Branch data Line data Source code
1 : : // Copyright (c) 2018-2022 The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #include <script/descriptor.h>
6 : :
7 : : #include <hash.h>
8 : : #include <key_io.h>
9 : : #include <pubkey.h>
10 : : #include <script/miniscript.h>
11 : : #include <script/script.h>
12 : : #include <script/signingprovider.h>
13 : : #include <script/solver.h>
14 : : #include <uint256.h>
15 : :
16 : : #include <common/args.h>
17 : : #include <span.h>
18 : : #include <util/bip32.h>
19 : : #include <util/check.h>
20 : : #include <util/spanparsing.h>
21 : : #include <util/strencodings.h>
22 : : #include <util/vector.h>
23 : :
24 : : #include <memory>
25 : : #include <numeric>
26 : : #include <optional>
27 : : #include <string>
28 : : #include <vector>
29 : :
30 : : namespace {
31 : :
32 : : ////////////////////////////////////////////////////////////////////////////
33 : : // Checksum //
34 : : ////////////////////////////////////////////////////////////////////////////
35 : :
36 : : // This section implements a checksum algorithm for descriptors with the
37 : : // following properties:
38 : : // * Mistakes in a descriptor string are measured in "symbol errors". The higher
39 : : // the number of symbol errors, the harder it is to detect:
40 : : // * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
41 : : // another in that set always counts as 1 symbol error.
42 : : // * Note that hex encoded keys are covered by these characters. Xprvs and
43 : : // xpubs use other characters too, but already have their own checksum
44 : : // mechanism.
45 : : // * Function names like "multi()" use other characters, but mistakes in
46 : : // these would generally result in an unparsable descriptor.
47 : : // * A case error always counts as 1 symbol error.
48 : : // * Any other 1 character substitution error counts as 1 or 2 symbol errors.
49 : : // * Any 1 symbol error is always detected.
50 : : // * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
51 : : // * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
52 : : // * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
53 : : // * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
54 : : // * Random errors have a chance of 1 in 2**40 of being undetected.
55 : : //
56 : : // These properties are achieved by expanding every group of 3 (non checksum) characters into
57 : : // 4 GF(32) symbols, over which a cyclic code is defined.
58 : :
59 : : /*
60 : : * Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
61 : : * multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
62 : : *
63 : : * This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
64 : : * It is chosen to define an cyclic error detecting code which is selected by:
65 : : * - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
66 : : * 3 errors in windows up to 19000 symbols.
67 : : * - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
68 : : * - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
69 : : * - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
70 : : *
71 : : * The generator and the constants to implement it can be verified using this Sage code:
72 : : * B = GF(2) # Binary field
73 : : * BP.<b> = B[] # Polynomials over the binary field
74 : : * F_mod = b**5 + b**3 + 1
75 : : * F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
76 : : * FP.<x> = F[] # Polynomials over GF(32)
77 : : * E_mod = x**3 + x + F.fetch_int(8)
78 : : * E.<e> = F.extension(E_mod) # Extension field definition
79 : : * alpha = e**2743 # Choice of an element in extension field
80 : : * for p in divisors(E.order() - 1): # Verify alpha has order 32767.
81 : : * assert((alpha**p == 1) == (p % 32767 == 0))
82 : : * G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
83 : : * print(G) # Print out the generator
84 : : * for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
85 : : * v = 0
86 : : * for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
87 : : * v = v*32 + coef.integer_representation()
88 : : * print("0x%x" % v)
89 : : */
90 : 0 : uint64_t PolyMod(uint64_t c, int val)
91 : : {
92 : 0 : uint8_t c0 = c >> 35;
93 : 0 : c = ((c & 0x7ffffffff) << 5) ^ val;
94 [ # # ]: 0 : if (c0 & 1) c ^= 0xf5dee51989;
95 [ # # ]: 0 : if (c0 & 2) c ^= 0xa9fdca3312;
96 [ # # ]: 0 : if (c0 & 4) c ^= 0x1bab10e32d;
97 [ # # ]: 0 : if (c0 & 8) c ^= 0x3706b1677a;
98 [ # # ]: 0 : if (c0 & 16) c ^= 0x644d626ffd;
99 : 0 : return c;
100 : : }
101 : :
102 : 0 : std::string DescriptorChecksum(const Span<const char>& span)
103 : : {
104 : : /** A character set designed such that:
105 : : * - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32.
