LCOV - code coverage report
Current view: top level - src - bech32.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 0 184 0.0 %
Date: 2023-09-26 12:08:55 Functions: 0 11 0.0 %

          Line data    Source code
       1             : // Copyright (c) 2017, 2021 Pieter Wuille
       2             : // Copyright (c) 2021-2022 The Bitcoin Core developers
       3             : // Distributed under the MIT software license, see the accompanying
       4             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       5             : 
       6             : #include <bech32.h>
       7             : #include <util/vector.h>
       8             : 
       9             : #include <array>
      10             : #include <assert.h>
      11             : #include <numeric>
      12             : #include <optional>
      13             : 
      14             : namespace bech32
      15             : {
      16             : 
      17             : namespace
      18             : {
      19             : 
      20             : typedef std::vector<uint8_t> data;
      21             : 
      22             : /** The Bech32 and Bech32m character set for encoding. */
      23             : const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
      24             : 
      25             : /** The Bech32 and Bech32m character set for decoding. */
      26             : const int8_t CHARSET_REV[128] = {
      27             :     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
      28             :     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
      29             :     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
      30             :     15, -1, 10, 17, 21, 20, 26, 30,  7,  5, -1, -1, -1, -1, -1, -1,
      31             :     -1, 29, -1, 24, 13, 25,  9,  8, 23, -1, 18, 22, 31, 27, 19, -1,
      32             :      1,  0,  3, 16, 11, 28, 12, 14,  6,  4,  2, -1, -1, -1, -1, -1,
      33             :     -1, 29, -1, 24, 13, 25,  9,  8, 23, -1, 18, 22, 31, 27, 19, -1,
      34             :      1,  0,  3, 16, 11, 28, 12, 14,  6,  4,  2, -1, -1, -1, -1, -1
      35             : };
      36             : 
      37             : /** We work with the finite field GF(1024) defined as a degree 2 extension of the base field GF(32)
      38             :  * The defining polynomial of the extension is x^2 + 9x + 23.
      39             :  * Let (e) be a root of this defining polynomial. Then (e) is a primitive element of GF(1024),
      40             :  * that is, a generator of the field. Every non-zero element of the field can then be represented
      41             :  * as (e)^k for some power k.
      42             :  * The array GF1024_EXP contains all these powers of (e) - GF1024_EXP[k] = (e)^k in GF(1024).
      43             :  * Conversely, GF1024_LOG contains the discrete logarithms of these powers, so
      44             :  * GF1024_LOG[GF1024_EXP[k]] == k.
      45             :  * The following function generates the two tables GF1024_EXP and GF1024_LOG as constexprs. */
      46             : constexpr std::pair<std::array<int16_t, 1023>, std::array<int16_t, 1024>> GenerateGFTables()
      47             : {
      48             :     // Build table for GF(32).
      49             :     // We use these tables to perform arithmetic in GF(32) below, when constructing the
      50             :     // tables for GF(1024).
      51             :     std::array<int8_t, 31> GF32_EXP{};
      52             :     std::array<int8_t, 32> GF32_LOG{};
      53             : 
      54             :     // fmod encodes the defining polynomial of GF(32) over GF(2), x^5 + x^3 + 1.
      55             :     // Because coefficients in GF(2) are binary digits, the coefficients are packed as 101001.
      56             :     const int fmod = 41;
      57             : 
      58             :     // Elements of GF(32) are encoded as vectors of length 5 over GF(2), that is,
      59             :     // 5 binary digits. Each element (b_4, b_3, b_2, b_1, b_0) encodes a polynomial
      60             :     // b_4*x^4 + b_3*x^3 + b_2*x^2 + b_1*x^1 + b_0 (modulo fmod).
      61             :     // For example, 00001 = 1 is the multiplicative identity.
      62             :     GF32_EXP[0] = 1;
      63             :     GF32_LOG[0] = -1;
      64             :     GF32_LOG[1] = 0;
      65             :     int v = 1;
      66             :     for (int i = 1; i < 31; ++i) {
      67             :         // Multiplication by x is the same as shifting left by 1, as
      68             :         // every coefficient of the polynomial is moved up one place.
