0 :             advertising_listen_addr = true;
    2929           0 :         }
    2930             : 
    2931           0 :         if (!m_i2p_sam_session->Accept(conn)) {
    2932           0 :             continue;
    2933             :         }
    2934             : 
    2935           0 :         CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
    2936           0 :                                      CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
    2937             :     }
    2938           0 : }
    2939             : 
    2940           0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
    2941             : {
    2942           0 :     int nOne = 1;
    2943             : 
    2944             :     // Create socket for listening for incoming connections
    2945             :     struct sockaddr_storage sockaddr;
    2946           0 :     socklen_t len = sizeof(sockaddr);
    2947           0 :     if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
    2948             :     {
    2949           0 :         strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
    2950           0 :         LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
    2951           0 :         return false;
    2952             :     }
    2953             : 
    2954           0 :     std::unique_ptr<Sock> sock = CreateSock(addrBind);
    2955           0 :     if (!sock) {
    2956           0 :         strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
    2957           0 :         LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
    2958           0 :         return false;
    2959             :     }
    2960             : 
    2961             :     // Allow binding if the port is still in TIME_WAIT state after
    2962             :     // the program was closed and restarted.
    2963           0 :     if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
    2964           0 :         strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
    2965           0 :         LogPrintf("%s\n", strError.original);
    2966           0 :     }
    2967             : 
    2968             :     // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
    2969             :     // and enable it by default or not. Try to enable it, if possible.
    2970           0 :     if (addrBind.IsIPv6()) {
    2971             : #ifdef IPV6_V6ONLY
    2972           0 :         if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
    2973           0 :             strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
    2974           0 :             LogPrintf("%s\n", strError.original);
    2975           0 :         }
    2976             : #endif
    2977             : #ifdef WIN32
    2978             :         int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
    2979             :         if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
    2980             :             strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
    2981             :             LogPrintf("%s\n", strError.original);
    2982             :         }
    2983             : #endif
    2984           0 :     }
    2985             : 
    2986           0 :     if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
    2987           0 :         int nErr = WSAGetLastError();
    2988           0 :         if (nErr == WSAEADDRINUSE)
    2989           0 :             strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), PACKAGE_NAME);
    2990             :         else
    2991           0 :             strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
    2992           0 :         LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
    2993           0 :         return false;
    2994             :     }
    2995           0 :     LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
    2996             : 
    2997             :     // Listen for incoming connections
    2998           0 :     if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
    2999             :     {
    3000           0 :         strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
    3001           0 :         LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
    3002           0 :         return false;
    3003             :     }
    3004             : 
    3005           0 :     vhListenSocket.emplace_back(std::move(sock), permissions);
    3006           0 :     return true;
    3007           0 : }
    3008             : 
    3009           0 : void Discover()
    3010             : {
    3011           0 :     if (!fDiscover)
    3012           0 :         return;
    3013             : 
    3014             : #ifdef WIN32
    3015             :     // Get local host IP
    3016             :     char pszHostName[256] = "";
    3017             :     if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
    3018             :     {
    3019             :         const std::vector<CNetAddr> addresses{LookupHost(pszHostName, 0, true)};
    3020             :         for (const CNetAddr& addr : addresses)
    3021             :         {
    3022             :             if (AddLocal(addr, LOCAL_IF))
    3023             :                 LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToStringAddr());
    3024             :         }
    3025             :     }
    3026             : #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
    3027             :     // Get local host ip
    3028             :     struct ifaddrs* myaddrs;
    3029           0 :     if (getifaddrs(&myaddrs) == 0)
    3030             :     {
    3031           0 :         for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
    3032             :         {
    3033           0 :             if (ifa->ifa_addr == nullptr) continue;
    3034           0 :             if ((ifa->ifa_flags & IFF_UP) == 0) continue;
    3035           0 :             if (strcmp(ifa->ifa_name, "lo") == 0) continue;
