LCOV - code coverage report
Current view: top level - src - cuckoocache.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 79 111 71.2 %
Date: 2023-09-26 12:08:55 Functions: 15 28 53.6 %

          Line data    Source code
       1             : // Copyright (c) 2016 Jeremy Rubin
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #ifndef BITCOIN_CUCKOOCACHE_H
       6             : #define BITCOIN_CUCKOOCACHE_H
       7             : 
       8             : #include <util/fastrange.h>
       9             : 
      10             : #include <algorithm> // std::find
      11             : #include <array>
      12             : #include <atomic>
      13             : #include <cmath>
      14             : #include <cstring>
      15             : #include <limits>
      16             : #include <memory>
      17             : #include <optional>
      18             : #include <utility>
      19             : #include <vector>
      20             : 
      21             : 
      22             : /** High-performance cache primitives.
      23             :  *
      24             :  * Summary:
      25             :  *
      26             :  * 1. @ref bit_packed_atomic_flags is bit-packed atomic flags for garbage collection
      27             :  *
      28             :  * 2. @ref cache is a cache which is performant in memory usage and lookup speed. It
      29             :  * is lockfree for erase operations. Elements are lazily erased on the next insert.
      30             :  */
      31             : namespace CuckooCache
      32             : {
      33             : /** @ref bit_packed_atomic_flags implements a container for garbage collection flags
      34             :  * that is only thread unsafe on calls to setup. This class bit-packs collection
      35             :  * flags for memory efficiency.
      36             :  *
      37             :  * All operations are `std::memory_order_relaxed` so external mechanisms must
      38             :  * ensure that writes and reads are properly synchronized.
      39             :  *
      40             :  * On setup(n), all bits up to `n` are marked as collected.
      41             :  *
      42             :  * Under the hood, because it is an 8-bit type, it makes sense to use a multiple
      43             :  * of 8 for setup, but it will be safe if that is not the case as well.
      44             :  */
      45             : class bit_packed_atomic_flags
      46             : {
      47             :     std::unique_ptr<std::atomic<uint8_t>[]> mem;
      48             : 
      49             : public:
      50             :     /** No default constructor, as there must be some size. */
      51             :     bit_packed_atomic_flags() = delete;
      52             : 
      53             :     /**
      54             :      * bit_packed_atomic_flags constructor creates memory to sufficiently
      55             :      * keep track of garbage collection information for `size` entries.
      56             :      *
      57             :      * @param size the number of elements to allocate space for
      58             :      *
      59             :      * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
      60             :      * size
      61             :      * @post All calls to bit_is_set (without subsequent bit_unset) will return
      62             :      * true.
      63             :      */
      64           6 :     explicit bit_packed_atomic_flags(uint32_t size)
      65             :     {
      66             :         // pad out the size if needed
      67           6 :         size = (size + 7) / 8;
      68           6 :         mem.reset(new std::atomic<uint8_t>[size]);
      69      131078 :         for (uint32_t i = 0; i < size; ++i)
      70      131072 :             mem[i].store(0xFF);
      71           6 :     };
      72             : 
      73             :     /** setup marks all entries and ensures that bit_packed_atomic_flags can store
      74             :      * at least `b` entries.
      75             :      *
      76             :      * @param b the number of elements to allocate space for
      77             :      * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
      78             :      * b
      79             :      * @post All calls to bit_is_set (without subsequent bit_unset) will return
      80             :      * true.
      81             :      */
      82           2 :     inline void setup(uint32_t b)
      83             :     {
      84           2 :         bit_packed_atomic_flags d(b);
      85           2 :         std::swap(mem, d.mem);
      86           2 :     }
      87             : 
      88             :     /** bit_set sets an entry as discardable.
      89             :      *
      90             :      * @param s the index of the entry to bit_set
      91             :      * @post immediately subsequent call (assuming proper external memory
      92             :      * ordering) to bit_is_set(s) == true.
      93             :      */
      94           0 :     inline void bit_set(uint32_t s)
      95             :     {
      96           0 :         mem[s >> 3].fetch_or(uint8_t(1 << (s & 7)), std::memory_order_relaxed);
      97           0 :     }
      98             : 
      99             :     /** bit_unset marks an entry as something that should not be overwritten.
     100             :      *
     101             :      * @param s the index of the entry to bit_unset
     102             :      * @post immediately subsequent call (assuming proper external memory
     103             :      * ordering) to bit_is_set(s) == false.
     104             :      */
     105         844 :     inline void bit_unset(uint32_t s)
     106             :     {
     107         844 :         mem[s >> 3].fetch_and(uint8_t(~(1 << (s & 7))), std::memory_order_relaxed);
     108         844 :     }
     109             : 
     110             :     /** bit_is_set queries the table for discardability at `s`.
