LCOV - code coverage report
Current view: top level - src - key.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 0 31 0.0 %
Date: 2023-09-26 12:08:55 Functions: 1 22 4.5 %

          Line data    Source code
       1             : // Copyright (c) 2009-2010 Satoshi Nakamoto
       2             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       3             : // Copyright (c) 2017 The Zcash developers
       4             : // Distributed under the MIT software license, see the accompanying
       5             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       6             : 
       7             : #ifndef BITCOIN_KEY_H
       8             : #define BITCOIN_KEY_H
       9             : 
      10             : #include <pubkey.h>
      11             : #include <serialize.h>
      12             : #include <support/allocators/secure.h>
      13             : #include <uint256.h>
      14             : 
      15             : #include <stdexcept>
      16             : #include <vector>
      17             : 
      18             : 
      19             : /**
      20             :  * CPrivKey is a serialized private key, with all parameters included
      21             :  * (SIZE bytes)
      22             :  */
      23             : typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
      24             : 
      25             : /** Size of ECDH shared secrets. */
      26             : constexpr static size_t ECDH_SECRET_SIZE = CSHA256::OUTPUT_SIZE;
      27             : 
      28             : // Used to represent ECDH shared secret (ECDH_SECRET_SIZE bytes)
      29             : using ECDHSecret = std::array<std::byte, ECDH_SECRET_SIZE>;
      30             : 
      31             : /** An encapsulated private key. */
      32             : class CKey
      33             : {
      34             : public:
      35             :     /**
      36             :      * secp256k1:
      37             :      */
      38             :     static const unsigned int SIZE            = 279;
      39             :     static const unsigned int COMPRESSED_SIZE = 214;
      40             :     /**
      41             :      * see www.keylength.com
      42             :      * script supports up to 75 for single byte push
      43             :      */
      44             :     static_assert(
      45             :         SIZE >= COMPRESSED_SIZE,
      46             :         "COMPRESSED_SIZE is larger than SIZE");
      47             : 
      48             : private:
      49             :     //! Whether this private key is valid. We check for correctness when modifying the key
      50             :     //! data, so fValid should always correspond to the actual state.
      51           0 :     bool fValid{false};
      52             : 
      53             :     //! Whether the public key corresponding to this private key is (to be) compressed.
      54           0 :     bool fCompressed{false};
      55             : 
      56             :     //! The actual byte data
      57             :     std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
      58             : 
      59             :     //! Check whether the 32-byte array pointed to by vch is valid keydata.
      60             :     bool static Check(const unsigned char* vch);
      61             : 
      62             : public:
      63             :     //! Construct an invalid private key.
      64           0 :     CKey()
      65             :     {
      66             :         // Important: vch must be 32 bytes in length to not break serialization
      67           0 :         keydata.resize(32);
      68           0 :     }
      69             : 
      70           0 :     friend bool operator==(const CKey& a, const CKey& b)
      71             :     {
      72           0 :         return a.fCompressed == b.fCompressed &&
      73           0 :             a.size() == b.size() &&
      74           0 :             memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
      75             :     }
      76             : 
      77             :     //! Initialize using begin and end iterators to byte data.
      78             :     template <typename T>
      79           0 :     void Set(const T pbegin, const T pend, bool fCompressedIn)
      80             :     {
      81           0 :         if (size_t(pend - pbegin) != keydata.size()) {
      82           0 :             fValid = false;
      83           0 :         } else if (Check(&pbegin[0])) {
      84           0 :             memcpy(keydata.data(), (unsigned char*)&pbegin[0], keydata.size());
      85           0 :             fValid = true;
      86           0 :             fCompressed = fCompressedIn;
      87           0 :         } else {
      88           0 :             fValid = false;
      89             :         }
      90           0 :     }
      91             : 
      92             :     //! Simple read-only vector-like interface.
      93           0 :     unsigned int size() const { return (fValid ? keydata.size() : 0); }
      94           0 :     const std::byte* data() const { return reinterpret_cast<const std::byte*>(keydata.data()); }
      95           0 :     const unsigned char* begin() const { return keydata.data(); }
      96           0 :     const unsigned char* end() const { return keydata.data() + size(); }
      97             : 
      98             :     //! Check whether this private key is valid.
      99           0 :     bool IsValid() const { return fValid; }
     100             : 
     101             :     //! Check whether the public key corresponding to this private key is (to be) compressed.
     102           0 :     bool IsCompressed() const { return fCompressed; }
     103             : 
     104             :     //! Generate a new private key using a cryptographic PRNG.
     105             :     void MakeNewKey(bool fCompressed);
     106             : 
     107             :     //! Negate private key
     108             :     bool Negate();
     109             : 
     110             :     /**
     111             :      * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
     112             :      * This is expensive.
     113             :      */
     114             :     CPrivKey GetPrivKey() const;
     115             : 
     116             :     /**
     117             :      * Compute the public key from a private key.