    3036           0 :             if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
    3037           0 :             if (ifa->ifa_addr->sa_family == AF_INET)
    3038             :             {
    3039           0 :                 struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
    3040           0 :                 CNetAddr addr(s4->sin_addr);
    3041           0 :                 if (AddLocal(addr, LOCAL_IF))
    3042           0 :                     LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
    3043           0 :             }
    3044           0 :             else if (ifa->ifa_addr->sa_family == AF_INET6)
    3045             :             {
    3046           0 :                 struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
    3047           0 :                 CNetAddr addr(s6->sin6_addr);
    3048           0 :                 if (AddLocal(addr, LOCAL_IF))
    3049           0 :                     LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
    3050           0 :             }
    3051           0 :         }
    3052           0 :         freeifaddrs(myaddrs);
    3053           0 :     }
    3054             : #endif
    3055           0 : }
    3056             : 
    3057           1 : void CConnman::SetNetworkActive(bool active)
    3058             : {
    3059           1 :     LogPrintf("%s: %s\n", __func__, active);
    3060             : 
    3061           1 :     if (fNetworkActive == active) {
    3062           1 :         return;
    3063             :     }
    3064             : 
    3065           0 :     fNetworkActive = active;
    3066             : 
    3067           0 :     if (m_client_interface) {
    3068           0 :         m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
    3069           0 :     }
    3070           1 : }
    3071             : 
    3072           1 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
    3073             :                    const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
    3074           1 :     : addrman(addrman_in)
    3075           1 :     , m_netgroupman{netgroupman}
    3076           1 :     , nSeed0(nSeed0In)
    3077           1 :     , nSeed1(nSeed1In)
    3078           1 :     , m_params(params)
    3079             : {
    3080           1 :     SetTryNewOutboundPeer(false);
    3081             : 
    3082           1 :     Options connOptions;
    3083           1 :     Init(connOptions);
    3084           1 :     SetNetworkActive(network_active);
    3085           1 : }
    3086             : 
    3087           0 : NodeId CConnman::GetNewNodeId()
    3088             : {
    3089           0 :     return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
    3090             : }
    3091             : 
    3092           0 : uint16_t CConnman::GetDefaultPort(Network net) const
    3093             : {
    3094           0 :     return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
    3095             : }
    3096             : 
    3097           0 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
    3098             : {
    3099           0 :     CNetAddr a;
    3100           0 :     return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
    3101           0 : }
    3102             : 
    3103           0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
    3104             : {
    3105           0 :     const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
    3106             : 
    3107           0 :     bilingual_str strError;
    3108           0 :     if (!BindListenPort(addr, strError, permissions)) {
    3109           0 :         if ((flags & BF_REPORT_ERROR) && m_client_interface) {
    3110           0 :             m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
    3111           0 :         }
    3112           0 :         return false;
    3113             :     }
    3114             : 
    3115           0 :     if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
    3116           0 :         AddLocal(addr, LOCAL_BIND);
    3117           0 :     }
    3118             : 
    3119           0 :     return true;
    3120           0 : }
    3121             : 
    3122           0 : bool CConnman::InitBinds(const Options& options)
    3123             : {
    3124           0 :     bool fBound = false;
    3125           0 :     for (const auto& addrBind : options.vBinds) {
    3126           0 :         fBound |= Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None);
    3127             :     }
    3128           0 :     for (const auto& addrBind : options.vWhiteBinds) {
    3129           0 :         fBound |= Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags);
    3130             :     }
    3131           0 :     for (const auto& addr_bind : options.onion_binds) {
    3132           0 :         fBound |= Bind(addr_bind, BF_DONT_ADVERTISE, NetPermissionFlags::None);
    3133             :     }
    3134           0 :     if (options.bind_on_any) {
    3135             :         struct in_addr inaddr_any;
    3136           0 :         inaddr_any.s_addr = htonl(INADDR_ANY);
    3137           0 :         struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
    3138           0 :         fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::None);
    3139           0 :         fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::None);
    3140           0 :     }
    3141           0 :     return fBound;
    3142           0 : }
    3143             : 
    3144           0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
    3145             : {
    3146           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3147           0 :     Init(connOptions);
    3148             : 
    3149           0 :     if (fListen && !InitBinds(connOptions)) {
    3150           0 :         if (m_client_interface) {
    3151           0 :             m_client_interface->ThreadSafeMessageBox(