      69             :         v = v << 1;
      70             :         // If the polynomial now has an x^5 term, we subtract fmod from it
      71             :         // to remain working modulo fmod. Subtraction is the same as XOR in characteristic
      72             :         // 2 fields.
      73             :         if (v & 32) v ^= fmod;
      74             :         GF32_EXP[i] = v;
      75             :         GF32_LOG[v] = i;
      76             :     }
      77             : 
      78             :     // Build table for GF(1024)
      79             :     std::array<int16_t, 1023> GF1024_EXP{};
      80             :     std::array<int16_t, 1024> GF1024_LOG{};
      81             : 
      82             :     GF1024_EXP[0] = 1;
      83             :     GF1024_LOG[0] = -1;
      84             :     GF1024_LOG[1] = 0;
      85             : 
      86             :     // Each element v of GF(1024) is encoded as a 10 bit integer in the following way:
      87             :     // v = v1 || v0 where v0, v1 are 5-bit integers (elements of GF(32)).
      88             :     // The element (e) is encoded as 1 || 0, to represent 1*(e) + 0. Every other element
      89             :     // a*(e) + b is represented as a || b (a and b are both GF(32) elements). Given (v),
      90             :     // we compute (e)*(v) by multiplying in the following way:
      91             :     //
      92             :     // v0' = 23*v1
      93             :     // v1' = 9*v1 + v0
      94             :     // e*v = v1' || v0'
      95             :     //
      96             :     // Where 23, 9 are GF(32) elements encoded as described above. Multiplication in GF(32)
      97             :     // is done using the log/exp tables:
      98             :     // e^x * e^y = e^(x + y) so a * b = EXP[ LOG[a] + LOG [b] ]
      99             :     // for non-zero a and b.
     100             : 
     101             :     v = 1;
     102             :     for (int i = 1; i < 1023; ++i) {
     103             :         int v0 = v & 31;
     104             :         int v1 = v >> 5;
     105             : 
     106             :         int v0n = v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(23)) % 31) : 0;
     107             :         int v1n = (v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(9)) % 31) : 0) ^ v0;
     108             : 
     109             :         v = v1n << 5 | v0n;
     110             :         GF1024_EXP[i] = v;
     111             :         GF1024_LOG[v] = i;
     112             :     }
     113             : 
     114             :     return std::make_pair(GF1024_EXP, GF1024_LOG);
     115             : }
     116             : 
     117             : constexpr auto tables = GenerateGFTables();
     118             : constexpr const std::array<int16_t, 1023>& GF1024_EXP = tables.first;
     119             : constexpr const std::array<int16_t, 1024>& GF1024_LOG = tables.second;
     120             : 
     121             : /* Determine the final constant to use for the specified encoding. */
     122           0 : uint32_t EncodingConstant(Encoding encoding) {
     123           0 :     assert(encoding == Encoding::BECH32 || encoding == Encoding::BECH32M);
     124           0 :     return encoding == Encoding::BECH32 ? 1 : 0x2bc830a3;
     125             : }
     126             : 
     127             : /** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to
     128             :  *  make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher
     129             :  *  bits correspond to earlier values. */
     130           0 : uint32_t PolyMod(const data& v)
     131             : {
     132             :     // The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an
     133             :     // implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) =
     134             :     // 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that
     135             :     // [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...].
     136             : 
     137             :     // The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of
     138             :     // v(x) mod g(x), where g(x) is the Bech32 generator,
     139             :     // x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way
     140             :     // that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a
     141             :     // window of 1023 characters. Among the various possible BCH codes, one was selected to in
     142             :     // fact guarantee detection of up to 4 errors within a window of 89 characters.
     143             : 
     144             :     // Note that the coefficients are elements of GF(32), here represented as decimal numbers
     145             :     // between {}. In this finite field, addition is just XOR of the corresponding numbers. For
     146             :     // example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires
     147             :     // treating the bits of values themselves as coefficients of a polynomial over a smaller field,
     148             :     // GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} =
     149             :     // (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a
     150             :     // = a^3 + 1 (mod a^5 + a^3 + 1) = {9}.
