Line data Source code
1 : // Copyright (c) 2017-2022 The Bitcoin Core developers
2 : // Distributed under the MIT software license, see the accompanying
3 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 :
5 : // Based on the public domain implementation 'merged' by D. J. Bernstein
6 : // See https://cr.yp.to/chacha.html.
7 :
8 : #include <crypto/common.h>
9 : #include <crypto/chacha20.h>
10 : #include <support/cleanse.h>
11 : #include <span.h>
12 :
13 : #include <algorithm>
14 : #include <string.h>
15 :
16 56669760 : constexpr static inline uint32_t rotl32(uint32_t v, int c) { return (v << c) | (v >> (32 - c)); }
17 :
18 : #define QUARTERROUND(a,b,c,d) \
19 : a += b; d = rotl32(d ^ a, 16); \
20 : c += d; b = rotl32(b ^ c, 12); \
21 : a += b; d = rotl32(d ^ a, 8); \
22 : c += d; b = rotl32(b ^ c, 7);
23 :
24 : #define REPEAT10(a) do { {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; } while(0)
25 :
26 360818 : void ChaCha20Aligned::SetKey(Span<const std::byte> key) noexcept
27 : {
28 360818 : assert(key.size() == KEYLEN);
29 360818 : input[0] = ReadLE32(UCharCast(key.data() + 0));
30 360818 : input[1] = ReadLE32(UCharCast(key.data() + 4));
31 360818 : input[2] = ReadLE32(UCharCast(key.data() + 8));
32 360818 : input[3] = ReadLE32(UCharCast(key.data() + 12));
33 360818 : input[4] = ReadLE32(UCharCast(key.data() + 16));
34 360818 : input[5] = ReadLE32(UCharCast(key.data() + 20));
35 360818 : input[6] = ReadLE32(UCharCast(key.data() + 24));
36 360818 : input[7] = ReadLE32(UCharCast(key.data() + 28));
37 360818 : input[8] = 0;
38 360818 : input[9] = 0;
39 360818 : input[10] = 0;
40 360818 : input[11] = 0;
41 360818 : }
42 :
43 183725 : ChaCha20Aligned::~ChaCha20Aligned()
44 : {
45 183725 : memory_cleanse(input, sizeof(input));
46 183725 : }
47 :
48 183725 : ChaCha20Aligned::ChaCha20Aligned(Span<const std::byte> key) noexcept
49 : {
50 183725 : SetKey(key);
51 183725 : }
52 :
53 0 : void ChaCha20Aligned::Seek(Nonce96 nonce, uint32_t block_counter) noexcept
54 : {
55 0 : input[8] = block_counter;
56 0 : input[9] = nonce.first;
57 0 : input[10] = nonce.second;
58 0 : input[11] = nonce.second >> 32;
59 0 : }
60 :
61 177093 : inline void ChaCha20Aligned::Keystream(Span<std::byte> output) noexcept
62 : {
63 177093 : unsigned char* c = UCharCast(output.data());
64 177093 : size_t blocks = output.size() / BLOCKLEN;
65 177093 : assert(blocks * BLOCKLEN == output.size());
66 :
67 : uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
68 : uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
69 :
70 177093 : if (!blocks) return;
71 :
72 177093 : j4 = input[0];
73 177093 : j5 = input[1];
74 177093 : j6 = input[2];
75 177093 : j7 = input[3];
76 177093 : j8 = input[4];
77 177093 : j9 = input[5];
78 177093 : j10 = input[6];
79 177093 : j11 = input[7];
80 177093 : j12 = input[8];
81 177093 : j13 = input[9];
82 177093 : j14 = input[10];
83 177093 : j15 = input[11];
84 :
85 177093 : for (;;) {
86 177093 : x0 = 0x61707865;
87 177093 : x1 = 0x3320646e;
88 177093 : x2 = 0x79622d32;
89 177093 : x3 = 0x6b206574;
90 177093 : x4 = j4;
91 177093 : x5 = j5;
92 177093 : x6 = j6;
93 177093 : x7 = j7;
94 177093 : x8 = j8;
95 177093 : x9 = j9;
96 177093 : x10 = j10;
97 177093 : x11 = j11;
98 177093 : x12 = j12;
99 177093 : x13 = j13;
100 177093 : x14 = j14;
101 177093 : x15 = j15;
102 :
103 : // The 20 inner ChaCha20 rounds are unrolled here for performance.