106 : : * - Case errors cause an offset that's a multiple of 32.
107 : : * - As many alphabetic characters are in the same group (while following the above restrictions).
108 : : *
109 : : * If p(x) gives the position of a character c in this character set, every group of 3 characters
110 : : * (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32).
111 : : * This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just
112 : : * affect a single symbol.
113 : : *
114 : : * As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect
115 : : * the position within the groups.
116 : : */
117 [ # # ][ # # ]: 0 : static std::string INPUT_CHARSET =
118 [ # # ]: 0 : "0123456789()[],'/*abcdefgh@:$%{}"
119 : : "IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
120 : : "ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
121 : :
122 : : /** The character set for the checksum itself (same as bech32). */
123 [ # # ][ # # ]: 0 : static std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
[ # # ]
124 : :
125 : 0 : uint64_t c = 1;
126 : 0 : int cls = 0;
127 : 0 : int clscount = 0;
128 [ # # ]: 0 : for (auto ch : span) {
129 : 0 : auto pos = INPUT_CHARSET.find(ch);
130 [ # # ][ # # ]: 0 : if (pos == std::string::npos) return "";
131 : 0 : c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
132 : 0 : cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
133 [ # # ]: 0 : if (++clscount == 3) {
134 : : // Emit an extra symbol representing the group numbers, for every 3 characters.
135 : 0 : c = PolyMod(c, cls);
136 : 0 : cls = 0;
137 : 0 : clscount = 0;
138 : 0 : }
139 : : }
140 [ # # ]: 0 : if (clscount > 0) c = PolyMod(c, cls);
141 [ # # ]: 0 : for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
142 : 0 : c ^= 1; // Prevent appending zeroes from not affecting the checksum.
143 : :
144 [ # # ]: 0 : std::string ret(8, ' ');
145 [ # # ][ # # ]: 0 : for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
[ # # ]
146 : 0 : return ret;
147 [ # # ]: 0 : }
148 : :
149 [ # # ][ # # ]: 0 : std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
[ # # ]
150 : :
151 : : ////////////////////////////////////////////////////////////////////////////
152 : : // Internal representation //
153 : : ////////////////////////////////////////////////////////////////////////////
154 : :
155 : : typedef std::vector<uint32_t> KeyPath;
156 : :
157 : : /** Interface for public key objects in descriptors. */
158 : : struct PubkeyProvider
159 : : {
160 : : protected:
161 : : //! Index of this key expression in the descriptor
162 : : //! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0
163 : : uint32_t m_expr_index;
164 : :
165 : : public:
166 : 0 : explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
167 : :
168 : 0 : virtual ~PubkeyProvider() = default;
169 : :
170 : : /** Compare two public keys represented by this provider.
171 : : * Used by the Miniscript descriptors to check for duplicate keys in the script.
172 : : */
173 : 0 : bool operator<(PubkeyProvider& other) const {
174 : 0 : CPubKey a, b;
175 : 0 : SigningProvider dummy;
176 : 0 : KeyOriginInfo dummy_info;
177 : :
178 [ # # ]: 0 : GetPubKey(0, dummy, a, dummy_info);
179 [ # # ]: 0 : other.GetPubKey(0, dummy, b, dummy_info);
180 : :
181 : 0 : return a < b;
182 : 0 : }
183 : :
184 : : /** Derive a public key.
185 : : * read_cache is the cache to read keys from (if not nullptr)
186 : : * write_cache is the cache to write keys to (if not nullptr)
187 : : * Caches are not exclusive but this is not tested. Currently we use them exclusively
188 : : */
189 : : virtual bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0;
190 : :
191 : : /** Whether this represent multiple public keys at different positions. */
192 : : virtual bool IsRange() const = 0;
193 : :
194 : : /** Get the size of the generated public key(s) in bytes (33 or 65). */
195 : : virtual size_t GetSize() const = 0;
196 : :
197 : : enum class StringType {
198 : : PUBLIC,
199 : : COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions
200 : : };
201 : :
202 : : /** Get the descriptor string form. */
203 : : virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0;
204 : :
205 : : /** Get the descriptor string form including private data (if available in arg). */
206 : : virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
207 : :
208 : : /** Get the descriptor string form with the xpub at the last hardened derivation,
209 : : * and always use h for hardened derivation.
