LCOV - code coverage report
Current view: top level - src - key.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 18 276 6.5 %
Date: 2023-09-26 12:08:55 Functions: 2 24 8.3 %

          Line data    Source code
       1             : // Copyright (c) 2009-2022 The Bitcoin Core developers
       2             : // Copyright (c) 2017 The Zcash developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #include <key.h>
       7             : 
       8             : #include <crypto/common.h>
       9             : #include <crypto/hmac_sha512.h>
      10             : #include <hash.h>
      11             : #include <random.h>
      12             : 
      13             : #include <secp256k1.h>
      14             : #include <secp256k1_ellswift.h>
      15             : #include <secp256k1_extrakeys.h>
      16             : #include <secp256k1_recovery.h>
      17             : #include <secp256k1_schnorrsig.h>
      18             : 
      19             : static secp256k1_context* secp256k1_context_sign = nullptr;
      20             : 
      21             : /** These functions are taken from the libsecp256k1 distribution and are very ugly. */
      22             : 
      23             : /**
      24             :  * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
      25             :  * section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats:
      26             :  *
      27             :  * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
      28             :  *   required to be encoded as one octet if it is less than 256, as DER would require.
      29             :  * * The octet-length of the SEQUENCE must not be greater than the remaining
      30             :  *   length of the key encoding, but need not match it (i.e. the encoding may contain
      31             :  *   junk after the encoded SEQUENCE).
      32             :  * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
      33             :  * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
      34             :  *   or not it is validly encoded DER.
      35             :  *
      36             :  * out32 must point to an output buffer of length at least 32 bytes.
      37             :  */
      38           0 : int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
      39           0 :     const unsigned char *end = seckey + seckeylen;
      40           0 :     memset(out32, 0, 32);
      41             :     /* sequence header */
      42           0 :     if (end - seckey < 1 || *seckey != 0x30u) {
      43           0 :         return 0;
      44             :     }
      45           0 :     seckey++;
      46             :     /* sequence length constructor */
      47           0 :     if (end - seckey < 1 || !(*seckey & 0x80u)) {
      48           0 :         return 0;
      49             :     }
      50           0 :     ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
      51           0 :     if (lenb < 1 || lenb > 2) {
      52           0 :         return 0;
      53             :     }
      54           0 :     if (end - seckey < lenb) {
      55           0 :         return 0;
      56             :     }
      57             :     /* sequence length */
      58           0 :     ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
      59           0 :     seckey += lenb;
      60           0 :     if (end - seckey < len) {
      61           0 :         return 0;
      62             :     }
      63             :     /* sequence element 0: version number (=1) */
      64           0 :     if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
      65           0 :         return 0;
      66             :     }
      67           0 :     seckey += 3;
      68             :     /* sequence element 1: octet string, up to 32 bytes */
      69           0 :     if (end - seckey < 2 || seckey[0] != 0x04u) {
      70           0 :         return 0;
      71             :     }
      72           0 :     ptrdiff_t oslen = seckey[1];
      73           0 :     seckey += 2;
      74           0 :     if (oslen > 32 || end - seckey < oslen) {
      75           0 :         return 0;
      76             :     }
      77           0 :     memcpy(out32 + (32 - oslen), seckey, oslen);
      78           0 :     if (!secp256k1_ec_seckey_verify(ctx, out32)) {
      79           0 :         memset(out32, 0, 32);
      80           0 :         return 0;
      81             :     }
      82           0 :     return 1;
      83           0 : }
      84             : 
      85             : /**
      86             :  * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
      87             :  * <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
      88             :  * included.
      89             :  *
      90             :  * seckey must point to an output buffer of length at least CKey::SIZE bytes.
      91             :  * seckeylen must initially be set to the size of the seckey buffer. Upon return it
      92             :  * will be set to the number of bytes used in the buffer.
      93             :  * key32 must point to a 32-byte raw private key.
