LCOV - code coverage report
Current view: top level - src/crypto - muhash.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 0 205 0.0 %
Date: 2023-09-26 12:08:55 Functions: 0 24 0.0 %

          Line data    Source code
       1             : // Copyright (c) 2017-2022 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #include <crypto/muhash.h>
       6             : 
       7             : #include <crypto/chacha20.h>
       8             : #include <crypto/common.h>
       9             : #include <hash.h>
      10             : 
      11             : #include <cassert>
      12             : #include <cstdio>
      13             : #include <limits>
      14             : 
      15             : namespace {
      16             : 
      17             : using limb_t = Num3072::limb_t;
      18             : using double_limb_t = Num3072::double_limb_t;
      19             : constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
      20             : /** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */
      21             : constexpr limb_t MAX_PRIME_DIFF = 1103717;
      22             : 
      23             : /** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */
      24           0 : inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
      25             : {
      26           0 :     n = c0;
      27           0 :     c0 = c1;
      28           0 :     c1 = c2;
      29           0 :     c2 = 0;
      30           0 : }
      31             : 
      32             : /** [c0,c1] = a * b */
      33           0 : inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
      34             : {
      35           0 :     double_limb_t t = (double_limb_t)a * b;
      36           0 :     c1 = t >> LIMB_SIZE;
      37           0 :     c0 = t;
      38           0 : }
      39             : 
      40             : /* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
      41           0 : inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
      42             : {
      43           0 :     double_limb_t t = (double_limb_t)d0 * n + c0;
      44           0 :     c0 = t;
      45           0 :     t >>= LIMB_SIZE;
      46           0 :     t += (double_limb_t)d1 * n + c1;
      47           0 :     c1 = t;
      48           0 :     t >>= LIMB_SIZE;
      49           0 :     c2 = t + d2 * n;
      50           0 : }
      51             : 
      52             : /* [c0,c1] *= n */
      53           0 : inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
      54             : {
      55           0 :     double_limb_t t = (double_limb_t)c0 * n;
      56           0 :     c0 = t;
      57           0 :     t >>= LIMB_SIZE;
      58           0 :     t += (double_limb_t)c1 * n;
      59           0 :     c1 = t;
      60           0 : }
      61             : 
      62             : /** [c0,c1,c2] += a * b */
      63           0 : inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
      64             : {
      65           0 :     double_limb_t t = (double_limb_t)a * b;
      66           0 :     limb_t th = t >> LIMB_SIZE;
      67           0 :     limb_t tl = t;
      68             : 
      69           0 :     c0 += tl;
      70           0 :     th += (c0 < tl) ? 1 : 0;
      71           0 :     c1 += th;
      72           0 :     c2 += (c1 < th) ? 1 : 0;
      73           0 : }
      74             : 
      75             : /** [c0,c1,c2] += 2 * a * b */
      76           0 : inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
      77             : {
      78           0 :     double_limb_t t = (double_limb_t)a * b;
      79           0 :     limb_t th = t >> LIMB_SIZE;
      80           0 :     limb_t tl = t;
      81             : 
      82           0 :     c0 += tl;
      83           0 :     limb_t tt = th + ((c0 < tl) ? 1 : 0);
      84           0 :     c1 += tt;
      85           0 :     c2 += (c1 < tt) ? 1 : 0;
      86           0 :     c0 += tl;
      87           0 :     th += (c0 < tl) ? 1 : 0;
      88           0 :     c1 += th;
      89           0 :     c2 += (c1 < th) ? 1 : 0;
      90           0 : }
      91             : 
      92             : /**
      93             :  * Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest
      94             :  * limb of [c0,c1] into n, and left shift the number by 1 limb.
      95             :  * */
      96           0 : inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
      97             : {
      98           0 :     limb_t c2 = 0;
      99             : 
     100             :     // add
     101           0 :     c0 += a;
     102           0 :     if (c0 < a) {
     103           0 :         c1 += 1;
     104             : 
     105             :         // Handle case when c1 has overflown
     106           0 :         if (c1 == 0)
     107           0 :             c2 = 1;
     108           0 :     }
     109             : 
     110             :     // extract
     111           0 :     n = c0;
     112           0 :     c0 = c1;
     113           0 :     c1 = c2;
     114           0 : }
     115             : 
     116             : /** in_out = in_out^(2^sq) * mul */
     117           0 : inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul)
     118             : {
     119           0 :     for (int j = 0; j < sq; ++j) in_out.Square();
     120           0 :     in_out.Multiply(mul);
     121           0 : }
     122             : 
     123             : } // namespace
     124             : 
     125             : /** Indicates whether d is larger than the modulus. */
     126           0 : bool Num3072::IsOverflow() const
     127             : {
     128           0 :     if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
     129           0 :     for (int i = 1; i < LIMBS; ++i) {
     130           0 :         if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
     131           0 :     }
     132           0 :     return true;
     133           0 : }
     134             : 
     135           0 : void Num3072::FullReduce()
     136             : {
     137           0 :     limb_t c0 = MAX_PRIME_DIFF;
     138           0 :     limb_t c1 = 0;
     139           0 :     for (int i = 0; i < LIMBS; ++i) {
     140           0 :         addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
     141           0 :     }
     142           0 : }
     143             : 
     144           0 : Num3072 Num3072::GetInverse() const
     145             : {
     146             :     // For fast exponentiation a sliding window exponentiation with repunit
     147             :     // precomputation is utilized. See "Fast Point Decompression for Standard
     148             :     // Elliptic Curves" (Brumley, Järvinen, 2008).