     151             : 
     152             :     // During the course of the loop below, `c` contains the bitpacked coefficients of the
     153             :     // polynomial constructed from just the values of v that were processed so far, mod g(x). In
     154             :     // the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
     155             :     // v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
     156             :     // for `c`.
     157             : 
     158             :     // The following Sage code constructs the generator used:
     159             :     //
     160             :     // B = GF(2) # Binary field
     161             :     // BP.<b> = B[] # Polynomials over the binary field
     162             :     // F_mod = b**5 + b**3 + 1
     163             :     // F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
     164             :     // FP.<x> = F[] # Polynomials over GF(32)
     165             :     // E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23)
     166             :     // E.<e> = F.extension(E_mod) # GF(1024) extension field definition
     167             :     // for p in divisors(E.order() - 1): # Verify e has order 1023.
     168             :     //    assert((e**p == 1) == (p % 1023 == 0))
     169             :     // G = lcm([(e**i).minpoly() for i in range(997,1000)])
     170             :     // print(G) # Print out the generator
     171             :     //
     172             :     // It demonstrates that g(x) is the least common multiple of the minimal polynomials
     173             :     // of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024).
     174             :     // That guarantees it is, in fact, the generator of a primitive BCH code with cycle
     175             :     // length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details.
     176             : 
     177           0 :     uint32_t c = 1;
     178           0 :     for (const auto v_i : v) {
     179             :         // We want to update `c` to correspond to a polynomial with one extra term. If the initial
     180             :         // value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to
     181             :         // correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to
     182             :         // process. Simplifying:
     183             :         // c'(x) = (f(x) * x + v_i) mod g(x)
     184             :         //         ((f(x) mod g(x)) * x + v_i) mod g(x)
     185             :         //         (c(x) * x + v_i) mod g(x)
     186             :         // If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute
     187             :         // c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x)
     188             :         //       = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x)
     189             :         //       = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i
     190             :         // If we call (x^6 mod g(x)) = k(x), this can be written as
     191             :         // c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x)
     192             : 
     193             :         // First, determine the value of c0:
     194           0 :         uint8_t c0 = c >> 25;
     195             : 
     196             :         // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
     197           0 :         c = ((c & 0x1ffffff) << 5) ^ v_i;
     198             : 
     199             :         // Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be
     200             :         // computed using the following Sage code (continuing the code above):
     201             :         //
     202             :         // for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers.
     203             :         //     v = 0
     204             :         //     for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)):
     205             :         //         v = v*32 + coef.integer_representation()
     206             :         //     print("0x%x" % v)
     207             :         //
     208           0 :         if (c0 & 1)  c ^= 0x3b6a57b2; //     k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
     209           0 :         if (c0 & 2)  c ^= 0x26508e6d; //  {2}k(x) = {19}x^5 +  {5}x^4 +     x^3 +  {3}x^2 + {19}x + {13}
     210           0 :         if (c0 & 4)  c ^= 0x1ea119fa; //  {4}k(x) = {15}x^5 + {10}x^4 +  {2}x^3 +  {6}x^2 + {15}x + {26}
     211           0 :         if (c0 & 8)  c ^= 0x3d4233dd; //  {8}k(x) = {30}x^5 + {20}x^4 +  {4}x^3 + {12}x^2 + {30}x + {29}
     212           0 :         if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 +     x^4 +  {8}x^3 + {24}x^2 + {21}x + {19}
     213             : 
     214             :     }
     215           0 :     return c;
     216             : }
     217             : 
     218             : /** Syndrome computes the values s_j = R(e^j) for j in [997, 998, 999]. As described above, the
     219             :  * generator polynomial G is the LCM of the minimal polynomials of (e)^997, (e)^998, and (e)^999.
     220             :  *
     221             :  * Consider a codeword with errors, of the form R(x) = C(x) + E(x). The residue is the bit-packed
     222             :  * result of computing R(x) mod G(X), where G is the generator of the code. Because C(x) is a valid
     223             :  * codeword, it is a multiple of G(X), so the residue is in fact just E(x) mod G(x). Note that all
     224             :  * of the (e)^j are roots of G(x) by definition, so R((e)^j) = E((e)^j).
