LCOV - code coverage report
Current view: top level - src/common - bloom.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 29 133 21.8 %
Date: 2023-09-26 12:08:55 Functions: 4 13 30.8 %

          Line data    Source code
       1             : // Copyright (c) 2012-2022 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #include <common/bloom.h>
       6             : 
       7             : #include <hash.h>
       8             : #include <primitives/transaction.h>
       9             : #include <random.h>
      10             : #include <script/script.h>
      11             : #include <script/solver.h>
      12             : #include <span.h>
      13             : #include <streams.h>
      14             : #include <util/fastrange.h>
      15             : 
      16             : #include <algorithm>
      17             : #include <cmath>
      18             : #include <cstdlib>
      19             : #include <limits>
      20             : #include <vector>
      21             : 
      22             : static constexpr double LN2SQUARED = 0.4804530139182014246671025263266649717305529515945455;
      23             : static constexpr double LN2 = 0.6931471805599453094172321214581765680755001343602552;
      24             : 
      25           0 : CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
      26             :     /**
      27             :      * The ideal size for a bloom filter with a given number of elements and false positive rate is:
      28             :      * - nElements * log(fp rate) / ln(2)^2
      29             :      * We ignore filter parameters which will create a bloom filter larger than the protocol limits
      30             :      */
      31           0 :     vData(std::min((unsigned int)(-1  / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
      32             :     /**
      33             :      * The ideal number of hash functions is filter size * ln(2) / number of elements
      34             :      * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
      35             :      * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
      36             :      */
      37           0 :     nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
      38           0 :     nTweak(nTweakIn),
      39           0 :     nFlags(nFlagsIn)
      40             : {
      41           0 : }
      42             : 
      43           0 : inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, Span<const unsigned char> vDataToHash) const
      44             : {
      45             :     // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
      46           0 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
      47             : }
      48             : 
      49           0 : void CBloomFilter::insert(Span<const unsigned char> vKey)
      50             : {
      51           0 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
      52           0 :         return;
      53           0 :     for (unsigned int i = 0; i < nHashFuncs; i++)
      54             :     {
      55           0 :         unsigned int nIndex = Hash(i, vKey);
      56             :         // Sets bit nIndex of vData
      57           0 :         vData[nIndex >> 3] |= (1 << (7 & nIndex));
      58           0 :     }
      59           0 : }
      60             : 
      61           0 : void CBloomFilter::insert(const COutPoint& outpoint)
      62             : {
      63           0 :     DataStream stream{};
      64           0 :     stream << outpoint;
      65           0 :     insert(MakeUCharSpan(stream));
      66           0 : }
      67             : 
      68           0 : bool CBloomFilter::contains(Span<const unsigned char> vKey) const
      69             : {
      70           0 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
      71           0 :         return true;
      72           0 :     for (unsigned int i = 0; i < nHashFuncs; i++)
      73             :     {
      74           0 :         unsigned int nIndex = Hash(i, vKey);
      75             :         // Checks bit nIndex of vData
      76           0 :         if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
      77           0 :             return false;
      78           0 :     }
      79           0 :     return true;
      80           0 : }
      81             : 
      82           0 : bool CBloomFilter::contains(const COutPoint& outpoint) const
      83             : {
      84           0 :     DataStream stream{};
      85           0 :     stream << outpoint;
      86           0 :     return contains(MakeUCharSpan(stream));
      87           0 : }
      88             : 
      89           0 : bool CBloomFilter::IsWithinSizeConstraints() const
      90             : {
      91           0 :     return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
      92             : }
      93             : 
      94           0 : bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
      95             : {
      96           0 :     bool fFound = false;
      97             :     // Match if the filter contains the hash of tx
      98             :     //  for finding tx when they appear in a block
      99           0 :     if (vData.empty()) // zero-size = "match-all" filter
     100           0 :         return true;
     101           0 :     const uint256& hash = tx.GetHash();
     102           0 :     if (contains(hash))
     103           0 :         fFound = true;
     104             : 
     105           0 :     for (unsigned int i = 0; i < tx.vout.size(); i++)
     106             :     {
     107           0 :         const CTxOut& txout = tx.vout[i];
     108             :         // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
     109             :         // If this matches, also add the specific output that was matched.