     149             : 
     150           0 :     Num3072 p[12]; // p[i] = a^(2^(2^i)-1)
     151           0 :     Num3072 out;
     152             : 
     153           0 :     p[0] = *this;
     154             : 
     155           0 :     for (int i = 0; i < 11; ++i) {
     156           0 :         p[i + 1] = p[i];
     157           0 :         for (int j = 0; j < (1 << i); ++j) p[i + 1].Square();
     158           0 :         p[i + 1].Multiply(p[i]);
     159           0 :     }
     160             : 
     161           0 :     out = p[11];
     162             : 
     163           0 :     square_n_mul(out, 512, p[9]);
     164           0 :     square_n_mul(out, 256, p[8]);
     165           0 :     square_n_mul(out, 128, p[7]);
     166           0 :     square_n_mul(out, 64, p[6]);
     167           0 :     square_n_mul(out, 32, p[5]);
     168           0 :     square_n_mul(out, 8, p[3]);
     169           0 :     square_n_mul(out, 2, p[1]);
     170           0 :     square_n_mul(out, 1, p[0]);
     171           0 :     square_n_mul(out, 5, p[2]);
     172           0 :     square_n_mul(out, 3, p[0]);
     173           0 :     square_n_mul(out, 2, p[0]);
     174           0 :     square_n_mul(out, 4, p[0]);
     175           0 :     square_n_mul(out, 4, p[1]);
     176           0 :     square_n_mul(out, 3, p[0]);
     177             : 
     178           0 :     return out;
     179             : }
     180             : 
     181           0 : void Num3072::Multiply(const Num3072& a)
     182             : {
     183           0 :     limb_t c0 = 0, c1 = 0, c2 = 0;
     184           0 :     Num3072 tmp;
     185             : 
     186             :     /* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
     187           0 :     for (int j = 0; j < LIMBS - 1; ++j) {
     188           0 :         limb_t d0 = 0, d1 = 0, d2 = 0;
     189           0 :         mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
     190           0 :         for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
     191           0 :         mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
     192           0 :         for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
     193           0 :         extract3(c0, c1, c2, tmp.limbs[j]);
     194           0 :     }
     195             : 
     196             :     /* Compute limb N-1 of a*b into tmp. */
     197           0 :     assert(c2 == 0);
     198           0 :     for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
     199           0 :     extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
     200             : 
     201             :     /* Perform a second reduction. */
     202           0 :     muln2(c0, c1, MAX_PRIME_DIFF);
     203           0 :     for (int j = 0; j < LIMBS; ++j) {
     204           0 :         addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
     205           0 :     }
     206             : 
     207           0 :     assert(c1 == 0);
     208           0 :     assert(c0 == 0 || c0 == 1);
     209             : 
     210             :     /* Perform up to two more reductions if the internal state has already
     211             :      * overflown the MAX of Num3072 or if it is larger than the modulus or
     212             :      * if both are the case.
     213             :      * */
     214           0 :     if (this->IsOverflow()) this->FullReduce();
     215           0 :     if (c0) this->FullReduce();
     216           0 : }
     217             : 
     218           0 : void Num3072::Square()
     219             : {
     220           0 :     limb_t c0 = 0, c1 = 0, c2 = 0;
     221           0 :     Num3072 tmp;
     222             : 
     223             :     /* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */
     224           0 :     for (int j = 0; j < LIMBS - 1; ++j) {
     225           0 :         limb_t d0 = 0, d1 = 0, d2 = 0;
     226           0 :         for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]);
     227           0 :         if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]);
     228           0 :         mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
     229           0 :         for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]);
     230           0 :         if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]);
     231           0 :         extract3(c0, c1, c2, tmp.limbs[j]);
     232           0 :     }
     233             : 
     234           0 :     assert(c2 == 0);
     235           0 :     for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]);
     236           0 :     extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
     237             : 
     238             :     /* Perform a second reduction. */
     239           0 :     muln2(c0, c1, MAX_PRIME_DIFF);
     240           0 :     for (int j = 0; j < LIMBS; ++j) {
     241           0 :         addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
     242           0 :     }
     243             : 
     244           0 :     assert(c1 == 0);
     245           0 :     assert(c0 == 0 || c0 == 1);
     246             : 
     247             :     /* Perform up to two more reductions if the internal state has already
     248             :      * overflown the MAX of Num3072 or if it is larger than the modulus or
     249             :      * if both are the case.