     118             :      * This is expensive.
     119             :      */
     120             :     CPubKey GetPubKey() const;
     121             : 
     122             :     /**
     123             :      * Create a DER-serialized signature.
     124             :      * The test_case parameter tweaks the deterministic nonce.
     125             :      */
     126             :     bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, bool grind = true, uint32_t test_case = 0) const;
     127             : 
     128             :     /**
     129             :      * Create a compact signature (65 bytes), which allows reconstructing the used public key.
     130             :      * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
     131             :      * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
     132             :      *                  0x1D = second key with even y, 0x1E = second key with odd y,
     133             :      *                  add 0x04 for compressed keys.
     134             :      */
     135             :     bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
     136             : 
     137             :     /**
     138             :      * Create a BIP-340 Schnorr signature, for the xonly-pubkey corresponding to *this,
     139             :      * optionally tweaked by *merkle_root. Additional nonce entropy is provided through
     140             :      * aux.
     141             :      *
     142             :      * merkle_root is used to optionally perform tweaking of the private key, as specified
     143             :      * in BIP341:
     144             :      * - If merkle_root == nullptr: no tweaking is done, sign with key directly (this is
     145             :      *                              used for signatures in BIP342 script).
     146             :      * - If merkle_root->IsNull():  sign with key + H_TapTweak(pubkey) (this is used for
     147             :      *                              key path spending when no scripts are present).
     148             :      * - Otherwise:                 sign with key + H_TapTweak(pubkey || *merkle_root)
     149             :      *                              (this is used for key path spending, with specific
     150             :      *                              Merkle root of the script tree).
     151             :      */
     152             :     bool SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const;
     153             : 
     154             :     //! Derive BIP32 child key.
     155             :     [[nodiscard]] bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
     156             : 
     157             :     /**
     158             :      * Verify thoroughly whether a private key and a public key match.
     159             :      * This is done using a different mechanism than just regenerating it.
     160             :      */
     161             :     bool VerifyPubKey(const CPubKey& vchPubKey) const;
     162             : 
     163             :     //! Load private key and check that public key matches.
     164             :     bool Load(const CPrivKey& privkey, const CPubKey& vchPubKey, bool fSkipCheck);
     165             : 
     166             :     /** Create an ellswift-encoded public key for this key, with specified entropy.
     167             :      *
     168             :      *  entropy must be a 32-byte span with additional entropy to use in the encoding. Every
     169             :      *  public key has ~2^256 different encodings, and this function will deterministically pick
     170             :      *  one of them, based on entropy. Note that even without truly random entropy, the
     171             :      *  resulting encoding will be indistinguishable from uniform to any adversary who does not
     172             :      *  know the private key (because the private key itself is always used as entropy as well).
     173             :      */
     174             :     EllSwiftPubKey EllSwiftCreate(Span<const std::byte> entropy) const;
     175             : 
     176             :     /** Compute a BIP324-style ECDH shared secret.
     177             :      *
     178             :      *  - their_ellswift: EllSwiftPubKey that was received from the other side.
     179             :      *  - our_ellswift: EllSwiftPubKey that was sent to the other side (must have been generated
     180             :      *                  from *this using EllSwiftCreate()).
     181             :      *  - initiating: whether we are the initiating party (true) or responding party (false).
     182             :      */
     183             :     ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift,
     184             :                                        const EllSwiftPubKey& our_ellswift,
     185             :                                        bool initiating) const;
     186             : };
     187             : 
     188             : struct CExtKey {
     189             :     unsigned char nDepth;
     190             :     unsigned char vchFingerprint[4];
     191             :     unsigned int nChild;
     192             :     ChainCode chaincode;
     193             :     CKey key;
     194             : 
     195           0 :     friend bool operator==(const CExtKey& a, const CExtKey& b)
     196             :     {
     197           0 :         return a.nDepth == b.nDepth &&
     198           0 :             memcmp(a.vchFingerprint, b.vchFingerprint, sizeof(vchFingerprint)) == 0 &&
     199           0 :             a.nChild == b.nChild &&
     200           0 :             a.chaincode == b.chaincode &&
     201           0 :             a.key == b.key;
     202             :     }
     203             : 
     204             :     void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
     205             :     void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
     206             :     [[nodiscard]] bool Derive(CExtKey& out, unsigned int nChild) const;
     207             :     CExtPubKey Neuter() const;
     208             :     void SetSeed(Span<const std::byte> seed);
     209             : };
     210             : 
     211             : /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
     212             : void ECC_Start();
     213             : 
     214             : /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
     215             : void ECC_Stop();
     216             : 
     217             : /** Check that required EC support is available at runtime. */
     218             : bool ECC_InitSanityCheck();
     219             : 
     220             : #endif // BITCOIN_KEY_H

Generated by: LCOV version 1.14