104 177093 : REPEAT10(
105 : QUARTERROUND( x0, x4, x8,x12);
106 : QUARTERROUND( x1, x5, x9,x13);
107 : QUARTERROUND( x2, x6,x10,x14);
108 : QUARTERROUND( x3, x7,x11,x15);
109 : QUARTERROUND( x0, x5,x10,x15);
110 : QUARTERROUND( x1, x6,x11,x12);
111 : QUARTERROUND( x2, x7, x8,x13);
112 : QUARTERROUND( x3, x4, x9,x14);
113 : );
114 :
115 177093 : x0 += 0x61707865;
116 177093 : x1 += 0x3320646e;
117 177093 : x2 += 0x79622d32;
118 177093 : x3 += 0x6b206574;
119 177093 : x4 += j4;
120 177093 : x5 += j5;
121 177093 : x6 += j6;
122 177093 : x7 += j7;
123 177093 : x8 += j8;
124 177093 : x9 += j9;
125 177093 : x10 += j10;
126 177093 : x11 += j11;
127 177093 : x12 += j12;
128 177093 : x13 += j13;
129 177093 : x14 += j14;
130 177093 : x15 += j15;
131 :
132 177093 : ++j12;
133 177093 : if (!j12) ++j13;
134 :
135 177093 : WriteLE32(c + 0, x0);
136 177093 : WriteLE32(c + 4, x1);
137 177093 : WriteLE32(c + 8, x2);
138 177093 : WriteLE32(c + 12, x3);
139 177093 : WriteLE32(c + 16, x4);
140 177093 : WriteLE32(c + 20, x5);
141 177093 : WriteLE32(c + 24, x6);
142 177093 : WriteLE32(c + 28, x7);
143 177093 : WriteLE32(c + 32, x8);
144 177093 : WriteLE32(c + 36, x9);
145 177093 : WriteLE32(c + 40, x10);
146 177093 : WriteLE32(c + 44, x11);
147 177093 : WriteLE32(c + 48, x12);
148 177093 : WriteLE32(c + 52, x13);
149 177093 : WriteLE32(c + 56, x14);
150 177093 : WriteLE32(c + 60, x15);
151 :
152 177093 : if (blocks == 1) {
153 177093 : input[8] = j12;
154 177093 : input[9] = j13;
155 177093 : return;
156 : }
157 0 : blocks -= 1;
158 0 : c += BLOCKLEN;
159 : }
160 177093 : }
161 :
162 0 : inline void ChaCha20Aligned::Crypt(Span<const std::byte> in_bytes, Span<std::byte> out_bytes) noexcept
163 : {
164 0 : assert(in_bytes.size() == out_bytes.size());
165 0 : const unsigned char* m = UCharCast(in_bytes.data());
166 0 : unsigned char* c = UCharCast(out_bytes.data());
167 0 : size_t blocks = out_bytes.size() / BLOCKLEN;
168 0 : assert(blocks * BLOCKLEN == out_bytes.size());
169 :
170 : uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
171 : uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
172 :
173 0 : if (!blocks) return;
174 :
175 0 : j4 = input[0];
176 0 : j5 = input[1];
177 0 : j6 = input[2];
178 0 : j7 = input[3];
179 0 : j8 = input[4];
180 0 : j9 = input[5];
181 0 : j10 = input[6];
182 0 : j11 = input[7];
183 0 : j12 = input[8];
184 0 : j13 = input[9];
185 0 : j14 = input[10];
186 0 : j15 = input[11];
187 :
188 0 : for (;;) {
189 0 : x0 = 0x61707865;
190 0 : x1 = 0x3320646e;
191 0 : x2 = 0x79622d32;
192 0 : x3 = 0x6b206574;
193 0 : x4 = j4;
194 0 : x5 = j5;
195 0 : x6 = j6;
196 0 : x7 = j7;
197 0 : x8 = j8;
198 0 : x9 = j9;
199 0 : x10 = j10;
200 0 : x11 = j11;
201 0 : x12 = j12;
202 0 : x13 = j13;
203 0 : x14 = j14;
204 0 : x15 = j15;
205 :
206 : // The 20 inner ChaCha20 rounds are unrolled here for performance.