     225             :  *
     226             :  * Let R(x) = r1*x^5 + r2*x^4 + r3*x^3 + r4*x^2 + r5*x + r6
     227             :  *
     228             :  * To compute R((e)^j), we are really computing:
     229             :  * r1*(e)^(j*5) + r2*(e)^(j*4) + r3*(e)^(j*3) + r4*(e)^(j*2) + r5*(e)^j + r6
     230             :  *
     231             :  * Now note that all of the (e)^(j*i) for i in [5..0] are constants and can be precomputed.
     232             :  * But even more than that, we can consider each coefficient as a bit-string.
     233             :  * For example, take r5 = (b_5, b_4, b_3, b_2, b_1) written out as 5 bits. Then:
     234             :  * r5*(e)^j = b_1*(e)^j + b_2*(2*(e)^j) + b_3*(4*(e)^j) + b_4*(8*(e)^j) + b_5*(16*(e)^j)
     235             :  * where all the (2^i*(e)^j) are constants and can be precomputed.
     236             :  *
     237             :  * Then we just add each of these corresponding constants to our final value based on the
     238             :  * bit values b_i. This is exactly what is done in the Syndrome function below.
     239             :  */
     240             : constexpr std::array<uint32_t, 25> GenerateSyndromeConstants() {
     241             :     std::array<uint32_t, 25> SYNDROME_CONSTS{};
     242             :     for (int k = 1; k < 6; ++k) {
     243             :         for (int shift = 0; shift < 5; ++shift) {
     244             :             int16_t b = GF1024_LOG.at(size_t{1} << shift);
     245             :             int16_t c0 = GF1024_EXP.at((997*k + b) % 1023);
     246             :             int16_t c1 = GF1024_EXP.at((998*k + b) % 1023);
     247             :             int16_t c2 = GF1024_EXP.at((999*k + b) % 1023);
     248             :             uint32_t c = c2 << 20 | c1 << 10 | c0;
     249             :             int ind = 5*(k-1) + shift;
     250             :             SYNDROME_CONSTS[ind] = c;
     251             :         }
     252             :     }
     253             :     return SYNDROME_CONSTS;
     254             : }
     255             : constexpr std::array<uint32_t, 25> SYNDROME_CONSTS = GenerateSyndromeConstants();
     256             : 
     257             : /**
     258             :  * Syndrome returns the three values s_997, s_998, and s_999 described above,
     259             :  * packed into a 30-bit integer, where each group of 10 bits encodes one value.
     260             :  */
     261           0 : uint32_t Syndrome(const uint32_t residue) {
     262             :     // low is the first 5 bits, corresponding to the r6 in the residue
     263             :     // (the constant term of the polynomial).
     264           0 :     uint32_t low = residue & 0x1f;
     265             : 
     266             :     // We begin by setting s_j = low = r6 for all three values of j, because these are unconditional.
     267           0 :     uint32_t result = low ^ (low << 10) ^ (low << 20);
     268             : 
     269             :     // Then for each following bit, we add the corresponding precomputed constant if the bit is 1.
     270             :     // For example, 0x31edd3c4 is 1100011110 1101110100 1111000100 when unpacked in groups of 10
     271             :     // bits, corresponding exactly to a^999 || a^998 || a^997 (matching the corresponding values in
     272             :     // GF1024_EXP above). In this way, we compute all three values of s_j for j in (997, 998, 999)
     273             :     // simultaneously. Recall that XOR corresponds to addition in a characteristic 2 field.
