LCOV - code coverage report
Current view: top level - src - span.h (source / functions) Hit Total Coverage
Test: fuzz_coverage.info Lines: 36 58 62.1 %
Date: 2023-11-06 23:13:05 Functions: 111 324 34.3 %
Branches: 6 48 12.5 %

           Branch data     Line data    Source code
       1                 :            : // Copyright (c) 2018-2022 The Bitcoin Core developers
       2                 :            : // Distributed under the MIT software license, see the accompanying
       3                 :            : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4                 :            : 
       5                 :            : #ifndef BITCOIN_SPAN_H
       6                 :            : #define BITCOIN_SPAN_H
       7                 :            : 
       8                 :            : #include <algorithm>
       9                 :            : #include <cassert>
      10                 :            : #include <cstddef>
      11                 :            : #include <type_traits>
      12                 :            : 
      13                 :            : #ifdef DEBUG
      14                 :            : #define CONSTEXPR_IF_NOT_DEBUG
      15                 :            : #define ASSERT_IF_DEBUG(x) assert((x))
      16                 :            : #else
      17                 :            : #define CONSTEXPR_IF_NOT_DEBUG constexpr
      18                 :            : #define ASSERT_IF_DEBUG(x)
      19                 :            : #endif
      20                 :            : 
      21                 :            : #if defined(__clang__)
      22                 :            : #if __has_attribute(lifetimebound)
      23                 :            : #define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]]
      24                 :            : #else
      25                 :            : #define SPAN_ATTR_LIFETIMEBOUND
      26                 :            : #endif
      27                 :            : #else
      28                 :            : #define SPAN_ATTR_LIFETIMEBOUND
      29                 :            : #endif
      30                 :            : 
      31                 :            : /** A Span is an object that can refer to a contiguous sequence of objects.
      32                 :            :  *
      33                 :            :  * This file implements a subset of C++20's std::span.  It can be considered
      34                 :            :  * temporary compatibility code until C++20 and is designed to be a
      35                 :            :  * self-contained abstraction without depending on other project files. For this
      36                 :            :  * reason, Clang lifetimebound is defined here instead of including
      37                 :            :  * <attributes.h>, which also defines it.
      38                 :            :  *
      39                 :            :  * Things to be aware of when writing code that deals with Spans:
      40                 :            :  *
      41                 :            :  * - Similar to references themselves, Spans are subject to reference lifetime
      42                 :            :  *   issues. The user is responsible for making sure the objects pointed to by
      43                 :            :  *   a Span live as long as the Span is used. For example:
      44                 :            :  *
      45                 :            :  *       std::vector<int> vec{1,2,3,4};
      46                 :            :  *       Span<int> sp(vec);
      47                 :            :  *       vec.push_back(5);
      48                 :            :  *       printf("%i\n", sp.front()); // UB!
      49                 :            :  *
      50                 :            :  *   may exhibit undefined behavior, as increasing the size of a vector may
      51                 :            :  *   invalidate references.
      52                 :            :  *
      53                 :            :  * - One particular pitfall is that Spans can be constructed from temporaries,
      54                 :            :  *   but this is unsafe when the Span is stored in a variable, outliving the
      55                 :            :  *   temporary. For example, this will compile, but exhibits undefined behavior:
      56                 :            :  *
      57                 :            :  *       Span<const int> sp(std::vector<int>{1, 2, 3});
      58                 :            :  *       printf("%i\n", sp.front()); // UB!
      59                 :            :  *
      60                 :            :  *   The lifetime of the vector ends when the statement it is created in ends.
      61                 :            :  *   Thus the Span is left with a dangling reference, and using it is undefined.