207 0 : REPEAT10(
208 : QUARTERROUND( x0, x4, x8,x12);
209 : QUARTERROUND( x1, x5, x9,x13);
210 : QUARTERROUND( x2, x6,x10,x14);
211 : QUARTERROUND( x3, x7,x11,x15);
212 : QUARTERROUND( x0, x5,x10,x15);
213 : QUARTERROUND( x1, x6,x11,x12);
214 : QUARTERROUND( x2, x7, x8,x13);
215 : QUARTERROUND( x3, x4, x9,x14);
216 : );
217 :
218 0 : x0 += 0x61707865;
219 0 : x1 += 0x3320646e;
220 0 : x2 += 0x79622d32;
221 0 : x3 += 0x6b206574;
222 0 : x4 += j4;
223 0 : x5 += j5;
224 0 : x6 += j6;
225 0 : x7 += j7;
226 0 : x8 += j8;
227 0 : x9 += j9;
228 0 : x10 += j10;
229 0 : x11 += j11;
230 0 : x12 += j12;
231 0 : x13 += j13;
232 0 : x14 += j14;
233 0 : x15 += j15;
234 :
235 0 : x0 ^= ReadLE32(m + 0);
236 0 : x1 ^= ReadLE32(m + 4);
237 0 : x2 ^= ReadLE32(m + 8);
238 0 : x3 ^= ReadLE32(m + 12);
239 0 : x4 ^= ReadLE32(m + 16);
240 0 : x5 ^= ReadLE32(m + 20);
241 0 : x6 ^= ReadLE32(m + 24);
242 0 : x7 ^= ReadLE32(m + 28);
243 0 : x8 ^= ReadLE32(m + 32);
244 0 : x9 ^= ReadLE32(m + 36);
245 0 : x10 ^= ReadLE32(m + 40);
246 0 : x11 ^= ReadLE32(m + 44);
247 0 : x12 ^= ReadLE32(m + 48);
248 0 : x13 ^= ReadLE32(m + 52);
249 0 : x14 ^= ReadLE32(m + 56);
250 0 : x15 ^= ReadLE32(m + 60);
251 :
252 0 : ++j12;
253 0 : if (!j12) ++j13;
254 :
255 0 : WriteLE32(c + 0, x0);
256 0 : WriteLE32(c + 4, x1);
257 0 : WriteLE32(c + 8, x2);
258 0 : WriteLE32(c + 12, x3);
259 0 : WriteLE32(c + 16, x4);
260 0 : WriteLE32(c + 20, x5);
261 0 : WriteLE32(c + 24, x6);
262 0 : WriteLE32(c + 28, x7);
263 0 : WriteLE32(c + 32, x8);
264 0 : WriteLE32(c + 36, x9);
265 0 : WriteLE32(c + 40, x10);
266 0 : WriteLE32(c + 44, x11);
267 0 : WriteLE32(c + 48, x12);
268 0 : WriteLE32(c + 52, x13);
269 0 : WriteLE32(c + 56, x14);
270 0 : WriteLE32(c + 60, x15);
271 :
272 0 : if (blocks == 1) {
273 0 : input[8] = j12;
274 0 : input[9] = j13;
275 0 : return;
276 : }
277 0 : blocks -= 1;
278 0 : c += BLOCKLEN;
279 0 : m += BLOCKLEN;
280 : }
281 0 : }
282 :
283 177093 : void ChaCha20::Keystream(Span<std::byte> out) noexcept
284 : {
285 177093 : if (out.empty()) return;
286 177093 : if (m_bufleft) {
287 0 : unsigned reuse = std::min<size_t>(m_bufleft, out.size());
288 0 : std::copy(m_buffer.end() - m_bufleft, m_buffer.end() - m_bufleft + reuse, out.begin());
289 0 : m_bufleft -= reuse;
290 0 : out = out.subspan(reuse);
291 0 : }
292 177093 : if (out.size() >= m_aligned.BLOCKLEN) {
293 0 : size_t blocks = out.size() / m_aligned.BLOCKLEN;
294 0 : m_aligned.Keystream(out.first(blocks * m_aligned.BLOCKLEN));
295 0 : out = out.subspan(blocks * m_aligned.BLOCKLEN);
296 0 : }
297 177093 : if (!out.empty()) {
298 177093 : m_aligned.Keystream(m_buffer);
299 177093 : std::copy(m_buffer.begin(), m_buffer.begin() + out.size(), out.begin());