     274           0 :     for (int i = 0; i < 25; ++i) {
     275           0 :         result ^= ((residue >> (5+i)) & 1 ? SYNDROME_CONSTS.at(i) : 0);
     276           0 :     }
     277           0 :     return result;
     278             : }
     279             : 
     280             : /** Convert to lower case. */
     281           0 : inline unsigned char LowerCase(unsigned char c)
     282             : {
     283           0 :     return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c;
     284             : }
     285             : 
     286             : /** Return indices of invalid characters in a Bech32 string. */
     287           0 : bool CheckCharacters(const std::string& str, std::vector<int>& errors)
     288             : {
     289           0 :     bool lower = false, upper = false;
     290           0 :     for (size_t i = 0; i < str.size(); ++i) {
     291           0 :         unsigned char c{(unsigned char)(str[i])};
     292           0 :         if (c >= 'a' && c <= 'z') {
     293           0 :             if (upper) {
     294           0 :                 errors.push_back(i);
     295           0 :             } else {
     296           0 :                 lower = true;
     297             :             }
     298           0 :         } else if (c >= 'A' && c <= 'Z') {
     299           0 :             if (lower) {
     300           0 :                 errors.push_back(i);
     301           0 :             } else {
     302           0 :                 upper = true;
     303             :             }
     304           0 :         } else if (c < 33 || c > 126) {
     305           0 :             errors.push_back(i);
     306           0 :         }
     307           0 :     }
     308           0 :     return errors.empty();
     309             : }
     310             : 
     311             : /** Expand a HRP for use in checksum computation. */
     312           0 : data ExpandHRP(const std::string& hrp)
     313             : {
     314           0 :     data ret;
     315           0 :     ret.reserve(hrp.size() + 90);
     316           0 :     ret.resize(hrp.size() * 2 + 1);
     317           0 :     for (size_t i = 0; i < hrp.size(); ++i) {
     318           0 :         unsigned char c = hrp[i];
     319           0 :         ret[i] = c >> 5;
     320           0 :         ret[i + hrp.size() + 1] = c & 0x1f;
     321           0 :     }
     322           0 :     ret[hrp.size()] = 0;
     323           0 :     return ret;
     324           0 : }
     325             : 
     326             : /** Verify a checksum. */
     327           0 : Encoding VerifyChecksum(const std::string& hrp, const data& values)
     328             : {
     329             :     // PolyMod computes what value to xor into the final values to make the checksum 0. However,
     330             :     // if we required that the checksum was 0, it would be the case that appending a 0 to a valid
     331             :     // list of values would result in a new valid list. For that reason, Bech32 requires the
     332             :     // resulting checksum to be 1 instead. In Bech32m, this constant was amended. See
     333             :     // https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details.
     334           0 :     const uint32_t check = PolyMod(Cat(ExpandHRP(hrp), values));
     335           0 :     if (check == EncodingConstant(Encoding::BECH32)) return Encoding::BECH32;
     336           0 :     if (check == EncodingConstant(Encoding::BECH32M)) return Encoding::BECH32M;
     337           0 :     return Encoding::INVALID;
     338           0 : }
     339             : 
     340             : /** Create a checksum. */
     341           0 : data CreateChecksum(Encoding encoding, const std::string& hrp, const data& values)
     342             : {
     343           0 :     data enc = Cat(ExpandHRP(hrp), values);
     344           0 :     enc.resize(enc.size() + 6); // Append 6 zeroes
     345           0 :     uint32_t mod = PolyMod(enc) ^ EncodingConstant(encoding); // Determine what to XOR into those 6 zeroes.
     346           0 :     data ret(6);
     347           0 :     for (size_t i = 0; i < 6; ++i) {
     348             :         // Convert the 5-bit groups in mod to checksum values.
     349           0 :         ret[i] = (mod >> (5 * (5 - i))) & 31;
     350           0 :     }
     351           0 :     return ret;
     352           0 : }
     353             : 
     354             : } // namespace
     355             : 
     356             : /** Encode a Bech32 or Bech32m string. */
     357           0 : std::string Encode(Encoding encoding, const std::string& hrp, const data& values) {
     358             :     // First ensure that the HRP is all lowercase. BIP-173 and BIP350 require an encoder
     359             :     // to return a lowercase Bech32/Bech32m string, but if given an uppercase HRP, the
     360             :     // result will always be invalid.