     111             :      *
     112             :      * @param s the index of the entry to read
     113             :      * @returns true if the bit at index `s` was set, false otherwise
     114             :      * */
     115         844 :     inline bool bit_is_set(uint32_t s) const
     116             :     {
     117         844 :         return (1 << (s & 7)) & mem[s >> 3].load(std::memory_order_relaxed);
     118             :     }
     119             : };
     120             : 
     121             : /** @ref cache implements a cache with properties similar to a cuckoo-set.
     122             :  *
     123             :  *  The cache is able to hold up to `(~(uint32_t)0) - 1` elements.
     124             :  *
     125             :  *  Read Operations:
     126             :  *      - contains() for `erase=false`
     127             :  *
     128             :  *  Read+Erase Operations:
     129             :  *      - contains() for `erase=true`
     130             :  *
     131             :  *  Erase Operations:
     132             :  *      - allow_erase()
     133             :  *
     134             :  *  Write Operations:
     135             :  *      - setup()
     136             :  *      - setup_bytes()
     137             :  *      - insert()
     138             :  *      - please_keep()
     139             :  *
     140             :  *  Synchronization Free Operations:
     141             :  *      - invalid()
     142             :  *      - compute_hashes()
     143             :  *
     144             :  * User Must Guarantee:
     145             :  *
     146             :  * 1. Write requires synchronized access (e.g. a lock)
     147             :  * 2. Read requires no concurrent Write, synchronized with last insert.
     148             :  * 3. Erase requires no concurrent Write, synchronized with last insert.
     149             :  * 4. An Erase caller must release all memory before allowing a new Writer.
     150             :  *
     151             :  *
     152             :  * Note on function names:
     153             :  *   - The name "allow_erase" is used because the real discard happens later.
     154             :  *   - The name "please_keep" is used because elements may be erased anyways on insert.
     155             :  *
     156             :  * @tparam Element should be a movable and copyable type
     157             :  * @tparam Hash should be a function/callable which takes a template parameter
     158             :  * hash_select and an Element and extracts a hash from it. Should return
     159             :  * high-entropy uint32_t hashes for `Hash h; h<0>(e) ... h<7>(e)`.
     160             :  */
     161             : template <typename Element, typename Hash>
     162             : class cache
     163             : {
     164             : private:
     165             :     /** table stores all the elements */
     166             :     std::vector<Element> table;
     167             : 
     168             :     /** size stores the total available slots in the hash table */
     169           4 :     uint32_t size{0};
     170             : 
     171             :     /** The bit_packed_atomic_flags array is marked mutable because we want
     172             :      * garbage collection to be allowed to occur from const methods */
     173             :     mutable bit_packed_atomic_flags collection_flags;
     174             : 
     175             :     /** epoch_flags tracks how recently an element was inserted into
     176             :      * the cache. true denotes recent, false denotes not-recent. See insert()
     177             :      * method for full semantics.
     178             :      */
     179             :     mutable std::vector<bool> epoch_flags;
     180             : 
     181             :     /** epoch_heuristic_counter is used to determine when an epoch might be aged
     182             :      * & an expensive scan should be done. epoch_heuristic_counter is
     183             :      * decremented on insert and reset to the new number of inserts which would
     184             :      * cause the epoch to reach epoch_size when it reaches zero.
     185             :      */
     186           4 :     uint32_t epoch_heuristic_counter{0};
     187             : 
     188             :     /** epoch_size is set to be the number of elements supposed to be in a
     189             :      * epoch. When the number of non-erased elements in an epoch
     190             :      * exceeds epoch_size, a new epoch should be started and all
     191             :      * current entries demoted. epoch_size is set to be 45% of size because
     192             :      * we want to keep load around 90%, and we support 3 epochs at once --
     193             :      * one "dead" which has been erased, one "dying" which has been marked to be
     194             :      * erased next, and one "living" which new inserts add to.
     195             :      */
     196           4 :     uint32_t epoch_size{0};
     197             : 
     198             :     /** depth_limit determines how many elements insert should try to replace.
     199             :      * Should be set to log2(n).
     200             :      */
     201           4 :     uint8_t depth_limit{0};
     202             : 
     203             :     /** hash_function is a const instance of the hash function. It cannot be
     204             :      * static or initialized at call time as it may have internal state (such as
     205             :      * a nonce).
     206             :      */
     207             :     const Hash hash_function;
     208             : 
     209             :     /** compute_hashes is convenience for not having to write out this
     210             :      * expression everywhere we use the hash values of an Element.