      62                 :            :  *
      63                 :            :  * - Due to Span's automatic creation from range-like objects (arrays, and data
      64                 :            :  *   types that expose a data() and size() member function), functions that
      65                 :            :  *   accept a Span as input parameter can be called with any compatible
      66                 :            :  *   range-like object. For example, this works:
      67                 :            :  *
      68                 :            :  *       void Foo(Span<const int> arg);
      69                 :            :  *
      70                 :            :  *       Foo(std::vector<int>{1, 2, 3}); // Works
      71                 :            :  *
      72                 :            :  *   This is very useful in cases where a function truly does not care about the
      73                 :            :  *   container, and only about having exactly a range of elements. However it
      74                 :            :  *   may also be surprising to see automatic conversions in this case.
      75                 :            :  *
      76                 :            :  *   When a function accepts a Span with a mutable element type, it will not
      77                 :            :  *   accept temporaries; only variables or other references. For example:
      78                 :            :  *
      79                 :            :  *       void FooMut(Span<int> arg);
      80                 :            :  *
      81                 :            :  *       FooMut(std::vector<int>{1, 2, 3}); // Does not compile
      82                 :            :  *       std::vector<int> baz{1, 2, 3};
      83                 :            :  *       FooMut(baz); // Works
      84                 :            :  *
      85                 :            :  *   This is similar to how functions that take (non-const) lvalue references
      86                 :            :  *   as input cannot accept temporaries. This does not work either:
      87                 :            :  *
      88                 :            :  *       void FooVec(std::vector<int>& arg);
      89                 :            :  *       FooVec(std::vector<int>{1, 2, 3}); // Does not compile
      90                 :            :  *
      91                 :            :  *   The idea is that if a function accepts a mutable reference, a meaningful
      92                 :            :  *   result will be present in that variable after the call. Passing a temporary
      93                 :            :  *   is useless in that context.
      94                 :            :  */
      95                 :            : template<typename C>
      96                 :            : class Span
      97                 :            : {
      98                 :            :     C* m_data;
      99                 :          0 :     std::size_t m_size{0};
     100                 :            : 
     101                 :            :     template <class T>
     102                 :            :     struct is_Span_int : public std::false_type {};
     103                 :            :     template <class T>
     104                 :            :     struct is_Span_int<Span<T>> : public std::true_type {};
     105                 :            :     template <class T>
     106                 :            :     struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{};
     107                 :            : 
     108                 :            : 
     109                 :            : public:
     110                 :          0 :     constexpr Span() noexcept : m_data(nullptr) {}
     111                 :            : 
     112                 :            :     /** Construct a span from a begin pointer and a size.
     113                 :            :      *
     114                 :            :      * This implements a subset of the iterator-based std::span constructor in C++20,
     115                 :            :      * which is hard to implement without std::address_of.
     116                 :            :      */
     117                 :            :     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
     118                 :     265040 :     constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
     119                 :            : 
     120                 :            :     /** Construct a span from a begin and end pointer.
     121                 :            :      *
     122                 :            :      * This implements a subset of the iterator-based std::span constructor in C++20,
     123                 :            :      * which is hard to implement without std::address_of.
     124                 :            :      */
     125                 :            :     template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
     126                 :          0 :     CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
     127                 :            :     {
     128                 :            :         ASSERT_IF_DEBUG(end >= begin);
     129                 :          0 :     }
     130                 :            : 
     131                 :            :     /** Implicit conversion of spans between compatible types.
     132                 :            :      *
     133                 :            :      *  Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
     134                 :            :      *  C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
     135                 :            :      *  C++20 std::span constructor.
     136                 :            :      *
     137                 :            :      *  For example this means that a Span<T> can be converted into a Span<const T>.
     138                 :            :      */
     139                 :            :     template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
     140                 :          0 :     constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
     141                 :            : 
     142                 :            :     /** Default copy constructor. */
     143                 :            :     constexpr Span(const Span&) noexcept = default;
     144                 :            : 
     145                 :            :     /** Default assignment operator. */
     146                 :            :     Span& operator=(const Span& other) noexcept = default;
     147                 :            : 
     148                 :            :     /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
     149                 :            :     template <int N>
     150                 :      24787 :     constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
     151                 :            : 
     152                 :            :     /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
     153                 :            :      *
     154                 :            :      * This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
     155                 :            :      *
     156                 :            :      * To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
     157                 :            :      * Note that this restriction does not exist when converting arrays or other Spans (see above).