     110             :         // This means clients don't have to update the filter themselves when a new relevant tx
     111             :         // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
     112           0 :         CScript::const_iterator pc = txout.scriptPubKey.begin();
     113           0 :         std::vector<unsigned char> data;
     114           0 :         while (pc < txout.scriptPubKey.end())
     115             :         {
     116             :             opcodetype opcode;
     117           0 :             if (!txout.scriptPubKey.GetOp(pc, opcode, data))
     118           0 :                 break;
     119           0 :             if (data.size() != 0 && contains(data))
     120             :             {
     121           0 :                 fFound = true;
     122           0 :                 if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
     123           0 :                     insert(COutPoint(hash, i));
     124           0 :                 else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
     125             :                 {
     126           0 :                     std::vector<std::vector<unsigned char> > vSolutions;
     127           0 :                     TxoutType type = Solver(txout.scriptPubKey, vSolutions);
     128           0 :                     if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
     129           0 :                         insert(COutPoint(hash, i));
     130           0 :                     }
     131           0 :                 }
     132           0 :                 break;
     133             :             }
     134             :         }
     135           0 :     }
     136             : 
     137           0 :     if (fFound)
     138           0 :         return true;
     139             : 
     140           0 :     for (const CTxIn& txin : tx.vin)
     141             :     {
     142             :         // Match if the filter contains an outpoint tx spends
     143           0 :         if (contains(txin.prevout))
     144           0 :             return true;
     145             : 
     146             :         // Match if the filter contains any arbitrary script data element in any scriptSig in tx
     147           0 :         CScript::const_iterator pc = txin.scriptSig.begin();
     148           0 :         std::vector<unsigned char> data;
     149           0 :         while (pc < txin.scriptSig.end())
     150             :         {
     151             :             opcodetype opcode;
     152           0 :             if (!txin.scriptSig.GetOp(pc, opcode, data))
     153           0 :                 break;
     154           0 :             if (data.size() != 0 && contains(data))
     155           0 :                 return true;
     156             :         }
     157           0 :     }
     158             : 
     159           0 :     return false;
     160           0 : }
     161             : 
     162       16710 : CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
     163             : {
     164       16710 :     double logFpRate = log(fpRate);
     165             :     /* The optimal number of hash functions is log(fpRate) / log(0.5), but
     166             :      * restrict it to the range 1-50. */
     167       16710 :     nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
     168             :     /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
     169       16710 :     nEntriesPerGeneration = (nElements + 1) / 2;
     170       16710 :     uint32_t nMaxElements = nEntriesPerGeneration * 3;
     171             :     /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
     172             :      * =>          pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
     173             :      * =>          1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
     174             :      * =>          log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
     175             :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
     176             :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
     177             :      */
     178       16710 :     uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
     179       16710 :     data.clear();
     180             :     /* For each data element we need to store 2 bits. If both bits are 0, the
     181             :      * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
     182             :      * treated as set in generation 1, 2, or 3 respectively.
     183             :      * These bits are stored in separate integers: position P corresponds to bit
     184             :      * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
     185       16710 :     data.resize(((nFilterBits + 63) / 64) << 1);
     186       16710 :     reset();
     187       16710 : }
     188             : 
     189             : /* Similar to CBloomFilter::Hash */
     190       12120 : static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, Span<const unsigned char> vDataToHash)
     191             : {
     192       12120 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
     193             : }
     194             : 
     195         606 : void CRollingBloomFilter::insert(Span<const unsigned char> vKey)
     196             : {
     197         606 :     if (nEntriesThisGeneration == nEntriesPerGeneration) {
     198           0 :         nEntriesThisGeneration = 0;
     199           0 :         nGeneration++;
     200           0 :         if (nGeneration == 4) {
     201           0 :             nGeneration = 1;
     202           0 :         }
     203           0 :         uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
     204           0 :         uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
     205             :         /* Wipe old entries that used this generation number. */
     206           0 :         for (uint32_t p = 0; p < data.size(); p += 2) {
     207           0 :             uint64_t p1 = data[p], p2 = data[p + 1];
     208           0 :             uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
     209           0 :             data[p] = p1 & mask;
     210           0 :             data[p + 1] = p2 & mask;
     211           0 :         }
     212           0 :     }
     213         606 :     nEntriesThisGeneration++;
     214             : 
     215       12726 :     for (int n = 0; n < nHashFuncs; n++) {
     216       12120 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
     217       12120 :         int bit = h & 0x3F;
     218             :         /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
     219       12120 :         uint32_t pos = FastRange32(h, data.size());
     220             :         /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
     221       12120 :         data[pos & ~1U] = (data[pos & ~1U] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration & 1)) << bit;
     222       12120 :         data[pos | 1] = (data[pos | 1] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration >> 1)) << bit;
     223       12120 :     }
     224         606 : }
     225             : 
     226           0 : bool CRollingBloomFilter::contains(Span<const unsigned char> vKey) const
     227             : {
     228           0 :     for (int n = 0; n < nHashFuncs; n++) {
     229           0 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
     230           0 :         int bit = h & 0x3F;
     231           0 :         uint32_t pos = FastRange32(h, data.size());
     232             :         /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
     233           0 :         if (!(((data[pos & ~1U] | data[pos | 1]) >> bit) & 1)) {
     234           0 :             return false;
     235             :         }
     236           0 :     }
     237           0 :     return true;
     238           0 : }
     239             : 
     240       16710 : void CRollingBloomFilter::reset()
     241             : {
     242       16710 :     nTweak = GetRand<unsigned int>();
     243       16710 :     nEntriesThisGeneration = 0;
     244       16710 :     nGeneration = 1;
     245       16710 :     std::fill(data.begin(), data.end(), 0);
     246       16710 : }

Generated by: LCOV version 1.14