LCOV - code coverage report
Current view: top level - src/test/fuzz - miniscript.cpp (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 14 602 2.3 %
Date: 2023-11-06 23:13:05 Functions: 10 95 10.5 %
Branches: 13 1123 1.2 %

           Branch data     Line data    Source code
       1                 :            : // Copyright (c) 2021-2022 The Bitcoin Core developers
       2                 :            : // Distributed under the MIT software license, see the accompanying
       3                 :            : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4                 :            : 
       5                 :            : #include <core_io.h>
       6                 :            : #include <hash.h>
       7                 :            : #include <key.h>
       8                 :            : #include <script/miniscript.h>
       9                 :            : #include <script/script.h>
      10                 :            : #include <test/fuzz/FuzzedDataProvider.h>
      11                 :            : #include <test/fuzz/fuzz.h>
      12                 :            : #include <test/fuzz/util.h>
      13                 :            : #include <util/strencodings.h>
      14                 :            : 
      15                 :            : namespace {
      16                 :            : 
      17                 :            : //! Some pre-computed data for more efficient string roundtrips and to simulate challenges.
      18                 :          0 : struct TestData {
      19                 :            :     typedef CPubKey Key;
      20                 :            : 
      21                 :            :     // Precomputed public keys, and a dummy signature for each of them.
      22                 :            :     std::vector<Key> dummy_keys;
      23                 :            :     std::map<Key, int> dummy_key_idx_map;
      24                 :            :     std::map<CKeyID, Key> dummy_keys_map;
      25                 :          2 :     std::map<Key, std::pair<std::vector<unsigned char>, bool>> dummy_sigs;
      26                 :            : 
      27                 :            :     // Precomputed hashes of each kind.
      28                 :            :     std::vector<std::vector<unsigned char>> sha256;
      29                 :            :     std::vector<std::vector<unsigned char>> ripemd160;
      30                 :            :     std::vector<std::vector<unsigned char>> hash256;
      31                 :            :     std::vector<std::vector<unsigned char>> hash160;
      32                 :            :     std::map<std::vector<unsigned char>, std::vector<unsigned char>> sha256_preimages;
      33                 :            :     std::map<std::vector<unsigned char>, std::vector<unsigned char>> ripemd160_preimages;
      34                 :            :     std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash256_preimages;
      35                 :            :     std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash160_preimages;
      36                 :            : 
      37                 :            :     //! Set the precomputed data.
      38                 :          0 :     void Init() {
      39                 :          0 :         unsigned char keydata[32] = {1};
      40         [ #  # ]:          0 :         for (size_t i = 0; i < 256; i++) {
      41                 :          0 :             keydata[31] = i;
      42                 :          0 :             CKey privkey;
      43         [ #  # ]:          0 :             privkey.Set(keydata, keydata + 32, true);
      44         [ #  # ]:          0 :             const Key pubkey = privkey.GetPubKey();
      45                 :            : 
      46         [ #  # ]:          0 :             dummy_keys.push_back(pubkey);
      47         [ #  # ]:          0 :             dummy_key_idx_map.emplace(pubkey, i);
      48 [ #  # ][ #  # ]:          0 :             dummy_keys_map.insert({pubkey.GetID(), pubkey});
                 [ #  # ]
      49                 :            : 
      50                 :          0 :             std::vector<unsigned char> sig;
      51 [ #  # ][ #  # ]:          0 :             privkey.Sign(uint256S(""), sig);
      52         [ #  # ]:          0 :             sig.push_back(1); // SIGHASH_ALL
      53 [ #  # ][ #  # ]:          0 :             dummy_sigs.insert({pubkey, {sig, i & 1}});
                 [ #  # ]
      54                 :            : 
      55                 :          0 :             std::vector<unsigned char> hash;
      56         [ #  # ]:          0 :             hash.resize(32);
      57 [ #  # ][ #  # ]:          0 :             CSHA256().Write(keydata, 32).Finalize(hash.data());
                 [ #  # ]
      58         [ #  # ]:          0 :             sha256.push_back(hash);
      59 [ #  # ][ #  # ]:          0 :             if (i & 1) sha256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
                 [ #  # ]
      60 [ #  # ][ #  # ]:          0 :             CHash256().Write(keydata).Finalize(hash);
         [ #  # ][ #  # ]
      61         [ #  # ]:          0 :             hash256.push_back(hash);
      62 [ #  # ][ #  # ]:          0 :             if (i & 1) hash256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
                 [ #  # ]
      63         [ #  # ]:          0 :             hash.resize(20);
      64 [ #  # ][ #  # ]:          0 :             CRIPEMD160().Write(keydata, 32).Finalize(hash.data());
                 [ #  # ]
      65         [ #  # ]:          0 :             assert(hash.size() == 20);
      66         [ #  # ]:          0 :             ripemd160.push_back(hash);
      67 [ #  # ][ #  # ]:          0 :             if (i & 1) ripemd160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
                 [ #  # ]
      68 [ #  # ][ #  # ]:          0 :             CHash160().Write(keydata).Finalize(hash);
         [ #  # ][ #  # ]
      69         [ #  # ]:          0 :             hash160.push_back(hash);
      70 [ #  # ][ #  # ]:          0 :             if (i & 1) hash160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
                 [ #  # ]
      71                 :          0 :         }
      72                 :          0 :     }
      73                 :          2 : } TEST_DATA;
      74                 :            : 
      75                 :            : /**
      76                 :            :  * Context to parse a Miniscript node to and from Script or text representation.
      77                 :            :  * Uses an integer (an index in the dummy keys array from the test data) as keys in order
      78                 :            :  * to focus on fuzzing the Miniscript nodes' test representation, not the key representation.
      79                 :            :  */
      80                 :            : struct ParserContext {
      81                 :            :     typedef CPubKey Key;
      82                 :            : 
      83                 :          0 :     bool KeyCompare(const Key& a, const Key& b) const {
      84                 :          0 :         return a < b;
      85                 :            :     }
      86                 :            : 
      87                 :          0 :     std::optional<std::string> ToString(const Key& key) const
      88                 :            :     {
      89                 :          0 :         auto it = TEST_DATA.dummy_key_idx_map.find(key);
      90         [ #  # ]:          0 :         if (it == TEST_DATA.dummy_key_idx_map.end()) return {};
      91                 :          0 :         uint8_t idx = it->second;
      92                 :          0 :         return HexStr(Span{&idx, 1});
      93                 :          0 :     }
      94                 :            : 
      95                 :          0 :     std::vector<unsigned char> ToPKBytes(const Key& key) const
      96                 :            :     {
      97         [ #  # ]:          0 :         return {key.begin(), key.end()};
      98                 :          0 :     }
      99                 :            : 
     100                 :          0 :     std::vector<unsigned char> ToPKHBytes(const Key& key) const
     101                 :            :     {
     102                 :          0 :         const auto h = Hash160(key);
     103         [ #  # ]:          0 :         return {h.begin(), h.end()};
     104                 :          0 :     }
     105                 :            : 
     106                 :            :     template<typename I>
     107                 :          0 :     std::optional<Key> FromString(I first, I last) const {
     108         [ #  # ]:          0 :         if (last - first != 2) return {};
     109 [ #  # ][ #  # ]:          0 :         auto idx = ParseHex(std::string(first, last));
     110         [ #  # ]:          0 :         if (idx.size() != 1) return {};
     111                 :          0 :         return TEST_DATA.dummy_keys[idx[0]];
     112                 :          0 :     }
     113                 :            : 
     114                 :            :     template<typename I>
     115                 :          0 :     std::optional<Key> FromPKBytes(I first, I last) const {
     116                 :          0 :         CPubKey key;
     117                 :          0 :         key.Set(first, last);
     118         [ #  # ]:          0 :         if (!key.IsValid()) return {};
     119                 :          0 :         return key;
     120                 :          0 :     }
     121                 :            : 
     122                 :            :     template<typename I>
     123                 :          0 :     std::optional<Key> FromPKHBytes(I first, I last) const {
     124         [ #  # ]:          0 :         assert(last - first == 20);
     125                 :          0 :         CKeyID keyid;
     126                 :          0 :         std::copy(first, last, keyid.begin());
     127                 :          0 :         const auto it = TEST_DATA.dummy_keys_map.find(keyid);
     128         [ #  # ]:          0 :         if (it == TEST_DATA.dummy_keys_map.end()) return {};
     129                 :          0 :         return it->second;
     130                 :          0 :     }
     131                 :            : } PARSER_CTX;
     132                 :            : 
     133                 :            : //! Context that implements naive conversion from/to script only, for roundtrip testing.
     134                 :            : struct ScriptParserContext {
     135                 :            :     //! For Script roundtrip we never need the key from a key hash.