     158                 :            :      */
     159                 :            :     template <typename V>
     160                 :      29410 :     constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND,
     161                 :            :         typename std::enable_if<!is_Span<V>::value &&
     162                 :            :                                 std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value &&
     163                 :            :                                 std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
     164                 :      29410 :         : m_data(other.data()), m_size(other.size()){}
     165                 :            : 
     166                 :            :     template <typename V>
     167                 :      66900 :     constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND,
     168                 :            :         typename std::enable_if<!is_Span<V>::value &&
     169                 :            :                                 std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value &&
     170                 :            :                                 std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
     171                 :      66900 :         : m_data(other.data()), m_size(other.size()){}
     172                 :            : 
     173                 :     348506 :     constexpr C* data() const noexcept { return m_data; }
     174                 :      17313 :     constexpr C* begin() const noexcept { return m_data; }
     175                 :      57106 :     constexpr C* end() const noexcept { return m_data + m_size; }
     176                 :       1156 :     CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
     177                 :            :     {
     178                 :            :         ASSERT_IF_DEBUG(size() > 0);
     179                 :       1156 :         return m_data[0];
     180                 :            :     }
     181                 :          0 :     CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
     182                 :            :     {
     183                 :            :         ASSERT_IF_DEBUG(size() > 0);
     184                 :          0 :         return m_data[m_size - 1];
     185                 :            :     }
     186                 :     389066 :     constexpr std::size_t size() const noexcept { return m_size; }
     187                 :     146324 :     constexpr std::size_t size_bytes() const noexcept { return sizeof(C) * m_size; }
     188                 :      23850 :     constexpr bool empty() const noexcept { return size() == 0; }
     189                 :         18 :     CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
     190                 :            :     {
     191                 :            :         ASSERT_IF_DEBUG(size() > pos);
     192                 :         18 :         return m_data[pos];
     193                 :            :     }
     194                 :      31160 :     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
     195                 :            :     {
     196                 :            :         ASSERT_IF_DEBUG(size() >= offset);
     197                 :      31160 :         return Span<C>(m_data + offset, m_size - offset);
     198                 :            :     }
     199                 :          0 :     CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
     200                 :            :     {
     201                 :            :         ASSERT_IF_DEBUG(size() >= offset + count);
     202                 :          0 :         return Span<C>(m_data + offset, count);
     203                 :            :     }
     204                 :       5694 :     CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
     205                 :            :     {
     206                 :            :         ASSERT_IF_DEBUG(size() >= count);
     207                 :       5694 :         return Span<C>(m_data, count);
     208                 :            :     }
     209                 :        592 :     CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
     210                 :            :     {
     211                 :            :          ASSERT_IF_DEBUG(size() >= count);
     212                 :        592 :          return Span<C>(m_data + m_size - count, count);
     213                 :            :     }
     214                 :            : 
     215 [ #  # ][ #  # ]:          0 :     friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
         [ #  # ][ #  # ]
     216                 :          0 :     friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
     217         [ #  # ]:          0 :     friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
     218                 :          0 :     friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
     219                 :          0 :     friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
     220                 :          0 :     friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
     221                 :            : 
     222                 :            :     template <typename O> friend class Span;
     223                 :            : };
     224                 :            : 
     225                 :            : // Deduction guides for Span
     226                 :            : // For the pointer/size based and iterator based constructor:
     227                 :            : template <typename T, typename EndOrSize> Span(T*, EndOrSize) -> Span<T>;
     228                 :            : // For the array constructor:
     229                 :            : template <typename T, std::size_t N> Span(T (&)[N]) -> Span<T>;
     230                 :            : // For the temporaries/rvalue references constructor, only supporting const output.