    3152           0 :                 _("Failed to listen on any port. Use -listen=0 if you want this."),
    3153           0 :                 "", CClientUIInterface::MSG_ERROR);
    3154           0 :         }
    3155           0 :         return false;
    3156             :     }
    3157             : 
    3158           0 :     Proxy i2p_sam;
    3159           0 :     if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
    3160           0 :         m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
    3161           0 :                                                                 i2p_sam.proxy, &interruptNet);
    3162           0 :     }
    3163             : 
    3164           0 :     for (const auto& strDest : connOptions.vSeedNodes) {
    3165           0 :         AddAddrFetch(strDest);
    3166             :     }
    3167             : 
    3168           0 :     if (m_use_addrman_outgoing) {
    3169             :         // Load addresses from anchors.dat
    3170           0 :         m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
    3171           0 :         if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
    3172           0 :             m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
    3173           0 :         }
    3174           0 :         LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
    3175           0 :     }
    3176             : 
    3177           0 :     if (m_client_interface) {
    3178           0 :         m_client_interface->InitMessage(_("Starting network threads…").translated);
    3179           0 :     }
    3180             : 
    3181           0 :     fAddressesInitialized = true;
    3182             : 
    3183           0 :     if (semOutbound == nullptr) {
    3184             :         // initialize semaphore
    3185           0 :         semOutbound = std::make_unique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
    3186           0 :     }
    3187           0 :     if (semAddnode == nullptr) {
    3188             :         // initialize semaphore
    3189           0 :         semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
    3190           0 :     }
    3191             : 
    3192             :     //
    3193             :     // Start threads
    3194             :     //
    3195           0 :     assert(m_msgproc);
    3196           0 :     InterruptSocks5(false);
    3197           0 :     interruptNet.reset();
    3198           0 :     flagInterruptMsgProc = false;
    3199             : 
    3200             :     {
    3201           0 :         LOCK(mutexMsgProc);
    3202           0 :         fMsgProcWake = false;
    3203           0 :     }
    3204             : 
    3205             :     // Send and receive from sockets, accept connections
    3206           0 :     threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
    3207             : 
    3208           0 :     if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
    3209           0 :         LogPrintf("DNS seeding disabled\n");
    3210             :     else
    3211           0 :         threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
    3212             : 
    3213             :     // Initiate manual connections
    3214           0 :     threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
    3215             : 
    3216           0 :     if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
    3217           0 :         if (m_client_interface) {
    3218           0 :             m_client_interface->ThreadSafeMessageBox(
    3219           0 :                 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
    3220           0 :                 "", CClientUIInterface::MSG_ERROR);
    3221           0 :         }
    3222           0 :         return false;
    3223             :     }
    3224           0 :     if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
    3225           0 :         threadOpenConnections = std::thread(
    3226           0 :             &util::TraceThread, "opencon",
    3227           0 :             [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect); });
    3228           0 :     }
    3229             : 
    3230             :     // Process messages
    3231           0 :     threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
    3232             : 
    3233           0 :     if (m_i2p_sam_session) {
    3234           0 :         threadI2PAcceptIncoming =
    3235           0 :             std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
    3236           0 :     }
    3237             : 
    3238             :     // Dump network addresses
    3239           0 :     scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
    3240             : 
    3241           0 :     return true;
    3242           0 : }
    3243             : 
    3244             : class CNetCleanup
    3245             : {
    3246             : public:
    3247             :     CNetCleanup() = default;
    3248             : 
    3249           2 :     ~CNetCleanup()
    3250             :     {
    3251             : #ifdef WIN32
    3252             :         // Shutdown Windows Sockets
    3253             :         WSACleanup();
    3254             : #endif
    3255           2 :     }
    3256             : };
    3257             : static CNetCleanup instance_of_cnetcleanup;
    3258             : 
    3259           1 : void CConnman::Interrupt()
    3260             : {
    3261             :     {
    3262           1 :         LOCK(mutexMsgProc);
    3263           1 :         flagInterruptMsgProc = true;
    3264           1 :     }
    3265           1 :     condMsgProc.notify_all();
    3266             : 
    3267           1 :     interruptNet();
    3268           1 :     InterruptSocks5(true);
    3269             : 
    3270           1 :     if (semOutbound) {
    3271           0 :         for (int i=0; i<m_max_outbound; i++) {