     136                 :          0 :     struct Key {
     137                 :            :         bool is_hash;
     138                 :            :         std::vector<unsigned char> data;
     139                 :            :     };
     140                 :            : 
     141                 :          0 :     bool KeyCompare(const Key& a, const Key& b) const {
     142                 :          0 :         return a.data < b.data;
     143                 :            :     }
     144                 :            : 
     145                 :          0 :     const std::vector<unsigned char>& ToPKBytes(const Key& key) const
     146                 :            :     {
     147         [ #  # ]:          0 :         assert(!key.is_hash);
     148                 :          0 :         return key.data;
     149                 :            :     }
     150                 :            : 
     151                 :          0 :     std::vector<unsigned char> ToPKHBytes(const Key& key) const
     152                 :            :     {
     153         [ #  # ]:          0 :         if (key.is_hash) return key.data;
     154                 :          0 :         const auto h = Hash160(key.data);
     155         [ #  # ]:          0 :         return {h.begin(), h.end()};
     156                 :          0 :     }
     157                 :            : 
     158                 :            :     template<typename I>
     159                 :          0 :     std::optional<Key> FromPKBytes(I first, I last) const
     160                 :            :     {
     161                 :          0 :         Key key;
     162         [ #  # ]:          0 :         key.data.assign(first, last);
     163                 :          0 :         key.is_hash = false;
     164                 :          0 :         return key;
     165                 :          0 :     }
     166                 :            : 
     167                 :            :     template<typename I>
     168                 :          0 :     std::optional<Key> FromPKHBytes(I first, I last) const
     169                 :            :     {
     170                 :          0 :         Key key;
     171         [ #  # ]:          0 :         key.data.assign(first, last);
     172                 :          0 :         key.is_hash = true;
     173                 :          0 :         return key;
     174                 :          0 :     }
     175                 :            : } SCRIPT_PARSER_CONTEXT;
     176                 :            : 
     177                 :            : //! Context to produce a satisfaction for a Miniscript node using the pre-computed data.
     178                 :            : struct SatisfierContext: ParserContext {
     179                 :            :     // Timelock challenges satisfaction. Make the value (deterministically) vary to explore different
     180                 :            :     // paths.
     181                 :          0 :     bool CheckAfter(uint32_t value) const { return value % 2; }
     182                 :          0 :     bool CheckOlder(uint32_t value) const { return value % 2; }
     183                 :            : 
     184                 :            :     // Signature challenges fulfilled with a dummy signature, if it was one of our dummy keys.
     185                 :          0 :     miniscript::Availability Sign(const CPubKey& key, std::vector<unsigned char>& sig) const {
     186                 :          0 :         const auto it = TEST_DATA.dummy_sigs.find(key);
     187         [ #  # ]:          0 :         if (it == TEST_DATA.dummy_sigs.end()) return miniscript::Availability::NO;
     188         [ #  # ]:          0 :         if (it->second.second) {
     189                 :            :             // Key is "available"
     190                 :          0 :             sig = it->second.first;
     191                 :          0 :             return miniscript::Availability::YES;
     192                 :            :         } else {
     193                 :          0 :             return miniscript::Availability::NO;
     194                 :            :         }
     195                 :          0 :     }
     196                 :            : 
     197                 :            :     //! Lookup generalization for all the hash satisfactions below
     198                 :          0 :     miniscript::Availability LookupHash(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage,
     199                 :            :                                         const std::map<std::vector<unsigned char>, std::vector<unsigned char>>& map) const
     200                 :            :     {
     201                 :          0 :         const auto it = map.find(hash);
     202         [ #  # ]:          0 :         if (it == map.end()) return miniscript::Availability::NO;
     203                 :          0 :         preimage = it->second;
     204                 :          0 :         return miniscript::Availability::YES;
     205                 :          0 :     }
     206                 :          0 :     miniscript::Availability SatSHA256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
     207                 :          0 :         return LookupHash(hash, preimage, TEST_DATA.sha256_preimages);
     208                 :            :     }
     209                 :          0 :     miniscript::Availability SatRIPEMD160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
     210                 :          0 :         return LookupHash(hash, preimage, TEST_DATA.ripemd160_preimages);
     211                 :            :     }
     212                 :          0 :     miniscript::Availability SatHASH256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
     213                 :          0 :         return LookupHash(hash, preimage, TEST_DATA.hash256_preimages);
     214                 :            :     }
     215                 :          0 :     miniscript::Availability SatHASH160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
     216                 :          0 :         return LookupHash(hash, preimage, TEST_DATA.hash160_preimages);
     217                 :            :     }
     218                 :            : } SATISFIER_CTX;
     219                 :            : 
     220                 :            : //! Context to check a satisfaction against the pre-computed data.
     221                 :          0 : struct CheckerContext: BaseSignatureChecker {
     222                 :            :     TestData *test_data;
     223                 :            : 
     224                 :            :     // Signature checker methods. Checks the right dummy signature is used.
     225                 :          0 :     bool CheckECDSASignature(const std::vector<unsigned char>& sig, const std::vector<unsigned char>& vchPubKey,
     226                 :            :                              const CScript& scriptCode, SigVersion sigversion) const override
     227                 :            :     {
     228                 :          0 :         const CPubKey key{vchPubKey};
     229                 :          0 :         const auto it = TEST_DATA.dummy_sigs.find(key);
     230         [ #  # ]:          0 :         if (it == TEST_DATA.dummy_sigs.end()) return false;
     231                 :          0 :         return it->second.first == sig;
     232                 :          0 :     }
     233                 :          0 :     bool CheckLockTime(const CScriptNum& nLockTime) const override { return nLockTime.GetInt64() & 1; }
     234                 :          0 :     bool CheckSequence(const CScriptNum& nSequence) const override { return nSequence.GetInt64() & 1; }
     235                 :          2 : } CHECKER_CTX;
     236                 :            : 
     237                 :            : //! Context to check for duplicates when instancing a Node.
     238                 :            : struct KeyComparator {
     239                 :          0 :     bool KeyCompare(const CPubKey& a, const CPubKey& b) const {
     240                 :          0 :         return a < b;
     241                 :            :     }
     242                 :            : } KEY_COMP;
     243                 :            : 
     244                 :            : // A dummy scriptsig to pass to VerifyScript (we always use Segwit v0).
     245                 :          2 : const CScript DUMMY_SCRIPTSIG;
     246                 :            : 
     247                 :            : using Fragment = miniscript::Fragment;
     248                 :            : using NodeRef = miniscript::NodeRef<CPubKey>;
     249                 :            : using Node = miniscript::Node<CPubKey>;
     250                 :            : using Type = miniscript::Type;
     251                 :            : using miniscript::operator"" _mst;
     252                 :            : 
     253                 :            : //! Construct a miniscript node as a shared_ptr.
     254                 :          0 : template<typename... Args> NodeRef MakeNodeRef(Args&&... args) {
     255                 :          0 :     return miniscript::MakeNodeRef<CPubKey>(miniscript::internal::NoDupCheck{}, std::forward<Args>(args)...);
     256                 :            : }
     257                 :            : 
     258                 :            : /** Information about a yet to be constructed Miniscript node. */
     259         [ #  # ]:          0 : struct NodeInfo {
     260                 :            :     //! The type of this node
     261                 :            :     Fragment fragment;
     262                 :            :     //! The timelock value for older() and after(), the threshold value for multi() and thresh()
     263                 :            :     uint32_t k;
     264                 :            :     //! Keys for this node, if it has some
     265                 :            :     std::vector<CPubKey> keys;
     266                 :            :     //! The hash value for this node, if it has one
     267                 :            :     std::vector<unsigned char> hash;
     268                 :            :     //! The type requirements for the children of this node.
     269                 :            :     std::vector<Type> subtypes;
     270                 :            : 
     271                 :          0 :     NodeInfo(Fragment frag): fragment(frag), k(0) {}
     272         [ #  # ]:          0 :     NodeInfo(Fragment frag, CPubKey key): fragment(frag), k(0), keys({key}) {}
     273                 :          0 :     NodeInfo(Fragment frag, uint32_t _k): fragment(frag), k(_k) {}
     274                 :          0 :     NodeInfo(Fragment frag, std::vector<unsigned char> h): fragment(frag), k(0), hash(std::move(h)) {}
     275                 :          0 :     NodeInfo(std::vector<Type> subt, Fragment frag): fragment(frag), k(0), subtypes(std::move(subt)) {}
     276                 :          0 :     NodeInfo(std::vector<Type> subt, Fragment frag, uint32_t _k): fragment(frag), k(_k), subtypes(std::move(subt))  {}
     277                 :          0 :     NodeInfo(Fragment frag, uint32_t _k, std::vector<CPubKey> _keys): fragment(frag), k(_k), keys(std::move(_keys)) {}
     278                 :            : };
     279                 :            : 
     280                 :            : /** Pick an index in a collection from a single byte in the fuzzer's output. */
     281         [ +  - ]:          2 : template<typename T, typename A>
     282                 :          0 : T ConsumeIndex(FuzzedDataProvider& provider, A& col) {
     283 [ +  - ][ -  + ]:          2 :     const uint8_t i = provider.ConsumeIntegral<uint8_t>();
         [ +  - ][ +  - ]
     284                 :          0 :     return col[i];
     285         [ +  - ]:          2 : }
     286                 :            : 
     287                 :          2 : CPubKey ConsumePubKey(FuzzedDataProvider& provider) {
     288                 :          0 :     return ConsumeIndex<CPubKey>(provider, TEST_DATA.dummy_keys);
     289 [ +  - ][ +  - ]:          2 : }
     290                 :            : 
     291                 :          0 : std::vector<unsigned char> ConsumeSha256(FuzzedDataProvider& provider) {
     292                 :          0 :     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.sha256);
     293                 :            : }
     294                 :            : 
     295                 :          0 : std::vector<unsigned char> ConsumeHash256(FuzzedDataProvider& provider) {
     296                 :          0 :     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash256);
     297                 :            : }
     298                 :            : 
     299                 :          0 : std::vector<unsigned char> ConsumeRipemd160(FuzzedDataProvider& provider) {
     300                 :          0 :     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.ripemd160);
     301                 :            : }
     302                 :            : 
     303                 :          0 : std::vector<unsigned char> ConsumeHash160(FuzzedDataProvider& provider) {
     304                 :          0 :     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash160);
     305                 :            : }
     306                 :            : 
     307                 :          0 : std::optional<uint32_t> ConsumeTimeLock(FuzzedDataProvider& provider) {
     308                 :          0 :     const uint32_t k = provider.ConsumeIntegral<uint32_t>();
     309 [ #  # ][ #  # ]:          0 :     if (k == 0 || k >= 0x80000000) return {};
     310                 :          0 :     return k;
     311                 :          0 : }
     312                 :            : 
     313                 :            : /**
     314                 :            :  * Consume a Miniscript node from the fuzzer's output.