     231                 :            : template <typename T> Span(T&&) -> Span<std::enable_if_t<!std::is_lvalue_reference_v<T>, const std::remove_pointer_t<decltype(std::declval<T&&>().data())>>>;
     232                 :            : // For (lvalue) references, supporting mutable output.
     233                 :            : template <typename T> Span(T&) -> Span<std::remove_pointer_t<decltype(std::declval<T&>().data())>>;
     234                 :            : 
     235                 :            : /** Pop the last element off a span, and return a reference to that element. */
     236                 :            : template <typename T>
     237                 :          0 : T& SpanPopBack(Span<T>& span)
     238                 :            : {
     239                 :          0 :     size_t size = span.size();
     240                 :            :     ASSERT_IF_DEBUG(size > 0);
     241                 :          0 :     T& back = span[size - 1];
     242                 :          0 :     span = Span<T>(span.data(), size - 1);
     243                 :          0 :     return back;
     244                 :            : }
     245                 :            : 
     246                 :            : // From C++20 as_bytes and as_writeable_bytes
     247                 :            : template <typename T>
     248                 :     122244 : Span<const std::byte> AsBytes(Span<T> s) noexcept
     249                 :            : {
     250                 :     122244 :     return {reinterpret_cast<const std::byte*>(s.data()), s.size_bytes()};
     251                 :            : }
     252                 :            : template <typename T>
     253                 :      24081 : Span<std::byte> AsWritableBytes(Span<T> s) noexcept
     254                 :            : {
     255                 :      24081 :     return {reinterpret_cast<std::byte*>(s.data()), s.size_bytes()};
     256                 :            : }
     257                 :            : 
     258                 :            : template <typename V>
     259                 :      38477 : Span<const std::byte> MakeByteSpan(V&& v) noexcept
     260                 :            : {
     261 [ +  - ][ #  # ]:      38477 :     return AsBytes(Span{std::forward<V>(v)});
         [ +  - ][ #  # ]
                 [ #  # ]
           [ +  -  #  # ]
         [ #  # ][ #  # ]
                 [ +  - ]
     262                 :            : }
     263                 :            : template <typename V>
     264                 :      17960 : Span<std::byte> MakeWritableByteSpan(V&& v) noexcept
     265                 :            : {
     266 [ +  - ][ #  # ]:      17960 :     return AsWritableBytes(Span{std::forward<V>(v)});
         [ #  # ][ #  # ]
           [ +  -  #  # ]
         [ #  # ][ #  # ]
                 [ #  # ]
     267                 :            : }
     268                 :            : 
     269                 :            : // Helper functions to safely cast to unsigned char pointers.
     270                 :          0 : inline unsigned char* UCharCast(char* c) { return reinterpret_cast<unsigned char*>(c); }
     271                 :       5980 : inline unsigned char* UCharCast(unsigned char* c) { return c; }
     272                 :       4351 : inline unsigned char* UCharCast(std::byte* c) { return reinterpret_cast<unsigned char*>(c); }
     273                 :          0 : inline const unsigned char* UCharCast(const char* c) { return reinterpret_cast<const unsigned char*>(c); }
     274                 :      27336 : inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
     275                 :     146162 : inline const unsigned char* UCharCast(const std::byte* c) { return reinterpret_cast<const unsigned char*>(c); }
     276                 :            : 
     277                 :            : // Helper function to safely convert a Span to a Span<[const] unsigned char>.
     278                 :       6050 : template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
     279                 :            : 
     280                 :            : /** Like the Span constructor, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
     281                 :       6049 : template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(Span{std::forward<V>(v)})) { return UCharSpanCast(Span{std::forward<V>(v)}); }
     282                 :            : 
     283                 :            : #endif // BITCOIN_SPAN_H

Generated by: LCOV version 1.14