    3272           0 :             semOutbound->post();
    3273           0 :         }
    3274           0 :     }
    3275             : 
    3276           1 :     if (semAddnode) {
    3277           0 :         for (int i=0; i<nMaxAddnode; i++) {
    3278           0 :             semAddnode->post();
    3279           0 :         }
    3280           0 :     }
    3281           1 : }
    3282             : 
    3283           1 : void CConnman::StopThreads()
    3284             : {
    3285           1 :     if (threadI2PAcceptIncoming.joinable()) {
    3286           0 :         threadI2PAcceptIncoming.join();
    3287           0 :     }
    3288           1 :     if (threadMessageHandler.joinable())
    3289           0 :         threadMessageHandler.join();
    3290           1 :     if (threadOpenConnections.joinable())
    3291           0 :         threadOpenConnections.join();
    3292           1 :     if (threadOpenAddedConnections.joinable())
    3293           0 :         threadOpenAddedConnections.join();
    3294           1 :     if (threadDNSAddressSeed.joinable())
    3295           0 :         threadDNSAddressSeed.join();
    3296           1 :     if (threadSocketHandler.joinable())
    3297           0 :         threadSocketHandler.join();
    3298           1 : }
    3299             : 
    3300           1 : void CConnman::StopNodes()
    3301             : {
    3302           1 :     if (fAddressesInitialized) {
    3303           0 :         DumpAddresses();
    3304           0 :         fAddressesInitialized = false;
    3305             : 
    3306           0 :         if (m_use_addrman_outgoing) {
    3307             :             // Anchor connections are only dumped during clean shutdown.
    3308           0 :             std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
    3309           0 :             if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
    3310           0 :                 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
    3311           0 :             }
    3312           0 :             DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
    3313           0 :         }
    3314           0 :     }
    3315             : 
    3316             :     // Delete peer connections.
    3317           1 :     std::vector<CNode*> nodes;
    3318           2 :     WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
    3319           1 :     for (CNode* pnode : nodes) {
    3320           0 :         pnode->CloseSocketDisconnect();
    3321           0 :         DeleteNode(pnode);
    3322             :     }
    3323             : 
    3324           1 :     for (CNode* pnode : m_nodes_disconnected) {
    3325           0 :         DeleteNode(pnode);
    3326             :     }
    3327           1 :     m_nodes_disconnected.clear();
    3328           1 :     vhListenSocket.clear();
    3329           1 :     semOutbound.reset();
    3330           1 :     semAddnode.reset();
    3331           1 : }
    3332             : 
    3333           0 : void CConnman::DeleteNode(CNode* pnode)
    3334             : {
    3335           0 :     assert(pnode);
    3336           0 :     m_msgproc->FinalizeNode(*pnode);
    3337           0 :     delete pnode;
    3338           0 : }
    3339             : 
    3340           1 : CConnman::~CConnman()
    3341             : {
    3342           1 :     Interrupt();
    3343           1 :     Stop();
    3344           1 : }
    3345             : 
    3346           0 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network) const
    3347             : {
    3348           0 :     std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network);
    3349           0 :     if (m_banman) {
    3350           0 :         addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
    3351           0 :                         [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
    3352           0 :                         addresses.end());
    3353           0 :     }
    3354           0 :     return addresses;
    3355           0 : }
    3356             : 
    3357           0 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
    3358             : {
    3359           0 :     auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
    3360           0 :     uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
    3361           0 :         .Write(requestor.ConnectedThroughNetwork())
    3362           0 :         .Write(local_socket_bytes)
    3363             :         // For outbound connections, the port of the bound address is randomly
    3364             :         // assigned by the OS and would therefore not be useful for seeding.
    3365           0 :         .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
    3366           0 :         .Finalize();
    3367           0 :     const auto current_time = GetTime<std::chrono::microseconds>();
    3368           0 :     auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
    3369           0 :     CachedAddrResponse& cache_entry = r.first->second;
    3370           0 :     if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
    3371           0 :         cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
    3372             :         // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
    3373             :         // and the usefulness of ADDR responses to honest users.
    3374             :         //
    3375             :         // Longer cache lifetime makes it more difficult for an attacker to scrape
    3376             :         // enough AddrMan data to maliciously infer something useful.
    3377             :         // By the time an attacker scraped enough AddrMan records, most of
    3378             :         // the records should be old enough to not leak topology info by
    3379             :         // e.g. analyzing real-time changes in timestamps.