      94             :  */
      95           0 : int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
      96           0 :     assert(*seckeylen >= CKey::SIZE);
      97             :     secp256k1_pubkey pubkey;
      98           0 :     size_t pubkeylen = 0;
      99           0 :     if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
     100           0 :         *seckeylen = 0;
     101           0 :         return 0;
     102             :     }
     103           0 :     if (compressed) {
     104             :         static const unsigned char begin[] = {
     105             :             0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
     106             :         };
     107             :         static const unsigned char middle[] = {
     108             :             0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
     109             :             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     110             :             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     111             :             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
     112             :             0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
     113             :             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
     114             :             0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     115             :             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
     116             :             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
     117             :         };
     118           0 :         unsigned char *ptr = seckey;
     119           0 :         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
     120           0 :         memcpy(ptr, key32, 32); ptr += 32;
     121           0 :         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
     122           0 :         pubkeylen = CPubKey::COMPRESSED_SIZE;
     123           0 :         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
     124           0 :         ptr += pubkeylen;
     125           0 :         *seckeylen = ptr - seckey;
     126           0 :         assert(*seckeylen == CKey::COMPRESSED_SIZE);
     127           0 :     } else {
     128             :         static const unsigned char begin[] = {
     129             :             0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
     130             :         };
     131             :         static const unsigned char middle[] = {
     132             :             0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
     133             :             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     134             :             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     135             :             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
     136             :             0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
     137             :             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
     138             :             0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
     139             :             0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
     140             :             0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     141             :             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
     142             :             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
     143             :         };
     144           0 :         unsigned char *ptr = seckey;
     145           0 :         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
     146           0 :         memcpy(ptr, key32, 32); ptr += 32;
     147           0 :         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
     148           0 :         pubkeylen = CPubKey::SIZE;
     149           0 :         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
     150           0 :         ptr += pubkeylen;
     151           0 :         *seckeylen = ptr - seckey;
     152           0 :         assert(*seckeylen == CKey::SIZE);
     153             :     }
     154           0 :     return 1;
     155           0 : }
     156             : 
     157           0 : bool CKey::Check(const unsigned char *vch) {
     158           0 :     return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
     159             : }
     160             : 
     161           0 : void CKey::MakeNewKey(bool fCompressedIn) {
     162           0 :     do {
     163           0 :         GetStrongRandBytes(keydata);
     164           0 :     } while (!Check(keydata.data()));
     165           0 :     fValid = true;
     166           0 :     fCompressed = fCompressedIn;
     167           0 : }
     168             : 
     169           0 : bool CKey::Negate()
     170             : {
     171           0 :     assert(fValid);
     172           0 :     return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata.data());
     173             : }
     174             : 
     175           0 : CPrivKey CKey::GetPrivKey() const {
     176           0 :     assert(fValid);
     177           0 :     CPrivKey seckey;
     178             :     int ret;
     179             :     size_t seckeylen;
     180           0 :     seckey.resize(SIZE);
     181           0 :     seckeylen = SIZE;
     182           0 :     ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);
     183           0 :     assert(ret);
     184           0 :     seckey.resize(seckeylen);
     185           0 :     return seckey;
     186           0 : }
     187             : 
     188           0 : CPubKey CKey::GetPubKey() const {
     189           0 :     assert(fValid);
     190             :     secp256k1_pubkey pubkey;
     191           0 :     size_t clen = CPubKey::SIZE;
     192           0 :     CPubKey result;
     193           0 :     int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
     194           0 :     assert(ret);
     195           0 :     secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
     196           0 :     assert(result.size() == clen);
     197           0 :     assert(result.IsValid());
     198           0 :     return result;
     199             : }
     200             : 
     201             : // Check that the sig has a low R value and will be less than 71 bytes
     202           0 : bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
     203             : {
     204             :     unsigned char compact_sig[64];
     205           0 :     secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
     206             : 
     207             :     // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
     208             :     // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
     209             :     // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
     210             :     // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
     211           0 :     return compact_sig[0] < 0x80;
     212             : }
     213             : 
     214           0 : bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
     215           0 :     if (!fValid)
     216           0 :         return false;
     217           0 :     vchSig.resize(CPubKey::SIGNATURE_SIZE);
     218           0 :     size_t nSigLen = CPubKey::SIGNATURE_SIZE;
     219           0 :     unsigned char extra_entropy[32] = {0};
     220           0 :     WriteLE32(extra_entropy, test_case);