     211             :      *
     212             :      * We need to map the 32-bit input hash onto a hash bucket in a range [0, size) in a
     213             :      *  manner which preserves as much of the hash's uniformity as possible. Ideally
     214             :      *  this would be done by bitmasking but the size is usually not a power of two.
     215             :      *
     216             :      * The naive approach would be to use a mod -- which isn't perfectly uniform but so
     217             :      *  long as the hash is much larger than size it is not that bad. Unfortunately,
     218             :      *  mod/division is fairly slow on ordinary microprocessors (e.g. 90-ish cycles on
     219             :      *  haswell, ARM doesn't even have an instruction for it.); when the divisor is a
     220             :      *  constant the compiler will do clever tricks to turn it into a multiply+add+shift,
     221             :      *  but size is a run-time value so the compiler can't do that here.
     222             :      *
     223             :      * One option would be to implement the same trick the compiler uses and compute the
     224             :      *  constants for exact division based on the size, as described in "{N}-bit Unsigned
     225             :      *  Division via {N}-bit Multiply-Add" by Arch D. Robison in 2005. But that code is
     226             :      *  somewhat complicated and the result is still slower than an even simpler option:
     227             :      *  see the FastRange32 function in util/fastrange.h.
     228             :      *
     229             :      * The resulting non-uniformity is also more equally distributed which would be
     230             :      *  advantageous for something like linear probing, though it shouldn't matter
     231             :      *  one way or the other for a cuckoo table.
     232             :      *
     233             :      * The primary disadvantage of this approach is increased intermediate precision is
     234             :      *  required but for a 32-bit random number we only need the high 32 bits of a
     235             :      *  32*32->64 multiply, which means the operation is reasonably fast even on a
     236             :      *  typical 32-bit processor.
     237             :      *
     238             :      * @param e The element whose hashes will be returned
     239             :      * @returns Deterministic hashes derived from `e` uniformly mapped onto the range [0, size)
     240             :      */
     241        7748 :     inline std::array<uint32_t, 8> compute_hashes(const Element& e) const
     242             :     {
     243       61984 :         return {{FastRange32(hash_function.template operator()<0>(e), size),
     244        7748 :                  FastRange32(hash_function.template operator()<1>(e), size),
     245        7748 :                  FastRange32(hash_function.template operator()<2>(e), size),
     246        7748 :                  FastRange32(hash_function.template operator()<3>(e), size),
     247        7748 :                  FastRange32(hash_function.template operator()<4>(e), size),
     248        7748 :                  FastRange32(hash_function.template operator()<5>(e), size),
     249        7748 :                  FastRange32(hash_function.template operator()<6>(e), size),
     250        7748 :                  FastRange32(hash_function.template operator()<7>(e), size)}};
     251             :     }
     252             : 
     253             :     /** invalid returns a special index that can never be inserted to
     254             :      * @returns the special constexpr index that can never be inserted to */
     255         844 :     constexpr uint32_t invalid() const
     256             :     {
     257         844 :         return ~(uint32_t)0;
     258             :     }
     259             : 
     260             :     /** allow_erase marks the element at index `n` as discardable. Threadsafe
     261             :      * without any concurrent insert.
     262             :      * @param n the index to allow erasure of
     263             :      */
     264           0 :     inline void allow_erase(uint32_t n) const
     265             :     {
     266           0 :         collection_flags.bit_set(n);
     267           0 :     }
     268             : 
     269             :     /** please_keep marks the element at index `n` as an entry that should be kept.
     270             :      * Threadsafe without any concurrent insert.
     271             :      * @param n the index to prioritize keeping
     272             :      */
     273         844 :     inline void please_keep(uint32_t n) const
     274             :     {
     275         844 :         collection_flags.bit_unset(n);
     276         844 :     }
     277             : 
     278             :     /** epoch_check handles the changing of epochs for elements stored in the
     279             :      * cache. epoch_check should be run before every insert.
     280             :      *
     281             :      * First, epoch_check decrements and checks the cheap heuristic, and then does
     282             :      * a more expensive scan if the cheap heuristic runs out. If the expensive
     283             :      * scan succeeds, the epochs are aged and old elements are allow_erased. The
     284             :      * cheap heuristic is reset to retrigger after the worst case growth of the
     285             :      * current epoch's elements would exceed the epoch_size.
     286             :      */
     287         844 :     void epoch_check()
     288             :     {
     289         844 :         if (epoch_heuristic_counter != 0) {
     290         844 :             --epoch_heuristic_counter;
     291         844 :             return;
     292             :         }
     293             :         // count the number of elements from the latest epoch which
     294             :         // have not been erased.