     361           0 :     for (const char& c : hrp) assert(c < 'A' || c > 'Z');
     362           0 :     data checksum = CreateChecksum(encoding, hrp, values);
     363           0 :     data combined = Cat(values, checksum);
     364           0 :     std::string ret = hrp + '1';
     365           0 :     ret.reserve(ret.size() + combined.size());
     366           0 :     for (const auto c : combined) {
     367           0 :         ret += CHARSET[c];
     368             :     }
     369           0 :     return ret;
     370           0 : }
     371             : 
     372             : /** Decode a Bech32 or Bech32m string. */
     373           0 : DecodeResult Decode(const std::string& str) {
     374           0 :     std::vector<int> errors;
     375           0 :     if (!CheckCharacters(str, errors)) return {};
     376           0 :     size_t pos = str.rfind('1');
     377           0 :     if (str.size() > 90 || pos == str.npos || pos == 0 || pos + 7 > str.size()) {
     378           0 :         return {};
     379             :     }
     380           0 :     data values(str.size() - 1 - pos);
     381           0 :     for (size_t i = 0; i < str.size() - 1 - pos; ++i) {
     382           0 :         unsigned char c = str[i + pos + 1];
     383           0 :         int8_t rev = CHARSET_REV[c];
     384             : 
     385           0 :         if (rev == -1) {
     386           0 :             return {};
     387             :         }
     388           0 :         values[i] = rev;
     389           0 :     }
     390           0 :     std::string hrp;
     391           0 :     for (size_t i = 0; i < pos; ++i) {
     392           0 :         hrp += LowerCase(str[i]);
     393           0 :     }
     394           0 :     Encoding result = VerifyChecksum(hrp, values);
     395           0 :     if (result == Encoding::INVALID) return {};
     396           0 :     return {result, std::move(hrp), data(values.begin(), values.end() - 6)};
     397           0 : }
     398             : 
     399             : /** Find index of an incorrect character in a Bech32 string. */
     400           0 : std::pair<std::string, std::vector<int>> LocateErrors(const std::string& str) {
     401           0 :     std::vector<int> error_locations{};
     402             : 
     403           0 :     if (str.size() > 90) {
     404           0 :         error_locations.resize(str.size() - 90);
     405           0 :         std::iota(error_locations.begin(), error_locations.end(), 90);
     406           0 :         return std::make_pair("Bech32 string too long", std::move(error_locations));
     407             :     }
     408             : 
     409           0 :     if (!CheckCharacters(str, error_locations)){
     410           0 :         return std::make_pair("Invalid character or mixed case", std::move(error_locations));
     411             :     }
     412             : 
     413           0 :     size_t pos = str.rfind('1');
     414           0 :     if (pos == str.npos) {
     415           0 :         return std::make_pair("Missing separator", std::vector<int>{});
     416             :     }
     417           0 :     if (pos == 0 || pos + 7 > str.size()) {
     418           0 :         error_locations.push_back(pos);
     419           0 :         return std::make_pair("Invalid separator position", std::move(error_locations));
     420             :     }
     421             : 
     422           0 :     std::string hrp;
     423           0 :     for (size_t i = 0; i < pos; ++i) {
     424           0 :         hrp += LowerCase(str[i]);
     425           0 :     }
     426             : 
     427           0 :     size_t length = str.size() - 1 - pos; // length of data part
     428           0 :     data values(length);
     429           0 :     for (size_t i = pos + 1; i < str.size(); ++i) {
     430           0 :         unsigned char c = str[i];
     431           0 :         int8_t rev = CHARSET_REV[c];
     432           0 :         if (rev == -1) {
     433           0 :             error_locations.push_back(i);
     434           0 :             return std::make_pair("Invalid Base 32 character", std::move(error_locations));
     435             :         }
     436           0 :         values[i - pos - 1] = rev;
     437           0 :     }
     438             : 
     439             :     // We attempt error detection with both bech32 and bech32m, and choose the one with the fewest errors
     440             :     // We can't simply use the segwit version, because that may be one of the errors
     441           0 :     std::optional<Encoding> error_encoding;
     442           0 :     for (Encoding encoding : {Encoding::BECH32, Encoding::BECH32M}) {
     443           0 :         std::vector<int> possible_errors;
     444             :         // Recall that (ExpandHRP(hrp) ++ values) is interpreted as a list of coefficients of a polynomial
     445             :         // over GF(32). PolyMod computes the "remainder" of this polynomial modulo the generator G(x).
     446           0 :         uint32_t residue = PolyMod(Cat(ExpandHRP(hrp), values)) ^ EncodingConstant(encoding);
     447             : 
     448             :         // All valid codewords should be multiples of G(x), so this remainder (after XORing with the encoding
     449             :         // constant) should be 0 - hence 0 indicates there are no errors present.