     315                 :            :  *
     316                 :            :  * This version is intended to have a fixed, stable, encoding for Miniscript nodes:
     317                 :            :  *  - The first byte sets the type of the fragment. 0, 1 and all non-leaf fragments but thresh() are a
     318                 :            :  *    single byte.
     319                 :            :  *  - For the other leaf fragments, the following bytes depend on their type.
     320                 :            :  *    - For older() and after(), the next 4 bytes define the timelock value.
     321                 :            :  *    - For pk_k(), pk_h(), and all hashes, the next byte defines the index of the value in the test data.
     322                 :            :  *    - For multi(), the next 2 bytes define respectively the threshold and the number of keys. Then as many
     323                 :            :  *      bytes as the number of keys define the index of each key in the test data.
     324                 :            :  *    - For thresh(), the next byte defines the threshold value and the following one the number of subs.
     325                 :            :  */
     326                 :          0 : std::optional<NodeInfo> ConsumeNodeStable(FuzzedDataProvider& provider, Type type_needed) {
     327         [ #  # ]:          0 :     bool allow_B = (type_needed == ""_mst) || (type_needed << "B"_mst);
     328         [ #  # ]:          0 :     bool allow_K = (type_needed == ""_mst) || (type_needed << "K"_mst);
     329         [ #  # ]:          0 :     bool allow_V = (type_needed == ""_mst) || (type_needed << "V"_mst);
     330         [ #  # ]:          0 :     bool allow_W = (type_needed == ""_mst) || (type_needed << "W"_mst);
     331                 :            : 
     332   [ #  #  #  #  :          0 :     switch (provider.ConsumeIntegral<uint8_t>()) {
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
                #  #  # ]
     333                 :            :         case 0:
     334         [ #  # ]:          0 :             if (!allow_B) return {};
     335                 :          0 :             return {{Fragment::JUST_0}};
     336                 :            :         case 1:
     337         [ #  # ]:          0 :             if (!allow_B) return {};
     338                 :          0 :             return {{Fragment::JUST_1}};
     339                 :            :         case 2:
     340         [ #  # ]:          0 :             if (!allow_K) return {};
     341                 :          0 :             return {{Fragment::PK_K, ConsumePubKey(provider)}};
     342                 :            :         case 3:
     343         [ #  # ]:          0 :             if (!allow_K) return {};
     344                 :          0 :             return {{Fragment::PK_H, ConsumePubKey(provider)}};
     345                 :            :         case 4: {
     346         [ #  # ]:          0 :             if (!allow_B) return {};
     347                 :          0 :             const auto k = ConsumeTimeLock(provider);
     348         [ #  # ]:          0 :             if (!k) return {};
     349                 :          0 :             return {{Fragment::OLDER, *k}};
     350                 :            :         }
     351                 :            :         case 5: {
     352         [ #  # ]:          0 :             if (!allow_B) return {};
     353                 :          0 :             const auto k = ConsumeTimeLock(provider);
     354         [ #  # ]:          0 :             if (!k) return {};
     355                 :          0 :             return {{Fragment::AFTER, *k}};
     356                 :            :         }
     357                 :            :         case 6:
     358         [ #  # ]:          0 :             if (!allow_B) return {};
     359         [ #  # ]:          0 :             return {{Fragment::SHA256, ConsumeSha256(provider)}};
     360                 :            :         case 7:
     361         [ #  # ]:          0 :             if (!allow_B) return {};
     362         [ #  # ]:          0 :             return {{Fragment::HASH256, ConsumeHash256(provider)}};
     363                 :            :         case 8:
     364         [ #  # ]:          0 :             if (!allow_B) return {};
     365         [ #  # ]:          0 :             return {{Fragment::RIPEMD160, ConsumeRipemd160(provider)}};
     366                 :            :         case 9:
     367         [ #  # ]:          0 :             if (!allow_B) return {};
     368         [ #  # ]:          0 :             return {{Fragment::HASH160, ConsumeHash160(provider)}};
     369                 :            :         case 10: {
     370         [ #  # ]:          0 :             if (!allow_B) return {};
     371                 :          0 :             const auto k = provider.ConsumeIntegral<uint8_t>();
     372                 :          0 :             const auto n_keys = provider.ConsumeIntegral<uint8_t>();
     373 [ #  # ][ #  # ]:          0 :             if (n_keys > 20 || k == 0 || k > n_keys) return {};
                 [ #  # ]
     374         [ #  # ]:          0 :             std::vector<CPubKey> keys{n_keys};
     375 [ #  # ][ #  # ]:          0 :             for (auto& key: keys) key = ConsumePubKey(provider);
     376         [ #  # ]:          0 :             return {{Fragment::MULTI, k, std::move(keys)}};
     377                 :          0 :         }
     378                 :            :         case 11:
     379 [ #  # ][ #  # ]:          0 :             if (!(allow_B || allow_K || allow_V)) return {};
                 [ #  # ]
     380 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst, type_needed, type_needed}, Fragment::ANDOR}};
     381                 :            :         case 12:
     382 [ #  # ][ #  # ]:          0 :             if (!(allow_B || allow_K || allow_V)) return {};
                 [ #  # ]
     383 [ #  # ][ #  # ]:          0 :             return {{{"V"_mst, type_needed}, Fragment::AND_V}};
     384                 :            :         case 13:
     385         [ #  # ]:          0 :             if (!allow_B) return {};
     386 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst, "W"_mst}, Fragment::AND_B}};
     387                 :            :         case 15:
     388         [ #  # ]:          0 :             if (!allow_B) return {};
     389 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst, "W"_mst}, Fragment::OR_B}};
     390                 :            :         case 16:
     391         [ #  # ]:          0 :             if (!allow_V) return {};
     392 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst, "V"_mst}, Fragment::OR_C}};
     393                 :            :         case 17:
     394         [ #  # ]:          0 :             if (!allow_B) return {};
     395 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst, "B"_mst}, Fragment::OR_D}};
     396                 :            :         case 18:
     397 [ #  # ][ #  # ]:          0 :             if (!(allow_B || allow_K || allow_V)) return {};
                 [ #  # ]
     398 [ #  # ][ #  # ]:          0 :             return {{{type_needed, type_needed}, Fragment::OR_I}};
     399                 :            :         case 19: {
     400         [ #  # ]:          0 :             if (!allow_B) return {};
     401                 :          0 :             auto k = provider.ConsumeIntegral<uint8_t>();
     402                 :          0 :             auto n_subs = provider.ConsumeIntegral<uint8_t>();
     403 [ #  # ][ #  # ]:          0 :             if (k == 0 || k > n_subs) return {};
     404                 :          0 :             std::vector<Type> subtypes;
     405         [ #  # ]:          0 :             subtypes.reserve(n_subs);
     406 [ #  # ][ #  # ]:          0 :             subtypes.emplace_back("B"_mst);
     407 [ #  # ][ #  # ]:          0 :             for (size_t i = 1; i < n_subs; ++i) subtypes.emplace_back("W"_mst);
                 [ #  # ]
     408         [ #  # ]:          0 :             return {{std::move(subtypes), Fragment::THRESH, k}};
     409                 :          0 :         }
     410                 :            :         case 20:
     411         [ #  # ]:          0 :             if (!allow_W) return {};
     412 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst}, Fragment::WRAP_A}};
     413                 :            :         case 21:
     414         [ #  # ]:          0 :             if (!allow_W) return {};
     415 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst}, Fragment::WRAP_S}};
     416                 :            :         case 22:
     417         [ #  # ]:          0 :             if (!allow_B) return {};
     418 [ #  # ][ #  # ]:          0 :             return {{{"K"_mst}, Fragment::WRAP_C}};
     419                 :            :         case 23:
     420         [ #  # ]:          0 :             if (!allow_B) return {};
     421 [ #  # ][ #  # ]:          0 :             return {{{"V"_mst}, Fragment::WRAP_D}};
     422                 :            :         case 24:
     423         [ #  # ]:          0 :             if (!allow_V) return {};
     424 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst}, Fragment::WRAP_V}};
     425                 :            :         case 25:
     426         [ #  # ]:          0 :             if (!allow_B) return {};
     427 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst}, Fragment::WRAP_J}};
     428                 :            :         case 26:
     429         [ #  # ]:          0 :             if (!allow_B) return {};
     430 [ #  # ][ #  # ]:          0 :             return {{{"B"_mst}, Fragment::WRAP_N}};
     431                 :            :         default:
     432                 :          0 :             break;
     433                 :            :     }
     434                 :          0 :     return {};
     435                 :          0 : }
     436                 :            : 
     437                 :            : /* This structure contains a table which for each "target" Type a list of recipes
     438                 :            :  * to construct it, automatically inferred from the behavior of ComputeType.