     295           0 :         uint32_t epoch_unused_count = 0;
     296           0 :         for (uint32_t i = 0; i < size; ++i)
     297           0 :             epoch_unused_count += epoch_flags[i] &&
     298           0 :                                   !collection_flags.bit_is_set(i);
     299             :         // If there are more non-deleted entries in the current epoch than the
     300             :         // epoch size, then allow_erase on all elements in the old epoch (marked
     301             :         // false) and move all elements in the current epoch to the old epoch
     302             :         // but do not call allow_erase on their indices.
     303           0 :         if (epoch_unused_count >= epoch_size) {
     304           0 :             for (uint32_t i = 0; i < size; ++i)
     305           0 :                 if (epoch_flags[i])
     306           0 :                     epoch_flags[i] = false;
     307             :                 else
     308           0 :                     allow_erase(i);
     309           0 :             epoch_heuristic_counter = epoch_size;
     310           0 :         } else
     311             :             // reset the epoch_heuristic_counter to next do a scan when worst
     312             :             // case behavior (no intermittent erases) would exceed epoch size,
     313             :             // with a reasonable minimum scan size.
     314             :             // Ordinarily, we would have to sanity check std::min(epoch_size,
     315             :             // epoch_unused_count), but we already know that `epoch_unused_count
     316             :             // < epoch_size` in this branch
     317           0 :             epoch_heuristic_counter = std::max(1u, std::max(epoch_size / 16,
     318           0 :                         epoch_size - epoch_unused_count));
     319         844 :     }
     320             : 
     321             : public:
     322             :     /** You must always construct a cache with some elements via a subsequent
     323             :      * call to setup or setup_bytes, otherwise operations may segfault.
     324             :      */
     325           8 :     cache() : table(), collection_flags(0), epoch_flags(), hash_function()
     326             :     {
     327           4 :     }
     328             : 
     329             :     /** setup initializes the container to store no more than new_size
     330             :      * elements and no less than 2 elements.
     331             :      *
     332             :      * setup should only be called once.
     333             :      *
     334             :      * @param new_size the desired number of elements to store
     335             :      * @returns the maximum number of elements storable
     336             :      */
     337           2 :     uint32_t setup(uint32_t new_size)
     338             :     {
     339             :         // depth_limit must be at least one otherwise errors can occur.
     340           2 :         size = std::max<uint32_t>(2, new_size);
     341           2 :         depth_limit = static_cast<uint8_t>(std::log2(static_cast<float>(size)));
     342           2 :         table.resize(size);
     343           2 :         collection_flags.setup(size);
     344           2 :         epoch_flags.resize(size);
     345             :         // Set to 45% as described above
     346           2 :         epoch_size = std::max(uint32_t{1}, (45 * size) / 100);
     347             :         // Initially set to wait for a whole epoch
     348           2 :         epoch_heuristic_counter = epoch_size;
     349           2 :         return size;
     350             :     }
     351             : 
     352             :     /** setup_bytes is a convenience function which accounts for internal memory
     353             :      * usage when deciding how many elements to store. It isn't perfect because
     354             :      * it doesn't account for any overhead (struct size, MallocUsage, collection
     355             :      * and epoch flags). This was done to simplify selecting a power of two
     356             :      * size. In the expected use case, an extra two bits per entry should be
     357             :      * negligible compared to the size of the elements.
     358             :      *
     359             :      * @param bytes the approximate number of bytes to use for this data
     360             :      * structure
     361             :      * @returns A pair of the maximum number of elements storable (see setup()
     362             :      * documentation for more detail) and the approxmiate total size of these
     363             :      * elements in bytes or std::nullopt if the size requested is too large.
     364             :      */
     365           2 :     std::optional<std::pair<uint32_t, size_t>> setup_bytes(size_t bytes)
     366             :     {
     367           2 :         size_t requested_num_elems = bytes / sizeof(Element);
     368           2 :         if (std::numeric_limits<uint32_t>::max() < requested_num_elems) {
     369           0 :             return std::nullopt;
     370             :         }
     371             : 
     372           2 :         auto num_elems = setup(bytes/sizeof(Element));
     373             : 
     374           2 :         size_t approx_size_bytes = num_elems * sizeof(Element);
     375           2 :         return std::make_pair(num_elems, approx_size_bytes);
     376           2 :     }
     377             : 
     378             :     /** insert loops at most depth_limit times trying to insert a hash
     379             :      * at various locations in the table via a variant of the Cuckoo Algorithm
     380             :      * with eight hash locations.
     381             :      *
     382             :      * It drops the last tried element if it runs out of depth before
     383             :      * encountering an open slot.