300 177093 : m_bufleft = m_aligned.BLOCKLEN - out.size();
301 177093 : }
302 177093 : }
303 :
304 0 : void ChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept
305 : {
306 0 : assert(input.size() == output.size());
307 :
308 0 : if (!input.size()) return;
309 0 : if (m_bufleft) {
310 0 : unsigned reuse = std::min<size_t>(m_bufleft, input.size());
311 0 : for (unsigned i = 0; i < reuse; i++) {
312 0 : output[i] = input[i] ^ m_buffer[m_aligned.BLOCKLEN - m_bufleft + i];
313 0 : }
314 0 : m_bufleft -= reuse;
315 0 : output = output.subspan(reuse);
316 0 : input = input.subspan(reuse);
317 0 : }
318 0 : if (input.size() >= m_aligned.BLOCKLEN) {
319 0 : size_t blocks = input.size() / m_aligned.BLOCKLEN;
320 0 : m_aligned.Crypt(input.first(blocks * m_aligned.BLOCKLEN), output.first(blocks * m_aligned.BLOCKLEN));
321 0 : output = output.subspan(blocks * m_aligned.BLOCKLEN);
322 0 : input = input.subspan(blocks * m_aligned.BLOCKLEN);
323 0 : }
324 0 : if (!input.empty()) {
325 0 : m_aligned.Keystream(m_buffer);
326 0 : for (unsigned i = 0; i < input.size(); i++) {
327 0 : output[i] = input[i] ^ m_buffer[i];
328 0 : }
329 0 : m_bufleft = m_aligned.BLOCKLEN - input.size();
330 0 : }
331 0 : }
332 :
333 183725 : ChaCha20::~ChaCha20()
334 : {
335 183725 : memory_cleanse(m_buffer.data(), m_buffer.size());
336 183725 : }
337 :
338 177093 : void ChaCha20::SetKey(Span<const std::byte> key) noexcept
339 : {
340 177093 : m_aligned.SetKey(key);
341 177093 : m_bufleft = 0;
342 177093 : memory_cleanse(m_buffer.data(), m_buffer.size());
343 177093 : }
344 :
345 0 : FSChaCha20::FSChaCha20(Span<const std::byte> key, uint32_t rekey_interval) noexcept :
346 0 : m_chacha20(key), m_rekey_interval(rekey_interval)
347 : {
348 0 : assert(key.size() == KEYLEN);
349 0 : }
350 :
351 0 : void FSChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept
352 : {
353 0 : assert(input.size() == output.size());
354 :
355 : // Invoke internal stream cipher for actual encryption/decryption.
356 0 : m_chacha20.Crypt(input, output);
357 :
358 : // Rekey after m_rekey_interval encryptions/decryptions.
359 0 : if (++m_chunk_counter == m_rekey_interval) {
360 : // Get new key from the stream cipher.
361 : std::byte new_key[KEYLEN];
362 0 : m_chacha20.Keystream(new_key);
363 : // Update its key.
364 0 : m_chacha20.SetKey(new_key);
365 : // Wipe the key (a copy remains inside m_chacha20, where it'll be wiped on the next rekey
366 : // or on destruction).
367 0 : memory_cleanse(new_key, sizeof(new_key));
368 : // Set the nonce for the new section of output.
369 0 : m_chacha20.Seek({0, ++m_rekey_counter}, 0);
370 : // Reset the chunk counter.
371 0 : m_chunk_counter = 0;
372 0 : }
373 0 : }
|