     439                 :            :  * Note that the Types here are not the final types of the constructed Nodes, but
     440                 :            :  * just the subset that are required. For example, a recipe for the "Bo" type
     441                 :            :  * might construct a "Bondu" sha256() NodeInfo, but cannot construct a "Bz" older().
     442                 :            :  * Each recipe is a Fragment together with a list of required types for its subnodes.
     443                 :            :  */
     444                 :          0 : struct SmartInfo
     445                 :            : {
     446                 :            :     using recipe = std::pair<Fragment, std::vector<Type>>;
     447                 :            :     std::map<Type, std::vector<recipe>> table;
     448                 :            : 
     449                 :          0 :     void Init()
     450                 :            :     {
     451                 :            :         /* Construct a set of interesting type requirements to reason with (sections of BKVWzondu). */
     452                 :          0 :         std::vector<Type> types;
     453         [ #  # ]:          0 :         for (int base = 0; base < 4; ++base) { /* select from B,K,V,W */
     454 [ #  # ][ #  # ]:          0 :             Type type_base = base == 0 ? "B"_mst : base == 1 ? "K"_mst : base == 2 ? "V"_mst : "W"_mst;
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
                 [ #  # ]
     455         [ #  # ]:          0 :             for (int zo = 0; zo < 3; ++zo) { /* select from z,o,(none) */
     456 [ #  # ][ #  # ]:          0 :                 Type type_zo = zo == 0 ? "z"_mst : zo == 1 ? "o"_mst : ""_mst;
         [ #  # ][ #  # ]
                 [ #  # ]
     457         [ #  # ]:          0 :                 for (int n = 0; n < 2; ++n) { /* select from (none),n */
     458 [ #  # ][ #  # ]:          0 :                     if (zo == 0 && n == 1) continue; /* z conflicts with n */
     459 [ #  # ][ #  # ]:          0 :                     if (base == 3 && n == 1) continue; /* W conflicts with n */
     460 [ #  # ][ #  # ]:          0 :                     Type type_n = n == 0 ? ""_mst : "n"_mst;
                 [ #  # ]
     461         [ #  # ]:          0 :                     for (int d = 0; d < 2; ++d) { /* select from (none),d */
     462 [ #  # ][ #  # ]:          0 :                         if (base == 2 && d == 1) continue; /* V conflicts with d */
     463 [ #  # ][ #  # ]:          0 :                         Type type_d = d == 0 ? ""_mst : "d"_mst;
                 [ #  # ]
     464         [ #  # ]:          0 :                         for (int u = 0; u < 2; ++u) { /* select from (none),u */
     465 [ #  # ][ #  # ]:          0 :                             if (base == 2 && u == 1) continue; /* V conflicts with u */
     466 [ #  # ][ #  # ]:          0 :                             Type type_u = u == 0 ? ""_mst : "u"_mst;
                 [ #  # ]
     467 [ #  # ][ #  # ]:          0 :                             Type type = type_base | type_zo | type_n | type_d | type_u;
         [ #  # ][ #  # ]
     468         [ #  # ]:          0 :                             types.push_back(type);
     469                 :          0 :                         }
     470                 :          0 :                     }
     471                 :          0 :                 }
     472                 :          0 :             }
     473                 :          0 :         }
     474                 :            : 
     475                 :            :         /* We define a recipe a to be a super-recipe of recipe b if they use the same
     476                 :            :          * fragment, the same number of subexpressions, and each of a's subexpression
     477                 :            :          * types is a supertype of the corresponding subexpression type of b.
     478                 :            :          * Within the set of recipes for the construction of a given type requirement,
     479                 :            :          * no recipe should be a super-recipe of another (as the super-recipe is
     480                 :            :          * applicable in every place the sub-recipe is, the sub-recipe is redundant). */
     481                 :          0 :         auto is_super_of = [](const recipe& a, const recipe& b) {
     482         [ #  # ]:          0 :             if (a.first != b.first) return false;
     483         [ #  # ]:          0 :             if (a.second.size() != b.second.size()) return false;
     484         [ #  # ]:          0 :             for (size_t i = 0; i < a.second.size(); ++i) {
     485         [ #  # ]:          0 :                 if (!(b.second[i] << a.second[i])) return false;
     486                 :          0 :             }
     487                 :          0 :             return true;
     488                 :          0 :         };
     489                 :            : 
     490                 :            :         /* Sort the type requirements. Subtypes will always sort later (e.g. Bondu will
     491                 :            :          * sort after Bo or Bu). As we'll be constructing recipes using these types, in
     492                 :            :          * order, in what follows, we'll construct super-recipes before sub-recipes.
     493                 :            :          * That means we never need to go back and delete a sub-recipe because a
     494                 :            :          * super-recipe got added. */
     495         [ #  # ]:          0 :         std::sort(types.begin(), types.end());
     496                 :            : 
     497                 :            :         // Iterate over all possible fragments.
     498         [ #  # ]:          0 :         for (int fragidx = 0; fragidx <= int(Fragment::MULTI); ++fragidx) {
     499                 :          0 :             int sub_count = 0; //!< The minimum number of child nodes this recipe has.
     500                 :          0 :             int sub_range = 1; //!< The maximum number of child nodes for this recipe is sub_count+sub_range-1.
     501                 :          0 :             size_t data_size = 0;
     502                 :          0 :             size_t n_keys = 0;
     503                 :          0 :             uint32_t k = 0;
     504                 :          0 :             Fragment frag{fragidx};
     505                 :            : 
     506                 :            :             // Based on the fragment, determine #subs/data/k/keys to pass to ComputeType. */
     507   [ #  #  #  #  :          0 :             switch (frag) {
          #  #  #  #  #  
                   #  # ]
     508                 :            :                 case Fragment::PK_K:
     509                 :            :                 case Fragment::PK_H:
     510                 :          0 :                     n_keys = 1;
     511                 :          0 :                     break;
     512                 :            :                 case Fragment::MULTI:
     513                 :          0 :                     n_keys = 1;
     514                 :          0 :                     k = 1;
     515                 :          0 :                     break;
     516                 :            :                 case Fragment::OLDER:
     517                 :            :                 case Fragment::AFTER:
     518                 :          0 :                     k = 1;
     519                 :          0 :                     break;
     520                 :            :                 case Fragment::SHA256:
     521                 :            :                 case Fragment::HASH256:
     522                 :          0 :                     data_size = 32;
     523                 :          0 :                     break;
     524                 :            :                 case Fragment::RIPEMD160:
     525                 :            :                 case Fragment::HASH160:
     526                 :          0 :                     data_size = 20;
     527                 :          0 :                     break;
     528                 :            :                 case Fragment::JUST_0:
     529                 :            :                 case Fragment::JUST_1:
     530                 :          0 :                     break;
     531                 :            :                 case Fragment::WRAP_A:
     532                 :            :                 case Fragment::WRAP_S:
     533                 :            :                 case Fragment::WRAP_C:
     534                 :            :                 case Fragment::WRAP_D:
     535                 :            :                 case Fragment::WRAP_V:
     536                 :            :                 case Fragment::WRAP_J:
     537                 :            :                 case Fragment::WRAP_N:
     538                 :          0 :                     sub_count = 1;
     539                 :          0 :                     break;
     540                 :            :                 case Fragment::AND_V:
     541                 :            :                 case Fragment::AND_B:
     542                 :            :                 case Fragment::OR_B:
     543                 :            :                 case Fragment::OR_C:
     544                 :            :                 case Fragment::OR_D:
     545                 :            :                 case Fragment::OR_I:
     546                 :          0 :                     sub_count = 2;
     547                 :          0 :                     break;
     548                 :            :                 case Fragment::ANDOR:
     549                 :          0 :                     sub_count = 3;
     550                 :          0 :                     break;
     551                 :            :                 case Fragment::THRESH:
     552                 :            :                     // Thresh logic is executed for 1 and 2 arguments. Larger numbers use ad-hoc code to extend.
     553                 :          0 :                     sub_count = 1;
     554                 :          0 :                     sub_range = 2;
     555                 :          0 :                     k = 1;
     556                 :          0 :                     break;
     557                 :            :             }
     558                 :            : 
     559                 :            :             // Iterate over the number of subnodes (sub_count...sub_count+sub_range-1).
     560                 :          0 :             std::vector<Type> subt;
     561         [ #  # ]:          0 :             for (int subs = sub_count; subs < sub_count + sub_range; ++subs) {
     562                 :            :                 // Iterate over the possible subnode types (at most 3).
     563         [ #  # ]:          0 :                 for (Type x : types) {
     564         [ #  # ]:          0 :                     for (Type y : types) {
     565         [ #  # ]:          0 :                         for (Type z : types) {
     566                 :            :                             // Compute the resulting type of a node with the selected fragment / subnode types.