    3380             :         //
    3381             :         // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
    3382             :         // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
    3383             :         // most of it could be scraped (considering that timestamps are updated via
    3384             :         // ADDR self-announcements and when nodes communicate).
    3385             :         // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
    3386             :         // (because even several timestamps of the same handful of nodes may leak privacy).
    3387             :         //
    3388             :         // On the other hand, longer cache lifetime makes ADDR responses
    3389             :         // outdated and less useful for an honest requestor, e.g. if most nodes
    3390             :         // in the ADDR response are no longer active.
    3391             :         //
    3392             :         // However, the churn in the network is known to be rather low. Since we consider
    3393             :         // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
    3394             :         // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
    3395             :         // in terms of the freshness of the response.
    3396           0 :         cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
    3397           0 :     }
    3398           0 :     return cache_entry.m_addrs_response_cache;
    3399           0 : }
    3400             : 
    3401           0 : bool CConnman::AddNode(const std::string& strNode)
    3402             : {
    3403           0 :     LOCK(m_added_nodes_mutex);
    3404           0 :     for (const std::string& it : m_added_nodes) {
    3405           0 :         if (strNode == it) return false;
    3406             :     }
    3407             : 
    3408           0 :     m_added_nodes.push_back(strNode);
    3409           0 :     return true;
    3410           0 : }
    3411             : 
    3412           0 : bool CConnman::RemoveAddedNode(const std::string& strNode)
    3413             : {
    3414           0 :     LOCK(m_added_nodes_mutex);
    3415           0 :     for(std::vector<std::string>::iterator it = m_added_nodes.begin(); it != m_added_nodes.end(); ++it) {
    3416           0 :         if (strNode == *it) {
    3417           0 :             m_added_nodes.erase(it);
    3418           0 :             return true;
    3419             :         }
    3420           0 :     }
    3421           0 :     return false;
    3422           0 : }
    3423             : 
    3424           0 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
    3425             : {
    3426           0 :     LOCK(m_nodes_mutex);
    3427           0 :     if (flags == ConnectionDirection::Both) // Shortcut if we want total
    3428           0 :         return m_nodes.size();
    3429             : 
    3430           0 :     int nNum = 0;
    3431           0 :     for (const auto& pnode : m_nodes) {
    3432           0 :         if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
    3433           0 :             nNum++;
    3434           0 :         }
    3435             :     }
    3436             : 
    3437           0 :     return nNum;
    3438           0 : }
    3439             : 
    3440           0 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
    3441             : {
    3442           0 :     return m_netgroupman.GetMappedAS(addr);
    3443             : }
    3444             : 
    3445           0 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
    3446             : {
    3447           0 :     vstats.clear();
    3448           0 :     LOCK(m_nodes_mutex);
    3449           0 :     vstats.reserve(m_nodes.size());
    3450           0 :     for (CNode* pnode : m_nodes) {
    3451           0 :         vstats.emplace_back();
    3452           0 :         pnode->CopyStats(vstats.back());
    3453           0 :         vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
    3454             :     }
    3455           0 : }
    3456             : 
    3457           0 : bool CConnman::DisconnectNode(const std::string& strNode)
    3458             : {
    3459           0 :     LOCK(m_nodes_mutex);
    3460           0 :     if (CNode* pnode = FindNode(strNode)) {
    3461           0 :         LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
    3462           0 :         pnode->fDisconnect = true;
    3463           0 :         return true;
    3464             :     }
    3465           0 :     return false;
    3466           0 : }
    3467             : 
    3468           0 : bool CConnman::DisconnectNode(const CSubNet& subnet)
    3469             : {
    3470           0 :     bool disconnected = false;
    3471           0 :     LOCK(m_nodes_mutex);
    3472           0 :     for (CNode* pnode : m_nodes) {
    3473           0 :         if (subnet.Match(pnode->addr)) {
    3474           0 :             LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
    3475           0 :             pnode->fDisconnect = true;
    3476           0 :             disconnected = true;
    3477           0 :         }
    3478             :     }
    3479           0 :     return disconnected;
    3480           0 : }
    3481             : 
    3482           0 : bool CConnman::DisconnectNode(const CNetAddr& addr)
    3483             : {
    3484           0 :     return DisconnectNode(CSubNet(addr));
    3485           0 : }
    3486             : 