     384             :      *
     385             :      * Thus:
     386             :      *
     387             :      * ```
     388             :      * insert(x);
     389             :      * return contains(x, false);
     390             :      * ```
     391             :      *
     392             :      * is not guaranteed to return true.
     393             :      *
     394             :      * @param e the element to insert
     395             :      * @post one of the following: All previously inserted elements and e are
     396             :      * now in the table, one previously inserted element is evicted from the
     397             :      * table, the entry attempted to be inserted is evicted.
     398             :      */
     399         844 :     inline void insert(Element e)
     400             :     {
     401         844 :         epoch_check();
     402         844 :         uint32_t last_loc = invalid();
     403         844 :         bool last_epoch = true;
     404         844 :         std::array<uint32_t, 8> locs = compute_hashes(e);
     405             :         // Make sure we have not already inserted this element
     406             :         // If we have, make sure that it does not get deleted
     407        7596 :         for (const uint32_t loc : locs)
     408        6752 :             if (table[loc] == e) {
     409           0 :                 please_keep(loc);
     410           0 :                 epoch_flags[loc] = last_epoch;
     411           0 :                 return;
     412             :             }
     413         844 :         for (uint8_t depth = 0; depth < depth_limit; ++depth) {
     414             :             // First try to insert to an empty slot, if one exists
     415         844 :             for (const uint32_t loc : locs) {
     416         844 :                 if (!collection_flags.bit_is_set(loc))
     417           0 :                     continue;
     418         844 :                 table[loc] = std::move(e);
     419         844 :                 please_keep(loc);
     420         844 :                 epoch_flags[loc] = last_epoch;
     421         844 :                 return;
     422             :             }
     423             :             /** Swap with the element at the location that was
     424             :             * not the last one looked at. Example:
     425             :             *
     426             :             * 1. On first iteration, last_loc == invalid(), find returns last, so
     427             :             *    last_loc defaults to locs[0].
     428             :             * 2. On further iterations, where last_loc == locs[k], last_loc will
     429             :             *    go to locs[k+1 % 8], i.e., next of the 8 indices wrapping around
     430             :             *    to 0 if needed.
     431             :             *
     432             :             * This prevents moving the element we just put in.
     433             :             *
     434             :             * The swap is not a move -- we must switch onto the evicted element
     435             :             * for the next iteration.
     436             :             */
     437           0 :             last_loc = locs[(1 + (std::find(locs.begin(), locs.end(), last_loc) - locs.begin())) & 7];
     438           0 :             std::swap(table[last_loc], e);
     439             :             // Can't std::swap a std::vector<bool>::reference and a bool&.
     440           0 :             bool epoch = last_epoch;
     441           0 :             last_epoch = epoch_flags[last_loc];
     442           0 :             epoch_flags[last_loc] = epoch;
     443             : 
     444             :             // Recompute the locs -- unfortunately happens one too many times!
     445           0 :             locs = compute_hashes(e);
     446           0 :         }
     447         844 :     }
     448             : 
     449             :     /** contains iterates through the hash locations for a given element
     450             :      * and checks to see if it is present.
     451             :      *
     452             :      * contains does not check garbage collected state (in other words,
     453             :      * garbage is only collected when the space is needed), so:
     454             :      *
     455             :      * ```
     456             :      * insert(x);
     457             :      * if (contains(x, true))
     458             :      *     return contains(x, false);
     459             :      * else
     460             :      *     return true;
     461             :      * ```
     462             :      *
     463             :      * executed on a single thread will always return true!
     464             :      *
     465             :      * This is a great property for re-org performance for example.
     466             :      *
     467             :      * contains returns a bool set true if the element was found.
     468             :      *
     469             :      * @param e the element to check
     470             :      * @param erase whether to attempt setting the garbage collect flag
     471             :      *
     472             :      * @post if erase is true and the element is found, then the garbage collect
     473             :      * flag is set
     474             :      * @returns true if the element is found, false otherwise
     475             :      */
     476        6904 :     inline bool contains(const Element& e, const bool erase) const
     477             :     {
     478        6904 :         std::array<uint32_t, 8> locs = compute_hashes(e);
     479       41928 :         for (const uint32_t loc : locs)
     480       37550 :             if (table[loc] == e) {
     481        2526 :                 if (erase)
     482           0 :                     allow_erase(loc);
     483        2526 :                 return true;
     484             :             }
     485        4378 :         return false;
     486        6904 :     }
     487             : };
     488             : } // namespace CuckooCache
     489             : 
     490             : #endif // BITCOIN_CUCKOOCACHE_H

Generated by: LCOV version 1.14