     567                 :          0 :                             subt.clear();
     568 [ #  # ][ #  # ]:          0 :                             if (subs > 0) subt.push_back(x);
     569 [ #  # ][ #  # ]:          0 :                             if (subs > 1) subt.push_back(y);
     570 [ #  # ][ #  # ]:          0 :                             if (subs > 2) subt.push_back(z);
     571         [ #  # ]:          0 :                             Type res = miniscript::internal::ComputeType(frag, x, y, z, subt, k, data_size, subs, n_keys);
     572                 :            :                             // Continue if the result is not a valid node.
     573 [ #  # ][ #  # ]:          0 :                             if ((res << "K"_mst) + (res << "V"_mst) + (res << "B"_mst) + (res << "W"_mst) != 1) continue;
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
                 [ #  # ]
     574                 :            : 
     575         [ #  # ]:          0 :                             recipe entry{frag, subt};
     576                 :          0 :                             auto super_of_entry = [&](const recipe& rec) { return is_super_of(rec, entry); };
     577                 :            :                             // Iterate over all supertypes of res (because if e.g. our selected fragment/subnodes result
     578                 :            :                             // in a Bondu, they can form a recipe that is also applicable for constructing a B, Bou, Bdu, ...).
     579         [ #  # ]:          0 :                             for (Type s : types) {
     580 [ #  # ][ #  # ]:          0 :                                 if ((res & "BKVWzondu"_mst) << s) {
         [ #  # ][ #  # ]
     581         [ #  # ]:          0 :                                     auto& recipes = table[s];
     582                 :            :                                     // If we don't already have a super-recipe to the new one, add it.
     583 [ #  # ][ #  # ]:          0 :                                     if (!std::any_of(recipes.begin(), recipes.end(), super_of_entry)) {
     584         [ #  # ]:          0 :                                         recipes.push_back(entry);
     585                 :          0 :                                     }
     586                 :          0 :                                 }
     587                 :            :                             }
     588                 :            : 
     589         [ #  # ]:          0 :                             if (subs <= 2) break;
     590      [ #  #  # ]:          0 :                         }
     591         [ #  # ]:          0 :                         if (subs <= 1) break;
     592                 :            :                     }
     593         [ #  # ]:          0 :                     if (subs <= 0) break;
     594                 :            :                 }
     595                 :          0 :             }
     596                 :          0 :         }
     597                 :            : 
     598                 :            :         /* Find which types are useful. The fuzzer logic only cares about constructing
     599                 :            :          * B,V,K,W nodes, so any type that isn't needed in any recipe (directly or
     600                 :            :          * indirectly) for the construction of those is uninteresting. */
     601 [ #  # ][ #  # ]:          0 :         std::set<Type> useful_types{"B"_mst, "V"_mst, "K"_mst, "W"_mst};
         [ #  # ][ #  # ]
                 [ #  # ]
     602                 :            :         // Find the transitive closure by adding types until the set of types does not change.
     603                 :          0 :         while (true) {
     604                 :          0 :             size_t set_size = useful_types.size();
     605         [ #  # ]:          0 :             for (const auto& [type, recipes] : table) {
     606 [ #  # ][ #  # ]:          0 :                 if (useful_types.count(type) != 0) {
     607         [ #  # ]:          0 :                     for (const auto& [_, subtypes] : recipes) {
     608 [ #  # ][ #  # ]:          0 :                         for (auto subtype : subtypes) useful_types.insert(subtype);
     609                 :            :                     }
     610                 :          0 :                 }
     611                 :            :             }
     612         [ #  # ]:          0 :             if (useful_types.size() == set_size) break;
     613                 :            :         }
     614                 :            :         // Remove all rules that construct uninteresting types.
     615         [ #  # ]:          0 :         for (auto type_it = table.begin(); type_it != table.end();) {
     616 [ #  # ][ #  # ]:          0 :             if (useful_types.count(type_it->first) == 0) {
     617         [ #  # ]:          0 :                 type_it = table.erase(type_it);
     618                 :          0 :             } else {
     619                 :          0 :                 ++type_it;
     620                 :            :             }
     621                 :            :         }
     622                 :            : 
     623                 :            :         /* Find which types are constructible. A type is constructible if there is a leaf
     624                 :            :          * node recipe for constructing it, or a recipe whose subnodes are all constructible.
     625                 :            :          * Types can be non-constructible because they have no recipes to begin with,
     626                 :            :          * because they can only be constructed using recipes that involve otherwise
     627                 :            :          * non-constructible types, or because they require infinite recursion. */
     628                 :          0 :         std::set<Type> constructible_types{};
     629                 :          0 :         auto known_constructible = [&](Type type) { return constructible_types.count(type) != 0; };
     630                 :            :         // Find the transitive closure by adding types until the set of types does not change.
     631                 :          0 :         while (true) {
     632                 :          0 :             size_t set_size = constructible_types.size();
     633                 :            :             // Iterate over all types we have recipes for.
     634         [ #  # ]:          0 :             for (const auto& [type, recipes] : table) {
     635 [ #  # ][ #  # ]:          0 :                 if (!known_constructible(type)) {
     636                 :            :                     // For not (yet known to be) constructible types, iterate over their recipes.
     637         [ #  # ]:          0 :                     for (const auto& [_, subt] : recipes) {
     638                 :            :                         // If any recipe involves only (already known to be) constructible types,
     639                 :            :                         // add the recipe's type to the set.
     640 [ #  # ][ #  # ]:          0 :                         if (std::all_of(subt.begin(), subt.end(), known_constructible)) {
                 [ #  # ]
     641         [ #  # ]:          0 :                             constructible_types.insert(type);
     642                 :          0 :                             break;
     643                 :            :                         }
     644                 :            :                     }
     645                 :          0 :                 }
     646                 :            :             }
     647         [ #  # ]:          0 :             if (constructible_types.size() == set_size) break;
     648                 :            :         }
     649         [ #  # ]:          0 :         for (auto type_it = table.begin(); type_it != table.end();) {
     650                 :            :             // Remove all recipes which involve non-constructible types.
     651 [ #  # ][ #  # ]:          0 :             type_it->second.erase(std::remove_if(type_it->second.begin(), type_it->second.end(),
         [ #  # ][ #  # ]
     652                 :          0 :                 [&](const recipe& rec) {
     653                 :          0 :                     return !std::all_of(rec.second.begin(), rec.second.end(), known_constructible);
     654                 :          0 :                 }), type_it->second.end());
     655                 :            :             // Delete types entirely which have no recipes left.
     656         [ #  # ]:          0 :             if (type_it->second.empty()) {
     657         [ #  # ]:          0 :                 type_it = table.erase(type_it);
     658                 :          0 :             } else {
     659                 :          0 :                 ++type_it;
     660                 :            :             }
     661                 :            :         }
     662                 :            : 
     663         [ #  # ]:          0 :         for (auto& [type, recipes] : table) {
     664                 :            :             // Sort recipes for determinism, and place those using fewer subnodes first.
     665                 :            :             // This avoids runaway expansion (when reaching the end of the fuzz input,
     666                 :            :             // all zeroes are read, resulting in the first available recipe being picked).
     667 [ #  # ][ #  # ]:          0 :             std::sort(recipes.begin(), recipes.end(),
     668                 :          0 :                 [](const recipe& a, const recipe& b) {
     669         [ #  # ]:          0 :                     if (a.second.size() < b.second.size()) return true;
     670         [ #  # ]:          0 :                     if (a.second.size() > b.second.size()) return false;
     671                 :          0 :                     return a < b;
     672                 :          0 :                 }
     673                 :            :             );
     674                 :            :         }
     675                 :          0 :     }
     676                 :          2 : } SMARTINFO;
     677                 :            : 
     678                 :            : /**
     679                 :            :  * Consume a Miniscript node from the fuzzer's output.
     680                 :            :  *
     681                 :            :  * This is similar to ConsumeNodeStable, but uses a precomputed table with permitted
     682                 :            :  * fragments/subnode type for each required type. It is intended to more quickly explore
     683                 :            :  * interesting miniscripts, at the cost of higher implementation complexity (which could
     684                 :            :  * cause it miss things if incorrect), and with less regard for stability of the seeds
     685                 :            :  * (as improvements to the tables or changes to the typing rules could invalidate
     686                 :            :  * everything).
     687                 :            :  */
     688                 :          0 : std::optional<NodeInfo> ConsumeNodeSmart(FuzzedDataProvider& provider, Type type_needed) {
     689                 :            :     /** Table entry for the requested type. */
     690                 :          0 :     auto recipes_it = SMARTINFO.table.find(type_needed);
     691         [ #  # ]:          0 :     assert(recipes_it != SMARTINFO.table.end());
     692                 :            :     /** Pick one recipe from the available ones for that type. */
     693                 :          0 :     const auto& [frag, subt] = PickValue(provider, recipes_it->second);
     694                 :            : 
     695                 :            :     // Based on the fragment the recipe uses, fill in other data (k, keys, data).