    3487           0 : bool CConnman::DisconnectNode(NodeId id)
    3488             : {
    3489           0 :     LOCK(m_nodes_mutex);
    3490           0 :     for(CNode* pnode : m_nodes) {
    3491           0 :         if (id == pnode->GetId()) {
    3492           0 :             LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
    3493           0 :             pnode->fDisconnect = true;
    3494           0 :             return true;
    3495             :         }
    3496             :     }
    3497           0 :     return false;
    3498           0 : }
    3499             : 
    3500           0 : void CConnman::RecordBytesRecv(uint64_t bytes)
    3501             : {
    3502           0 :     nTotalBytesRecv += bytes;
    3503           0 : }
    3504             : 
    3505           0 : void CConnman::RecordBytesSent(uint64_t bytes)
    3506             : {
    3507           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3508           0 :     LOCK(m_total_bytes_sent_mutex);
    3509             : 
    3510           0 :     nTotalBytesSent += bytes;
    3511             : 
    3512           0 :     const auto now = GetTime<std::chrono::seconds>();
    3513           0 :     if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
    3514             :     {
    3515             :         // timeframe expired, reset cycle
    3516           0 :         nMaxOutboundCycleStartTime = now;
    3517           0 :         nMaxOutboundTotalBytesSentInCycle = 0;
    3518           0 :     }
    3519             : 
    3520           0 :     nMaxOutboundTotalBytesSentInCycle += bytes;
    3521           0 : }
    3522             : 
    3523           0 : uint64_t CConnman::GetMaxOutboundTarget() const
    3524             : {
    3525           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3526           0 :     LOCK(m_total_bytes_sent_mutex);
    3527           0 :     return nMaxOutboundLimit;
    3528           0 : }
    3529             : 
    3530           0 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
    3531             : {
    3532           0 :     return MAX_UPLOAD_TIMEFRAME;
    3533             : }
    3534             : 
    3535           0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
    3536             : {
    3537           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3538           0 :     LOCK(m_total_bytes_sent_mutex);
    3539           0 :     return GetMaxOutboundTimeLeftInCycle_();
    3540           0 : }
    3541             : 
    3542           0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
    3543             : {
    3544           0 :     AssertLockHeld(m_total_bytes_sent_mutex);
    3545             : 
    3546           0 :     if (nMaxOutboundLimit == 0)
    3547           0 :         return 0s;
    3548             : 
    3549           0 :     if (nMaxOutboundCycleStartTime.count() == 0)
    3550           0 :         return MAX_UPLOAD_TIMEFRAME;
    3551             : 
    3552           0 :     const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
    3553           0 :     const auto now = GetTime<std::chrono::seconds>();
    3554           0 :     return (cycleEndTime < now) ? 0s : cycleEndTime - now;
    3555           0 : }
    3556             : 
    3557           0 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
    3558             : {
    3559           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3560           0 :     LOCK(m_total_bytes_sent_mutex);
    3561           0 :     if (nMaxOutboundLimit == 0)
    3562           0 :         return false;
    3563             : 
    3564           0 :     if (historicalBlockServingLimit)
    3565             :     {
    3566             :         // keep a large enough buffer to at least relay each block once
    3567           0 :         const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
    3568           0 :         const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
    3569           0 :         if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
    3570           0 :             return true;
    3571           0 :     }
    3572           0 :     else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
    3573           0 :         return true;
    3574             : 
    3575           0 :     return false;
    3576           0 : }
    3577             : 
    3578           0 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
    3579             : {
    3580           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3581           0 :     LOCK(m_total_bytes_sent_mutex);
    3582           0 :     if (nMaxOutboundLimit == 0)
    3583           0 :         return 0;
    3584             : 
    3585           0 :     return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
    3586           0 : }
    3587             : 
    3588           0 : uint64_t CConnman::GetTotalBytesRecv() const
    3589             : {
    3590           0 :     return nTotalBytesRecv;
    3591             : }
    3592             : 
    3593           0 : uint64_t CConnman::GetTotalBytesSent() const
    3594             : {
    3595           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3596           0 :     LOCK(m_total_bytes_sent_mutex);
    3597           0 :     return nTotalBytesSent;
    3598           0 : }
    3599             : 
    3600           0 : ServiceFlags CConnman::GetLocalServices() const
    3601             : {
    3602           0 :     return nLocalServices;
    3603             : }