     450           0 :         if (residue != 0) {
     451             :             // If errors are present, our polynomial must be of the form C(x) + E(x) where C is the valid
     452             :             // codeword (a multiple of G(x)), and E encodes the errors.
     453           0 :             uint32_t syn = Syndrome(residue);
     454             : 
     455             :             // Unpack the three 10-bit syndrome values
     456           0 :             int s0 = syn & 0x3FF;
     457           0 :             int s1 = (syn >> 10) & 0x3FF;
     458           0 :             int s2 = syn >> 20;
     459             : 
     460             :             // Get the discrete logs of these values in GF1024 for more efficient computation
     461           0 :             int l_s0 = GF1024_LOG.at(s0);
     462           0 :             int l_s1 = GF1024_LOG.at(s1);
     463           0 :             int l_s2 = GF1024_LOG.at(s2);
     464             : 
     465             :             // First, suppose there is only a single error. Then E(x) = e1*x^p1 for some position p1
     466             :             // Then s0 = E((e)^997) = e1*(e)^(997*p1) and s1 = E((e)^998) = e1*(e)^(998*p1)
     467             :             // Therefore s1/s0 = (e)^p1, and by the same logic, s2/s1 = (e)^p1 too.
     468             :             // Hence, s1^2 == s0*s2, which is exactly the condition we check first:
     469           0 :             if (l_s0 != -1 && l_s1 != -1 && l_s2 != -1 && (2 * l_s1 - l_s2 - l_s0 + 2046) % 1023 == 0) {
     470             :                 // Compute the error position p1 as l_s1 - l_s0 = p1 (mod 1023)
     471           0 :                 size_t p1 = (l_s1 - l_s0 + 1023) % 1023; // the +1023 ensures it is positive
     472             :                 // Now because s0 = e1*(e)^(997*p1), we get e1 = s0/((e)^(997*p1)). Remember that (e)^1023 = 1,
     473             :                 // so 1/((e)^997) = (e)^(1023-997).
     474           0 :                 int l_e1 = l_s0 + (1023 - 997) * p1;
     475             :                 // Finally, some sanity checks on the result:
     476             :                 // - The error position should be within the length of the data
     477             :                 // - e1 should be in GF(32), which implies that e1 = (e)^(33k) for some k (the 31 non-zero elements
     478             :                 // of GF(32) form an index 33 subgroup of the 1023 non-zero elements of GF(1024)).
     479           0 :                 if (p1 < length && !(l_e1 % 33)) {
     480             :                     // Polynomials run from highest power to lowest, so the index p1 is from the right.
     481             :                     // We don't return e1 because it is dangerous to suggest corrections to the user,
     482             :                     // the user should check the address themselves.
     483           0 :                     possible_errors.push_back(str.size() - p1 - 1);
     484           0 :                 }
     485             :             // Otherwise, suppose there are two errors. Then E(x) = e1*x^p1 + e2*x^p2.
     486           0 :             } else {
     487             :                 // For all possible first error positions p1
     488           0 :                 for (size_t p1 = 0; p1 < length; ++p1) {
     489             :                     // We have guessed p1, and want to solve for p2. Recall that E(x) = e1*x^p1 + e2*x^p2, so
     490             :                     // s0 = E((e)^997) = e1*(e)^(997^p1) + e2*(e)^(997*p2), and similar for s1 and s2.
     491             :                     //
     492             :                     // Consider s2 + s1*(e)^p1
     493             :                     //          = 2e1*(e)^(999^p1) + e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1
     494             :                     //          = e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1
     495             :                     //    (Because we are working in characteristic 2.)