     696   [ #  #  #  #  :          0 :     switch (frag) {
          #  #  #  #  #  
                      # ]
     697                 :            :         case Fragment::PK_K:
     698                 :            :         case Fragment::PK_H:
     699                 :          0 :             return {{frag, ConsumePubKey(provider)}};
     700                 :            :         case Fragment::MULTI: {
     701                 :          0 :             const auto n_keys = provider.ConsumeIntegralInRange<uint8_t>(1, 20);
     702                 :          0 :             const auto k = provider.ConsumeIntegralInRange<uint8_t>(1, n_keys);
     703         [ #  # ]:          0 :             std::vector<CPubKey> keys{n_keys};
     704 [ #  # ][ #  # ]:          0 :             for (auto& key: keys) key = ConsumePubKey(provider);
     705         [ #  # ]:          0 :             return {{frag, k, std::move(keys)}};
     706                 :          0 :         }
     707                 :            :         case Fragment::OLDER:
     708                 :            :         case Fragment::AFTER:
     709                 :          0 :             return {{frag, provider.ConsumeIntegralInRange<uint32_t>(1, 0x7FFFFFF)}};
     710                 :            :         case Fragment::SHA256:
     711         [ #  # ]:          0 :             return {{frag, PickValue(provider, TEST_DATA.sha256)}};
     712                 :            :         case Fragment::HASH256:
     713         [ #  # ]:          0 :             return {{frag, PickValue(provider, TEST_DATA.hash256)}};
     714                 :            :         case Fragment::RIPEMD160:
     715         [ #  # ]:          0 :             return {{frag, PickValue(provider, TEST_DATA.ripemd160)}};
     716                 :            :         case Fragment::HASH160:
     717         [ #  # ]:          0 :             return {{frag, PickValue(provider, TEST_DATA.hash160)}};
     718                 :            :         case Fragment::JUST_0:
     719                 :            :         case Fragment::JUST_1:
     720                 :            :         case Fragment::WRAP_A:
     721                 :            :         case Fragment::WRAP_S:
     722                 :            :         case Fragment::WRAP_C:
     723                 :            :         case Fragment::WRAP_D:
     724                 :            :         case Fragment::WRAP_V:
     725                 :            :         case Fragment::WRAP_J:
     726                 :            :         case Fragment::WRAP_N:
     727                 :            :         case Fragment::AND_V:
     728                 :            :         case Fragment::AND_B:
     729                 :            :         case Fragment::OR_B:
     730                 :            :         case Fragment::OR_C:
     731                 :            :         case Fragment::OR_D:
     732                 :            :         case Fragment::OR_I:
     733                 :            :         case Fragment::ANDOR:
     734 [ #  # ][ #  # ]:          0 :             return {{subt, frag}};
     735                 :            :         case Fragment::THRESH: {
     736                 :            :             uint32_t children;
     737         [ #  # ]:          0 :             if (subt.size() < 2) {
     738                 :          0 :                 children = subt.size();
     739                 :          0 :             } else {
     740                 :            :                 // If we hit a thresh with 2 subnodes, artificially extend it to any number
     741                 :            :                 // (2 or larger) by replicating the type of the last subnode.
     742                 :          0 :                 children = provider.ConsumeIntegralInRange<uint32_t>(2, MAX_OPS_PER_SCRIPT / 2);
     743                 :            :             }
     744                 :          0 :             auto k = provider.ConsumeIntegralInRange<uint32_t>(1, children);
     745                 :          0 :             std::vector<Type> subs = subt;
     746 [ #  # ][ #  # ]:          0 :             while (subs.size() < children) subs.push_back(subs.back());
     747 [ #  # ][ #  # ]:          0 :             return {{std::move(subs), frag, k}};
     748                 :          0 :         }
     749                 :            :     }
     750                 :            : 
     751                 :          0 :     assert(false);
     752                 :          0 : }
     753                 :            : 
     754                 :            : /**
     755                 :            :  * Generate a Miniscript node based on the fuzzer's input.
     756                 :            :  *
     757                 :            :  * - ConsumeNode is a function object taking a Type, and returning an std::optional<NodeInfo>.
     758                 :            :  * - root_type is the required type properties of the constructed NodeRef.
     759                 :            :  * - strict_valid sets whether ConsumeNode is expected to guarantee a NodeInfo that results in
     760                 :            :  *   a NodeRef whose Type() matches the type fed to ConsumeNode.
     761                 :            :  */
     762                 :            : template<typename F>
     763                 :          0 : NodeRef GenNode(F ConsumeNode, Type root_type, bool strict_valid = false) {
     764                 :            :     /** A stack of miniscript Nodes being built up. */
     765                 :          0 :     std::vector<NodeRef> stack;
     766                 :            :     /** The queue of instructions. */
     767 [ #  # ][ #  # ]:          0 :     std::vector<std::pair<Type, std::optional<NodeInfo>>> todo{{root_type, {}}};
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     768                 :            :     /** Predict the number of (static) script ops. */
     769                 :          0 :     uint32_t ops{0};
     770                 :            :     /** Predict the total script size (every unexplored subnode is counted as one, as every leaf is
     771                 :            :      *  at least one script byte). */
     772                 :          0 :     uint32_t scriptsize{1};
     773                 :            : 
     774 [ #  # ][ #  # ]:          0 :     while (!todo.empty()) {
     775                 :            :         // The expected type we have to construct.
     776                 :          0 :         auto type_needed = todo.back().first;
     777 [ #  # ][ #  # ]:          0 :         if (!todo.back().second) {
     778                 :            :             // Fragment/children have not been decided yet. Decide them.
     779 [ #  # ][ #  # ]:          0 :             auto node_info = ConsumeNode(type_needed);
     780 [ #  # ][ #  # ]:          0 :             if (!node_info) return {};
     781                 :            :             // Update predicted resource limits. Since every leaf Miniscript node is at least one
     782                 :            :             // byte long, we move one byte from each child to their parent. A similar technique is
     783                 :            :             // used in the miniscript::internal::Parse function to prevent runaway string parsing.
     784 [ #  # ][ #  # ]:          0 :             scriptsize += miniscript::internal::ComputeScriptLen(node_info->fragment, ""_mst, node_info->subtypes.size(), node_info->k, node_info->subtypes.size(), node_info->keys.size()) - 1;
         [ #  # ][ #  # ]
     785 [ #  # ][ #  # ]:          0 :             if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
     786   [ #  #  #  #  :          0 :             switch (node_info->fragment) {
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
           #  # ][ #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
             #  #  #  # ]
     787                 :            :             case Fragment::JUST_0:
     788                 :            :             case Fragment::JUST_1:
     789                 :          0 :                 break;
     790                 :            :             case Fragment::PK_K:
     791                 :          0 :                 break;
     792                 :            :             case Fragment::PK_H:
     793                 :          0 :                 ops += 3;
     794                 :          0 :                 break;
     795                 :            :             case Fragment::OLDER:
     796                 :            :             case Fragment::AFTER:
     797                 :          0 :                 ops += 1;
     798                 :          0 :                 break;
     799                 :            :             case Fragment::RIPEMD160:
     800                 :            :             case Fragment::SHA256:
     801                 :            :             case Fragment::HASH160:
     802                 :            :             case Fragment::HASH256:
     803                 :          0 :                 ops += 4;
     804                 :          0 :                 break;
     805                 :            :             case Fragment::ANDOR:
     806                 :          0 :                 ops += 3;
     807                 :          0 :                 break;
     808                 :            :             case Fragment::AND_V:
     809                 :          0 :                 break;
     810                 :            :             case Fragment::AND_B:
     811                 :            :             case Fragment::OR_B:
     812                 :          0 :                 ops += 1;
     813                 :          0 :                 break;
     814                 :            :             case Fragment::OR_C:
     815                 :          0 :                 ops += 2;
     816                 :          0 :                 break;
     817                 :            :             case Fragment::OR_D:
     818                 :          0 :                 ops += 3;
     819                 :          0 :                 break;
     820                 :            :             case Fragment::OR_I:
     821                 :          0 :                 ops += 3;
     822                 :          0 :                 break;
     823                 :            :             case Fragment::THRESH:
     824                 :          0 :                 ops += node_info->subtypes.size();
     825                 :          0 :                 break;
     826                 :            :             case Fragment::MULTI:
     827                 :          0 :                 ops += 1;
     828                 :          0 :                 break;
     829                 :            :             case Fragment::WRAP_A:
     830                 :          0 :                 ops += 2;
     831                 :          0 :                 break;
     832                 :            :             case Fragment::WRAP_S:
     833                 :          0 :                 ops += 1;
     834                 :          0 :                 break;
     835                 :            :             case Fragment::WRAP_C:
     836                 :          0 :                 ops += 1;
     837                 :          0 :                 break;
     838                 :            :             case Fragment::WRAP_D:
     839                 :          0 :                 ops += 3;
     840                 :          0 :                 break;
     841                 :            :             case Fragment::WRAP_V:
     842                 :            :                 // We don't account for OP_VERIFY here; that will be corrected for when the actual
     843                 :            :                 // node is constructed below.
     844                 :          0 :                 break;
     845                 :            :             case Fragment::WRAP_J:
     846                 :          0 :                 ops += 4;
     847                 :          0 :                 break;
     848                 :            :             case Fragment::WRAP_N:
     849                 :          0 :                 ops += 1;
     850                 :          0 :                 break;
     851                 :            :             }
     852 [ #  # ][ #  # ]:          0 :             if (ops > MAX_OPS_PER_SCRIPT) return {};
     853 [ #  # ][ #  # ]:          0 :             auto subtypes = node_info->subtypes;
     854                 :          0 :             todo.back().second = std::move(node_info);
     855 [ #  # ][ #  # ]:          0 :             todo.reserve(todo.size() + subtypes.size());
     856                 :            :             // As elements on the todo stack are processed back to front, construct
     857                 :            :             // them in reverse order (so that the first subnode is generated first).