    3604             : 
    3605           0 : CNode::CNode(NodeId idIn,
    3606             :              std::shared_ptr<Sock> sock,
    3607             :              const CAddress& addrIn,
    3608             :              uint64_t nKeyedNetGroupIn,
    3609             :              uint64_t nLocalHostNonceIn,
    3610             :              const CAddress& addrBindIn,
    3611             :              const std::string& addrNameIn,
    3612             :              ConnectionType conn_type_in,
    3613             :              bool inbound_onion,
    3614             :              CNodeOptions&& node_opts)
    3615           0 :     : m_transport{std::make_unique<V1Transport>(idIn, SER_NETWORK, INIT_PROTO_VERSION)},
    3616           0 :       m_permission_flags{node_opts.permission_flags},
    3617           0 :       m_sock{sock},
    3618           0 :       m_connected{GetTime<std::chrono::seconds>()},
    3619           0 :       addr{addrIn},
    3620           0 :       addrBind{addrBindIn},
    3621           0 :       m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
    3622           0 :       m_inbound_onion{inbound_onion},
    3623           0 :       m_prefer_evict{node_opts.prefer_evict},
    3624           0 :       nKeyedNetGroup{nKeyedNetGroupIn},
    3625           0 :       m_conn_type{conn_type_in},
    3626           0 :       id{idIn},
    3627           0 :       nLocalHostNonce{nLocalHostNonceIn},
    3628           0 :       m_recv_flood_size{node_opts.recv_flood_size},
    3629           0 :       m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
    3630             : {
    3631           0 :     if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
    3632             : 
    3633           0 :     for (const std::string &msg : getAllNetMessageTypes())
    3634           0 :         mapRecvBytesPerMsgType[msg] = 0;
    3635           0 :     mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
    3636             : 
    3637           0 :     if (fLogIPs) {
    3638           0 :         LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
    3639           0 :     } else {
    3640           0 :         LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
    3641             :     }
    3642           0 : }
    3643             : 
    3644           0 : void CNode::MarkReceivedMsgsForProcessing()
    3645             : {
    3646           0 :     AssertLockNotHeld(m_msg_process_queue_mutex);
    3647             : 
    3648           0 :     size_t nSizeAdded = 0;
    3649           0 :     for (const auto& msg : vRecvMsg) {
    3650             :         // vRecvMsg contains only completed CNetMessage
    3651             :         // the single possible partially deserialized message are held by TransportDeserializer
    3652           0 :         nSizeAdded += msg.m_raw_message_size;
    3653             :     }
    3654             : 
    3655           0 :     LOCK(m_msg_process_queue_mutex);
    3656           0 :     m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
    3657           0 :     m_msg_process_queue_size += nSizeAdded;
    3658           0 :     fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
    3659           0 : }
    3660             : 
    3661           0 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
    3662             : {
    3663           0 :     LOCK(m_msg_process_queue_mutex);
    3664           0 :     if (m_msg_process_queue.empty()) return std::nullopt;
    3665             : 
    3666           0 :     std::list<CNetMessage> msgs;
    3667             :     // Just take one message
    3668           0 :     msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
    3669           0 :     m_msg_process_queue_size -= msgs.front().m_raw_message_size;
    3670           0 :     fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
    3671             : 
    3672           0 :     return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
    3673           0 : }
    3674             : 
    3675           0 : bool CConnman::NodeFullyConnected(const CNode* pnode)
    3676             : {
    3677           0 :     return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
    3678             : }
    3679             : 
    3680           0 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
    3681             : {
    3682           0 :     AssertLockNotHeld(m_total_bytes_sent_mutex);
    3683           0 :     size_t nMessageSize = msg.data.size();
    3684           0 :     LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
    3685           0 :     if (gArgs.GetBoolArg("-capturemessages", false)) {
    3686           0 :         CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
    3687           0 :     }
    3688             : 
    3689             :     TRACE6(net, outbound_message,
    3690             :         pnode->GetId(),
    3691             :         pnode->m_addr_name.c_str(),
    3692             :         pnode->ConnectionTypeAsString().c_str(),
    3693             :         msg.m_type.c_str(),
    3694             :         msg.data.size(),
    3695             :         msg.data.data()
    3696             :     );
    3697             : 
    3698           0 :     size_t nBytesSent = 0;
    3699             :     {
    3700           0 :         LOCK(pnode->cs_vSend);
    3701             :         // Check if the transport still has unsent bytes, and indicate to it that we're about to
    3702             :         // give it a message to send.