     221             :     secp256k1_ecdsa_signature sig;
     222           0 :     uint32_t counter = 0;
     223           0 :     int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
     224             : 
     225             :     // Grind for low R
     226           0 :     while (ret && !SigHasLowR(&sig) && grind) {
     227           0 :         WriteLE32(extra_entropy, ++counter);
     228           0 :         ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);
     229             :     }
     230           0 :     assert(ret);
     231           0 :     secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
     232           0 :     vchSig.resize(nSigLen);
     233             :     // Additional verification step to prevent using a potentially corrupted signature
     234             :     secp256k1_pubkey pk;
     235           0 :     ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pk, begin());
     236           0 :     assert(ret);
     237           0 :     ret = secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pk);
     238           0 :     assert(ret);
     239           0 :     return true;
     240           0 : }
     241             : 
     242           0 : bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
     243           0 :     if (pubkey.IsCompressed() != fCompressed) {
     244           0 :         return false;
     245             :     }
     246             :     unsigned char rnd[8];
     247           0 :     std::string str = "Bitcoin key verification\n";
     248           0 :     GetRandBytes(rnd);
     249           0 :     uint256 hash{Hash(str, rnd)};
     250           0 :     std::vector<unsigned char> vchSig;
     251           0 :     Sign(hash, vchSig);
     252           0 :     return pubkey.Verify(hash, vchSig);
     253           0 : }
     254             : 
     255           0 : bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
     256           0 :     if (!fValid)
     257           0 :         return false;
     258           0 :     vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
     259           0 :     int rec = -1;
     260             :     secp256k1_ecdsa_recoverable_signature rsig;
     261           0 :     int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &rsig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);
     262           0 :     assert(ret);
     263           0 :     ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &rsig);
     264           0 :     assert(ret);
     265           0 :     assert(rec != -1);
     266           0 :     vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
     267             :     // Additional verification step to prevent using a potentially corrupted signature
     268             :     secp256k1_pubkey epk, rpk;
     269           0 :     ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &epk, begin());
     270           0 :     assert(ret);
     271           0 :     ret = secp256k1_ecdsa_recover(secp256k1_context_static, &rpk, &rsig, hash.begin());
     272           0 :     assert(ret);
     273           0 :     ret = secp256k1_ec_pubkey_cmp(secp256k1_context_static, &epk, &rpk);
     274           0 :     assert(ret == 0);
     275           0 :     return true;
     276           0 : }
     277             : 
     278           0 : bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
     279             : {
     280           0 :     assert(sig.size() == 64);
     281             :     secp256k1_keypair keypair;
     282           0 :     if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, begin())) return false;
     283           0 :     if (merkle_root) {
     284             :         secp256k1_xonly_pubkey pubkey;
     285           0 :         if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, &keypair)) return false;
     286             :         unsigned char pubkey_bytes[32];
     287           0 :         if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey)) return false;
     288           0 :         uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
     289           0 :         if (!secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, &keypair, tweak.data())) return false;
     290           0 :     }
     291           0 :     bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), &keypair, aux.data());
     292           0 :     if (ret) {
     293             :         // Additional verification step to prevent using a potentially corrupted signature
     294             :         secp256k1_xonly_pubkey pubkey_verify;
     295           0 :         ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, &keypair);
     296           0 :         ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
     297           0 :     }
     298           0 :     if (!ret) memory_cleanse(sig.data(), sig.size());
     299           0 :     memory_cleanse(&keypair, sizeof(keypair));
     300           0 :     return ret;
     301           0 : }
     302             : 
     303           0 : bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
     304           0 :     if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size()))
     305           0 :         return false;
     306           0 :     fCompressed = vchPubKey.IsCompressed();
     307           0 :     fValid = true;
     308             : 
     309           0 :     if (fSkipCheck)
     310           0 :         return true;
     311             : 
     312           0 :     return VerifyPubKey(vchPubKey);
     313           0 : }
     314             : 
     315           0 : bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
     316           0 :     assert(IsValid());
     317           0 :     assert(IsCompressed());
     318           0 :     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
     319           0 :     if ((nChild >> 31) == 0) {
     320           0 :         CPubKey pubkey = GetPubKey();
     321           0 :         assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
     322           0 :         BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
     323           0 :     } else {
     324           0 :         assert(size() == 32);
     325           0 :         BIP32Hash(cc, nChild, 0, begin(), vout.data());
     326             :     }
     327           0 :     memcpy(ccChild.begin(), vout.data()+32, 32);
     328           0 :     memcpy((unsigned char*)keyChild.begin(), begin(), 32);
     329           0 :     bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
     330           0 :     keyChild.fCompressed = true;
     331           0 :     keyChild.fValid = ret;
     332           0 :     return ret;
     333           0 : }
     334             : 
     335           0 : EllSwiftPubKey CKey::EllSwiftCreate(Span<const std::byte> ent32) const
     336             : {
     337           0 :     assert(fValid);
     338           0 :     assert(ent32.size() == 32);
     339             :     std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
     340             : 
     341           0 :     auto success = secp256k1_ellswift_create(secp256k1_context_sign,
     342           0 :                                              UCharCast(encoded_pubkey.data()),
     343           0 :                                              keydata.data(),
     344           0 :                                              UCharCast(ent32.data()));
     345             : 
     346             :     // Should always succeed for valid keys (asserted above).