     858 [ #  # ][ #  # ]:          0 :             for (size_t i = 0; i < subtypes.size(); ++i) {
     859 [ #  # ][ #  # ]:          0 :                 todo.emplace_back(*(subtypes.rbegin() + i), std::nullopt);
         [ #  # ][ #  # ]
     860                 :          0 :             }
     861 [ #  # ][ #  # ]:          0 :         } else {
     862                 :            :             // The back of todo has fragment and number of children decided, and
     863                 :            :             // those children have been constructed at the back of stack. Pop
     864                 :            :             // that entry off todo, and use it to construct a new NodeRef on
     865                 :            :             // stack.
     866                 :          0 :             NodeInfo& info = *todo.back().second;
     867                 :            :             // Gather children from the back of stack.
     868                 :          0 :             std::vector<NodeRef> sub;
     869 [ #  # ][ #  # ]:          0 :             sub.reserve(info.subtypes.size());
     870 [ #  # ][ #  # ]:          0 :             for (size_t i = 0; i < info.subtypes.size(); ++i) {
     871 [ #  # ][ #  # ]:          0 :                 sub.push_back(std::move(*(stack.end() - info.subtypes.size() + i)));
     872                 :          0 :             }
     873 [ #  # ][ #  # ]:          0 :             stack.erase(stack.end() - info.subtypes.size(), stack.end());
     874                 :            :             // Construct new NodeRef.
     875                 :          0 :             NodeRef node;
     876 [ #  # ][ #  # ]:          0 :             if (info.keys.empty()) {
     877 [ #  # ][ #  # ]:          0 :                 node = MakeNodeRef(info.fragment, std::move(sub), std::move(info.hash), info.k);
     878                 :          0 :             } else {
     879 [ #  # ][ #  # ]:          0 :                 assert(sub.empty());
     880 [ #  # ][ #  # ]:          0 :                 assert(info.hash.empty());
     881 [ #  # ][ #  # ]:          0 :                 node = MakeNodeRef(info.fragment, std::move(info.keys), info.k);
     882                 :            :             }
     883                 :            :             // Verify acceptability.
     884 [ #  # ][ #  # ]:          0 :             if (!node || (node->GetType() & "KVWB"_mst) == ""_mst) {
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     885 [ #  # ][ #  # ]:          0 :                 assert(!strict_valid);
     886                 :          0 :                 return {};
     887                 :            :             }
     888 [ #  # ][ #  # ]:          0 :             if (!(type_needed == ""_mst)) {
         [ #  # ][ #  # ]
     889 [ #  # ][ #  # ]:          0 :                 assert(node->GetType() << type_needed);
     890                 :          0 :             }
     891 [ #  # ][ #  # ]:          0 :             if (!node->IsValid()) return {};
         [ #  # ][ #  # ]
     892                 :            :             // Update resource predictions.
     893 [ #  # ][ #  # ]:          0 :             if (node->fragment == Fragment::WRAP_V && node->subs[0]->GetType() << "x"_mst) {
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     894                 :          0 :                 ops += 1;
     895                 :          0 :                 scriptsize += 1;
     896                 :          0 :             }
     897 [ #  # ][ #  # ]:          0 :             if (ops > MAX_OPS_PER_SCRIPT) return {};
     898 [ #  # ][ #  # ]:          0 :             if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
     899                 :            :             // Move it to the stack.
     900 [ #  # ][ #  # ]:          0 :             stack.push_back(std::move(node));
     901                 :          0 :             todo.pop_back();
     902 [ #  # ][ #  # ]:          0 :         }
     903                 :            :     }
     904 [ #  # ][ #  # ]:          0 :     assert(stack.size() == 1);
     905 [ #  # ][ #  # ]:          0 :     assert(stack[0]->GetStaticOps() == ops);
                 [ #  # ]
     906 [ #  # ][ #  # ]:          0 :     assert(stack[0]->ScriptSize() == scriptsize);
     907 [ #  # ][ #  # ]:          0 :     stack[0]->DuplicateKeyCheck(KEY_COMP);
     908                 :          0 :     return std::move(stack[0]);
     909                 :          0 : }
     910                 :            : 
     911                 :            : /** Perform various applicable tests on a miniscript Node. */
     912                 :          0 : void TestNode(const NodeRef& node, FuzzedDataProvider& provider)
     913                 :            : {
     914         [ #  # ]:          0 :     if (!node) return;
     915                 :            : 
     916                 :            :     // Check that it roundtrips to text representation
     917                 :          0 :     std::optional<std::string> str{node->ToString(PARSER_CTX)};
     918         [ #  # ]:          0 :     assert(str);
     919         [ #  # ]:          0 :     auto parsed = miniscript::FromString(*str, PARSER_CTX);
     920         [ #  # ]:          0 :     assert(parsed);
     921 [ #  # ][ #  # ]:          0 :     assert(*parsed == *node);
     922                 :            : 
     923                 :            :     // Check consistency between script size estimation and real size.
     924         [ #  # ]:          0 :     auto script = node->ToScript(PARSER_CTX);
     925 [ #  # ][ #  # ]:          0 :     assert(node->ScriptSize() == script.size());
                 [ #  # ]
     926                 :            : 
     927                 :            :     // Check consistency of "x" property with the script (type K is excluded, because it can end
     928                 :            :     // with a push of a key, which could match these opcodes).
     929 [ #  # ][ #  # ]:          0 :     if (!(node->GetType() << "K"_mst)) {
                 [ #  # ]
     930 [ #  # ][ #  # ]:          0 :         bool ends_in_verify = !(node->GetType() << "x"_mst);
     931 [ #  # ][ #  # ]:          0 :         assert(ends_in_verify == (script.back() == OP_CHECKSIG || script.back() == OP_CHECKMULTISIG || script.back() == OP_EQUAL));
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     932                 :          0 :     }
     933                 :            : 
     934                 :            :     // The rest of the checks only apply when testing a valid top-level script.
     935 [ #  # ][ #  # ]:          0 :     if (!node->IsValidTopLevel()) return;
     936                 :            : 
     937                 :            :     // Check roundtrip to script
     938         [ #  # ]:          0 :     auto decoded = miniscript::FromScript(script, PARSER_CTX);
     939         [ #  # ]:          0 :     assert(decoded);
     940                 :            :     // Note we can't use *decoded == *node because the miniscript representation may differ, so we check that:
     941                 :            :     // - The script corresponding to that decoded form matches exactly
     942                 :            :     // - The type matches exactly
     943 [ #  # ][ #  # ]:          0 :     assert(decoded->ToScript(PARSER_CTX) == script);
                 [ #  # ]
     944 [ #  # ][ #  # ]:          0 :     assert(decoded->GetType() == node->GetType());
         [ #  # ][ #  # ]
     945                 :            : 
     946         [ #  # ]:          0 :     const auto node_ops{node->GetOps()};
     947 [ #  # ][ #  # ]:          0 :     if (provider.ConsumeBool() && node_ops && *node_ops < MAX_OPS_PER_SCRIPT && node->ScriptSize() < MAX_STANDARD_P2WSH_SCRIPT_SIZE) {
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     948                 :            :         // Optionally pad the script with OP_NOPs to max op the ops limit of the constructed script.
     949                 :            :         // This makes the script obviously not actually miniscript-compatible anymore, but the
     950                 :            :         // signatures constructed in this test don't commit to the script anyway, so the same
     951                 :            :         // miniscript satisfier will work. This increases the sensitivity of the test to the ops
     952                 :            :         // counting logic being too low, especially for simple scripts.
     953                 :            :         // Do this optionally because we're not solely interested in cases where the number of ops is
     954                 :            :         // maximal.
     955                 :            :         // Do not pad more than what would cause MAX_STANDARD_P2WSH_SCRIPT_SIZE to be reached, however,
     956                 :            :         // as that also invalidates scripts.
     957         [ #  # ]:          0 :         int add = std::min<int>(
     958                 :          0 :             MAX_OPS_PER_SCRIPT - *node_ops,
     959         [ #  # ]:          0 :             MAX_STANDARD_P2WSH_SCRIPT_SIZE - node->ScriptSize());
     960 [ #  # ][ #  # ]:          0 :         for (int i = 0; i < add; ++i) script.push_back(OP_NOP);
     961                 :          0 :     }
     962                 :            : 
     963                 :            :     // Run malleable satisfaction algorithm.
     964 [ #  # ][ #  # ]:          0 :     const CScript script_pubkey = CScript() << OP_0 << WitnessV0ScriptHash(script);
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
     965         [ #  # ]:          0 :     CScriptWitness witness_mal;
     966         [ #  # ]:          0 :     const bool mal_success = node->Satisfy(SATISFIER_CTX, witness_mal.stack, false) == miniscript::Availability::YES;
     967 [ #  # ][ #  # ]:          0 :     witness_mal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end()));
         [ #  # ][ #  # ]
     968                 :            : 
     969                 :            :     // Run non-malleable satisfaction algorithm.