    3703           0 :         const auto& [to_send, more, _msg_type] =
    3704           0 :             pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
    3705           0 :         const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
    3706             : 
    3707             :         // Update memory usage of send buffer.
    3708           0 :         pnode->m_send_memusage += msg.GetMemoryUsage();
    3709           0 :         if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
    3710             :         // Move message to vSendMsg queue.
    3711           0 :         pnode->vSendMsg.push_back(std::move(msg));
    3712             : 
    3713             :         // If there was nothing to send before, and there is now (predicted by the "more" value
    3714             :         // returned by the GetBytesToSend call above), attempt "optimistic write":
    3715             :         // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
    3716             :         // doing a send, try sending from the calling thread if the queue was empty before.
    3717             :         // With a V1Transport, more will always be true here, because adding a message always
    3718             :         // results in sendable bytes there, but with V2Transport this is not the case (it may
    3719             :         // still be in the handshake).
    3720           0 :         if (queue_was_empty && more) {
    3721           0 :             std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
    3722           0 :         }
    3723           0 :     }
    3724           0 :     if (nBytesSent) RecordBytesSent(nBytesSent);
    3725           0 : }
    3726             : 
    3727           0 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
    3728             : {
    3729           0 :     CNode* found = nullptr;
    3730           0 :     LOCK(m_nodes_mutex);
    3731           0 :     for (auto&& pnode : m_nodes) {
    3732           0 :         if(pnode->GetId() == id) {
    3733           0 :             found = pnode;
    3734           0 :             break;
    3735             :         }
    3736             :     }
    3737           0 :     return found != nullptr && NodeFullyConnected(found) && func(found);
    3738           0 : }
    3739             : 
    3740           0 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
    3741             : {
    3742           0 :     return CSipHasher(nSeed0, nSeed1).Write(id);
    3743             : }
    3744             : 
    3745           0 : uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
    3746             : {
    3747           0 :     std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
    3748             : 
    3749           0 :     return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
    3750           0 : }
    3751             : 
    3752             : // Dump binary message to file, with timestamp.
    3753           0 : static void CaptureMessageToFile(const CAddress& addr,
    3754             :                                  const std::string& msg_type,
    3755             :                                  Span<const unsigned char> data,
    3756             :                                  bool is_incoming)
    3757             : {
    3758             :     // Note: This function captures the message at the time of processing,
    3759             :     // not at socket receive/send time.
    3760             :     // This ensures that the messages are always in order from an application
    3761             :     // layer (processing) perspective.
    3762           0 :     auto now = GetTime<std::chrono::microseconds>();
    3763             : 
    3764             :     // Windows folder names cannot include a colon
    3765           0 :     std::string clean_addr = addr.ToStringAddrPort();
    3766           0 :     std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
    3767             : 
    3768           0 :     fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
    3769           0 :     fs::create_directories(base_path);
    3770             : 
    3771           0 :     fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
    3772           0 :     AutoFile f{fsbridge::fopen(path, "ab")};
    3773             : 
    3774           0 :     ser_writedata64(f, now.count());
    3775           0 :     f << Span{msg_type};
    3776           0 :     for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
    3777           0 :         f << uint8_t{'\0'};
    3778           0 :     }
    3779           0 :     uint32_t size = data.size();
    3780           0 :     ser_writedata32(f, size);
    3781           0 :     f << data;
    3782           0 : }
    3783             : 
    3784             : std::function<void(const CAddress& addr,
    3785             :                    const std::string& msg_type,
    3786             :                    Span<const unsigned char> data,
    3787             :                    bool is_incoming)>
    3788           2 :     CaptureMessage = CaptureMessageToFile;

Generated by: LCOV version 1.14