     250             :      * */
     251           0 :     if (this->IsOverflow()) this->FullReduce();
     252           0 :     if (c0) this->FullReduce();
     253           0 : }
     254             : 
     255           0 : void Num3072::SetToOne()
     256             : {
     257           0 :     this->limbs[0] = 1;
     258           0 :     for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
     259           0 : }
     260             : 
     261           0 : void Num3072::Divide(const Num3072& a)
     262             : {
     263           0 :     if (this->IsOverflow()) this->FullReduce();
     264             : 
     265           0 :     Num3072 inv{};
     266           0 :     if (a.IsOverflow()) {
     267           0 :         Num3072 b = a;
     268           0 :         b.FullReduce();
     269           0 :         inv = b.GetInverse();
     270           0 :     } else {
     271           0 :         inv = a.GetInverse();
     272             :     }
     273             : 
     274           0 :     this->Multiply(inv);
     275           0 :     if (this->IsOverflow()) this->FullReduce();
     276           0 : }
     277             : 
     278           0 : Num3072::Num3072(const unsigned char (&data)[BYTE_SIZE]) {
     279           0 :     for (int i = 0; i < LIMBS; ++i) {
     280             :         if (sizeof(limb_t) == 4) {
     281             :             this->limbs[i] = ReadLE32(data + 4 * i);
     282             :         } else if (sizeof(limb_t) == 8) {
     283           0 :             this->limbs[i] = ReadLE64(data + 8 * i);
     284             :         }
     285           0 :     }
     286           0 : }
     287             : 
     288           0 : void Num3072::ToBytes(unsigned char (&out)[BYTE_SIZE]) {
     289           0 :     for (int i = 0; i < LIMBS; ++i) {
     290             :         if (sizeof(limb_t) == 4) {
     291             :             WriteLE32(out + i * 4, this->limbs[i]);
     292             :         } else if (sizeof(limb_t) == 8) {
     293           0 :             WriteLE64(out + i * 8, this->limbs[i]);
     294             :         }
     295           0 :     }
     296           0 : }
     297             : 
     298           0 : Num3072 MuHash3072::ToNum3072(Span<const unsigned char> in) {
     299             :     unsigned char tmp[Num3072::BYTE_SIZE];
     300             : 
     301           0 :     uint256 hashed_in{(HashWriter{} << in).GetSHA256()};
     302             :     static_assert(sizeof(tmp) % ChaCha20Aligned::BLOCKLEN == 0);
     303           0 :     ChaCha20Aligned{MakeByteSpan(hashed_in)}.Keystream(MakeWritableByteSpan(tmp));
     304           0 :     Num3072 out{tmp};
     305             : 
     306           0 :     return out;
     307             : }
     308             : 
     309           0 : MuHash3072::MuHash3072(Span<const unsigned char> in) noexcept
     310             : {
     311           0 :     m_numerator = ToNum3072(in);
     312           0 : }
     313             : 
     314           0 : void MuHash3072::Finalize(uint256& out) noexcept
     315             : {
     316           0 :     m_numerator.Divide(m_denominator);
     317           0 :     m_denominator.SetToOne();  // Needed to keep the MuHash object valid
     318             : 
     319             :     unsigned char data[Num3072::BYTE_SIZE];
     320           0 :     m_numerator.ToBytes(data);
     321             : 
     322           0 :     out = (HashWriter{} << data).GetSHA256();
     323           0 : }
     324             : 
     325           0 : MuHash3072& MuHash3072::operator*=(const MuHash3072& mul) noexcept
     326             : {
     327           0 :     m_numerator.Multiply(mul.m_numerator);
     328           0 :     m_denominator.Multiply(mul.m_denominator);
     329           0 :     return *this;
     330             : }
     331             : 
     332           0 : MuHash3072& MuHash3072::operator/=(const MuHash3072& div) noexcept
     333             : {
     334           0 :     m_numerator.Multiply(div.m_denominator);
     335           0 :     m_denominator.Multiply(div.m_numerator);
     336           0 :     return *this;
     337             : }
     338             : 
     339           0 : MuHash3072& MuHash3072::Insert(Span<const unsigned char> in) noexcept {
     340           0 :     m_numerator.Multiply(ToNum3072(in));
     341           0 :     return *this;
     342             : }
     343             : 
     344           0 : MuHash3072& MuHash3072::Remove(Span<const unsigned char> in) noexcept {
     345           0 :     m_denominator.Multiply(ToNum3072(in));
     346           0 :     return *this;
     347             : }

Generated by: LCOV version 1.14