     347           0 :     assert(success);
     348           0 :     return {encoded_pubkey};
     349             : }
     350             : 
     351           0 : ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
     352             : {
     353           0 :     assert(fValid);
     354             : 
     355             :     ECDHSecret output;
     356             :     // BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
     357             :     // accordingly:
     358           0 :     bool success = secp256k1_ellswift_xdh(secp256k1_context_sign,
     359           0 :                                           UCharCast(output.data()),
     360           0 :                                           UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
     361           0 :                                           UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
     362           0 :                                           keydata.data(),
     363           0 :                                           initiating ? 0 : 1,
     364           0 :                                           secp256k1_ellswift_xdh_hash_function_bip324,
     365             :                                           nullptr);
     366             :     // Should always succeed for valid keys (assert above).
     367           0 :     assert(success);
     368           0 :     return output;
     369             : }
     370             : 
     371           0 : bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
     372           0 :     if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
     373           0 :     out.nDepth = nDepth + 1;
     374           0 :     CKeyID id = key.GetPubKey().GetID();
     375           0 :     memcpy(out.vchFingerprint, &id, 4);
     376           0 :     out.nChild = _nChild;
     377           0 :     return key.Derive(out.key, out.chaincode, _nChild, chaincode);
     378           0 : }
     379             : 
     380           0 : void CExtKey::SetSeed(Span<const std::byte> seed)
     381             : {
     382             :     static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
     383           0 :     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
     384           0 :     CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data());
     385           0 :     key.Set(vout.data(), vout.data() + 32, true);
     386           0 :     memcpy(chaincode.begin(), vout.data() + 32, 32);
     387           0 :     nDepth = 0;
     388           0 :     nChild = 0;
     389           0 :     memset(vchFingerprint, 0, sizeof(vchFingerprint));
     390           0 : }
     391             : 
     392           0 : CExtPubKey CExtKey::Neuter() const {
     393           0 :     CExtPubKey ret;
     394           0 :     ret.nDepth = nDepth;
     395           0 :     memcpy(ret.vchFingerprint, vchFingerprint, 4);
     396           0 :     ret.nChild = nChild;
     397           0 :     ret.pubkey = key.GetPubKey();
     398           0 :     ret.chaincode = chaincode;
     399           0 :     return ret;
     400             : }
     401             : 
     402           0 : void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
     403           0 :     code[0] = nDepth;
     404           0 :     memcpy(code+1, vchFingerprint, 4);
     405           0 :     WriteBE32(code+5, nChild);
     406           0 :     memcpy(code+9, chaincode.begin(), 32);
     407           0 :     code[41] = 0;
     408           0 :     assert(key.size() == 32);
     409           0 :     memcpy(code+42, key.begin(), 32);
     410           0 : }
     411             : 
     412           0 : void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
     413           0 :     nDepth = code[0];
     414           0 :     memcpy(vchFingerprint, code+1, 4);
     415           0 :     nChild = ReadBE32(code+5);
     416           0 :     memcpy(chaincode.begin(), code+9, 32);
     417           0 :     key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
     418           0 :     if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
     419           0 : }
     420             : 
     421           0 : bool ECC_InitSanityCheck() {
     422           0 :     CKey key;
     423           0 :     key.MakeNewKey(true);
     424           0 :     CPubKey pubkey = key.GetPubKey();
     425           0 :     return key.VerifyPubKey(pubkey);
     426           0 : }
     427             : 
     428           1 : void ECC_Start() {
     429           1 :     assert(secp256k1_context_sign == nullptr);
     430             : 
     431           1 :     secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
     432           1 :     assert(ctx != nullptr);
     433             : 
     434             :     {
     435             :         // Pass in a random blinding seed to the secp256k1 context.
     436           1 :         std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
     437           1 :         GetRandBytes(vseed);
     438           1 :         bool ret = secp256k1_context_randomize(ctx, vseed.data());
     439           1 :         assert(ret);
     440           1 :     }
     441             : 
     442           1 :     secp256k1_context_sign = ctx;
     443           1 : }
     444             : 
     445           1 : void ECC_Stop() {
     446           1 :     secp256k1_context *ctx = secp256k1_context_sign;
     447           1 :     secp256k1_context_sign = nullptr;
     448             : 
     449           1 :     if (ctx) {
     450           1 :         secp256k1_context_destroy(ctx);
     451           1 :     }
     452           1 : }

Generated by: LCOV version 1.14