     970         [ #  # ]:          0 :     CScriptWitness witness_nonmal;
     971         [ #  # ]:          0 :     const bool nonmal_success = node->Satisfy(SATISFIER_CTX, witness_nonmal.stack, true) == miniscript::Availability::YES;
     972 [ #  # ][ #  # ]:          0 :     witness_nonmal.stack.push_back(std::vector<unsigned char>(script.begin(), script.end()));
         [ #  # ][ #  # ]
     973                 :            : 
     974         [ #  # ]:          0 :     if (nonmal_success) {
     975                 :            :         // Non-malleable satisfactions are bounded by GetStackSize().
     976 [ #  # ][ #  # ]:          0 :         assert(witness_nonmal.stack.size() <= *node->GetStackSize() + 1);
     977                 :            :         // If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it.
     978         [ #  # ]:          0 :         assert(mal_success);
     979 [ #  # ][ #  # ]:          0 :         assert(witness_nonmal.stack == witness_mal.stack);
     980                 :            : 
     981                 :            :         // Test non-malleable satisfaction.
     982                 :            :         ScriptError serror;
     983         [ #  # ]:          0 :         bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror);
     984                 :            :         // Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions().
     985 [ #  # ][ #  # ]:          0 :         if (node->ValidSatisfactions()) assert(res);
                 [ #  # ]
     986                 :            :         // More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed),
     987                 :            :         // or with a stack size error (if CheckStackSize check failed).
     988 [ #  # ][ #  # ]:          0 :         assert(res ||
         [ #  # ][ #  # ]
         [ #  # ][ #  # ]
                 [ #  # ]
     989                 :            :                (!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) ||
     990                 :            :                (!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE));
     991                 :          0 :     }
     992                 :            : 
     993 [ #  # ][ #  # ]:          0 :     if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) {
                 [ #  # ]
     994                 :            :         // Test malleable satisfaction only if it's different from the non-malleable one.
     995                 :            :         ScriptError serror;
     996         [ #  # ]:          0 :         bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_mal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror);
     997                 :            :         // Malleable satisfactions are not guaranteed to be valid under any conditions, but they can only
     998                 :            :         // fail due to stack or ops limits.
     999 [ #  # ][ #  # ]:          0 :         assert(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE);
                 [ #  # ]
    1000                 :          0 :     }
    1001                 :            : 
    1002 [ #  # ][ #  # ]:          0 :     if (node->IsSane()) {
    1003                 :            :         // For sane nodes, the two algorithms behave identically.
    1004         [ #  # ]:          0 :         assert(mal_success == nonmal_success);
    1005                 :          0 :     }
    1006                 :            : 
    1007                 :            :     // Verify that if a node is policy-satisfiable, the malleable satisfaction
    1008                 :            :     // algorithm succeeds. Given that under IsSane() both satisfactions
    1009                 :            :     // are identical, this implies that for such nodes, the non-malleable
    1010                 :            :     // satisfaction will also match the expected policy.
    1011         [ #  # ]:          0 :     bool satisfiable = node->IsSatisfiable([](const Node& node) -> bool {
    1012   [ #  #  #  #  :          0 :         switch (node.fragment) {
             #  #  #  # ]
    1013                 :            :         case Fragment::PK_K:
    1014                 :            :         case Fragment::PK_H: {
    1015                 :          0 :             auto it = TEST_DATA.dummy_sigs.find(node.keys[0]);
    1016         [ #  # ]:          0 :             assert(it != TEST_DATA.dummy_sigs.end());
    1017                 :          0 :             return it->second.second;
    1018                 :            :         }
    1019                 :            :         case Fragment::MULTI: {
    1020                 :          0 :             size_t sats = 0;
    1021         [ #  # ]:          0 :             for (const auto& key : node.keys) {
    1022                 :          0 :                 auto it = TEST_DATA.dummy_sigs.find(key);
    1023         [ #  # ]:          0 :                 assert(it != TEST_DATA.dummy_sigs.end());
    1024                 :          0 :                 sats += it->second.second;
    1025                 :            :             }
    1026                 :          0 :             return sats >= node.k;
    1027                 :            :         }
    1028                 :            :         case Fragment::OLDER:
    1029                 :            :         case Fragment::AFTER:
    1030                 :          0 :             return node.k & 1;
    1031                 :            :         case Fragment::SHA256:
    1032                 :          0 :             return TEST_DATA.sha256_preimages.count(node.data);
    1033                 :            :         case Fragment::HASH256:
    1034                 :          0 :             return TEST_DATA.hash256_preimages.count(node.data);
    1035                 :            :         case Fragment::RIPEMD160:
    1036                 :          0 :             return TEST_DATA.ripemd160_preimages.count(node.data);
    1037                 :            :         case Fragment::HASH160:
    1038                 :          0 :             return TEST_DATA.hash160_preimages.count(node.data);
    1039                 :            :         default:
    1040                 :          0 :             assert(false);
    1041                 :            :         }
    1042                 :            :         return false;
    1043                 :          0 :     });
    1044         [ #  # ]:          0 :     assert(mal_success == satisfiable);
    1045         [ #  # ]:          0 : }
    1046                 :            : 
    1047                 :            : } // namespace
    1048                 :            : 
    1049                 :          0 : void FuzzInit()
    1050                 :            : {
    1051                 :          0 :     ECC_Start();
    1052                 :          0 :     TEST_DATA.Init();
    1053                 :          0 : }
    1054                 :            : 
    1055                 :          0 : void FuzzInitSmart()
    1056                 :            : {
    1057                 :          0 :     FuzzInit();
    1058                 :          0 :     SMARTINFO.Init();
    1059                 :          0 : }
    1060                 :            : 
    1061                 :            : /** Fuzz target that runs TestNode on nodes generated using ConsumeNodeStable. */
    1062         [ +  - ]:          4 : FUZZ_TARGET(miniscript_stable, .init = FuzzInit)
    1063                 :            : {
    1064                 :          0 :     FuzzedDataProvider provider(buffer.data(), buffer.size());
    1065 [ #  # ][ #  # ]:          0 :     TestNode(GenNode([&](Type needed_type) {
    1066                 :          0 :         return ConsumeNodeStable(provider, needed_type);
    1067                 :          0 :     }, ""_mst), provider);
    1068                 :          0 : }
    1069                 :            : 
    1070                 :            : /** Fuzz target that runs TestNode on nodes generated using ConsumeNodeSmart. */
    1071         [ +  - ]:          4 : FUZZ_TARGET(miniscript_smart, .init = FuzzInitSmart)
    1072                 :            : {
    1073                 :            :     /** The set of types we aim to construct nodes for. Together they cover all. */
    1074                 :            :     static constexpr std::array<Type, 4> BASE_TYPES{"B"_mst, "V"_mst, "K"_mst, "W"_mst};
    1075                 :            : 
    1076                 :          0 :     FuzzedDataProvider provider(buffer.data(), buffer.size());
    1077 [ #  # ][ #  # ]:          0 :     TestNode(GenNode([&](Type needed_type) {
    1078                 :          0 :         return ConsumeNodeSmart(provider, needed_type);
    1079                 :          0 :     }, PickValue(provider, BASE_TYPES), true), provider);
    1080                 :          0 : }
    1081                 :            : 
    1082                 :            : /* Fuzz tests that test parsing from a string, and roundtripping via string. */
    1083         [ +  - ]:          4 : FUZZ_TARGET(miniscript_string, .init = FuzzInit)
    1084                 :            : {
    1085                 :          0 :     FuzzedDataProvider provider(buffer.data(), buffer.size());
    1086                 :          0 :     auto str = provider.ConsumeRemainingBytesAsString();
    1087         [ #  # ]:          0 :     auto parsed = miniscript::FromString(str, PARSER_CTX);
    1088         [ #  # ]:          0 :     if (!parsed) return;
    1089                 :            : 
    1090         [ #  # ]:          0 :     const auto str2 = parsed->ToString(PARSER_CTX);
    1091         [ #  # ]:          0 :     assert(str2);
    1092         [ #  # ]:          0 :     auto parsed2 = miniscript::FromString(*str2, PARSER_CTX);
    1093         [ #  # ]:          0 :     assert(parsed2);
    1094 [ #  # ][ #  # ]:          0 :     assert(*parsed == *parsed2);
    1095         [ #  # ]:          0 : }
    1096                 :            : 
    1097                 :            : /* Fuzz tests that test parsing from a script, and roundtripping via script. */
    1098 [ +  - ][ +  - ]:          6 : FUZZ_TARGET(miniscript_script)
    1099                 :            : {
    1100                 :          0 :     FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
    1101                 :          0 :     const std::optional<CScript> script = ConsumeDeserializable<CScript>(fuzzed_data_provider);
    1102         [ #  # ]:          0 :     if (!script) return;
    1103                 :            : 
    1104         [ #  # ]:          0 :     const auto ms = miniscript::FromScript(*script, SCRIPT_PARSER_CONTEXT);
    1105         [ #  # ]:          0 :     if (!ms) return;
    1106                 :            : 
    1107 [ #  # ][ #  # ]:          0 :     assert(ms->ToScript(SCRIPT_PARSER_CONTEXT) == *script);
                 [ #  # ]
    1108         [ #  # ]:          0 : }

Generated by: LCOV version 1.14