     496             :                     //          = e2*(e)^(998*p2) ((e)^p2 + (e)^p1)
     497             :                     //
     498           0 :                     int s2_s1p1 = s2 ^ (s1 == 0 ? 0 : GF1024_EXP.at((l_s1 + p1) % 1023));
     499           0 :                     if (s2_s1p1 == 0) continue;
     500           0 :                     int l_s2_s1p1 = GF1024_LOG.at(s2_s1p1);
     501             : 
     502             :                     // Similarly, s1 + s0*(e)^p1
     503             :                     //          = e2*(e)^(997*p2) ((e)^p2 + (e)^p1)
     504           0 :                     int s1_s0p1 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p1) % 1023));
     505           0 :                     if (s1_s0p1 == 0) continue;
     506           0 :                     int l_s1_s0p1 = GF1024_LOG.at(s1_s0p1);
     507             : 
     508             :                     // So, putting these together, we can compute the second error position as
     509             :                     // (e)^p2 = (s2 + s1^p1)/(s1 + s0^p1)
     510             :                     // p2 = log((e)^p2)
     511           0 :                     size_t p2 = (l_s2_s1p1 - l_s1_s0p1 + 1023) % 1023;
     512             : 
     513             :                     // Sanity checks that p2 is a valid position and not the same as p1
     514           0 :                     if (p2 >= length || p1 == p2) continue;
     515             : 
     516             :                     // Now we want to compute the error values e1 and e2.
     517             :                     // Similar to above, we compute s1 + s0*(e)^p2
     518             :                     //          = e1*(e)^(997*p1) ((e)^p1 + (e)^p2)
     519           0 :                     int s1_s0p2 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p2) % 1023));
     520           0 :                     if (s1_s0p2 == 0) continue;
     521           0 :                     int l_s1_s0p2 = GF1024_LOG.at(s1_s0p2);
     522             : 
     523             :                     // And compute (the log of) 1/((e)^p1 + (e)^p2))
     524           0 :                     int inv_p1_p2 = 1023 - GF1024_LOG.at(GF1024_EXP.at(p1) ^ GF1024_EXP.at(p2));
     525             : 
     526             :                     // Then (s1 + s0*(e)^p1) * (1/((e)^p1 + (e)^p2)))
     527             :                     //         = e2*(e)^(997*p2)
     528             :                     // Then recover e2 by dividing by (e)^(997*p2)
     529           0 :                     int l_e2 = l_s1_s0p1 + inv_p1_p2 + (1023 - 997) * p2;
     530             :                     // Check that e2 is in GF(32)
     531           0 :                     if (l_e2 % 33) continue;
     532             : 
     533             :                     // In the same way, (s1 + s0*(e)^p2) * (1/((e)^p1 + (e)^p2)))
     534             :                     //         = e1*(e)^(997*p1)
     535             :                     // So recover e1 by dividing by (e)^(997*p1)
     536           0 :                     int l_e1 = l_s1_s0p2 + inv_p1_p2 + (1023 - 997) * p1;
     537             :                     // Check that e1 is in GF(32)
     538           0 :                     if (l_e1 % 33) continue;
     539             : 
     540             :                     // Again, we do not return e1 or e2 for safety.
     541             :                     // Order the error positions from the left of the string and return them
     542           0 :                     if (p1 > p2) {
     543           0 :                         possible_errors.push_back(str.size() - p1 - 1);
     544           0 :                         possible_errors.push_back(str.size() - p2 - 1);
     545           0 :                     } else {
     546           0 :                         possible_errors.push_back(str.size() - p2 - 1);
     547           0 :                         possible_errors.push_back(str.size() - p1 - 1);
     548             :                     }
     549           0 :                     break;
     550             :                 }
     551             :             }
     552           0 :         } else {
     553             :             // No errors
     554           0 :             return std::make_pair("", std::vector<int>{});
     555             :         }
     556             : 
     557           0 :         if (error_locations.empty() || (!possible_errors.empty() && possible_errors.size() < error_locations.size())) {
     558           0 :             error_locations = std::move(possible_errors);
     559           0 :             if (!error_locations.empty()) error_encoding = encoding;
     560           0 :         }
     561           0 :     }
     562           0 :     std::string error_message = error_encoding == Encoding::BECH32M ? "Invalid Bech32m checksum"
     563           0 :                               : error_encoding == Encoding::BECH32 ? "Invalid Bech32 checksum"
     564             :                               : "Invalid checksum";
     565             : 
     566           0 :     return std::make_pair(error_message, std::move(error_locations));
     567           0 : }
     568             : 
     569             : } // namespace bech32

Generated by: LCOV version 1.14