210 : : */
211 : : virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0;
212 : :
213 : : /** Derive a private key, if private data is available in arg. */
214 : : virtual bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const = 0;
215 : : };
216 : :
217 : 0 : class OriginPubkeyProvider final : public PubkeyProvider
218 : : {
219 : : KeyOriginInfo m_origin;
220 : : std::unique_ptr<PubkeyProvider> m_provider;
221 : : bool m_apostrophe;
222 : :
223 : 0 : std::string OriginString(StringType type, bool normalized=false) const
224 : : {
225 : : // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
226 [ # # ][ # # ]: 0 : bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
227 [ # # ][ # # ]: 0 : return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe);
228 : 0 : }
229 : :
230 : : public:
231 : 0 : OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {}
232 : 0 : bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
233 : : {
234 [ # # ]: 0 : if (!m_provider->GetPubKey(pos, arg, key, info, read_cache, write_cache)) return false;
235 : 0 : std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), info.fingerprint);
236 : 0 : info.path.insert(info.path.begin(), m_origin.path.begin(), m_origin.path.end());
237 : 0 : return true;
238 : 0 : }
239 : 0 : bool IsRange() const override { return m_provider->IsRange(); }
240 : 0 : size_t GetSize() const override { return m_provider->GetSize(); }
241 [ # # ][ # # ]: 0 : std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); }
[ # # ][ # # ]
242 : 0 : bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
243 : : {
244 : 0 : std::string sub;
245 [ # # ][ # # ]: 0 : if (!m_provider->ToPrivateString(arg, sub)) return false;
246 [ # # ][ # # ]: 0 : ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub);
[ # # ][ # # ]
247 : 0 : return true;
248 : 0 : }
249 : 0 : bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
250 : : {
251 : 0 : std::string sub;
252 [ # # ][ # # ]: 0 : if (!m_provider->ToNormalizedString(arg, sub, cache)) return false;
253 : : // If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
254 : : // In that case, we need to strip out the leading square bracket and fingerprint from the substring,
255 : : // and append that to our own origin string.
256 [ # # ][ # # ]: 0 : if (sub[0] == '[') {
257 [ # # ]: 0 : sub = sub.substr(9);
258 [ # # ][ # # ]: 0 : ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub);
[ # # ]
259 : 0 : } else {
260 [ # # ][ # # ]: 0 : ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub);
[ # # ][ # # ]
261 : : }
262 : 0 : return true;
263 : 0 : }
264 : 0 : bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
265 : : {
266 : 0 : return m_provider->GetPrivKey(pos, arg, key);
267 : : }
268 : : };
269 : :
270 : : /** An object representing a parsed constant public key in a descriptor. */
271 : 0 : class ConstPubkeyProvider final : public PubkeyProvider
272 : : {
273 : : CPubKey m_pubkey;
274 : : bool m_xonly;
275 : :
276 : : public:
277 : 0 : ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {}
278 : 0 : bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
279 : : {
280 : 0 : key = m_pubkey;
281 [ + - ]: 2 : info.path.clear();
282 : 0 : CKeyID keyid = m_pubkey.GetID();
283 [ + - ][ - + ]: 2 : std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
[ + - ][ + - ]
284 : 0 : return true;
285 [ + - ]: 2 : }
286 : 0 : bool IsRange() const override { return false; }
287 : 2 : size_t GetSize() const override { return m_pubkey.size(); }
288 [ # # ][ # # ]: 0 : std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); }
[ # # ][ # # ]
[ # # ][ # # ]
289 [ + - ][ + - ]: 2 : bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
290 : : {
291 : 0 : CKey key;
292 [ # # ]: 0 : if (m_xonly) {
293 [ # # ][ # # ]: 0 : for (const auto& keyid : XOnlyPubKey(m_pubkey).GetKeyIDs()) {
[ # # ]
294 [ # # ]: 0 : arg.GetKey(keyid, key);
295 [ # # ][ # # ]: 0 : if (key.IsValid()) break;
296 : : }
297 : 0 : } else {
298 [ # # ][ # # ]: 0 : arg.GetKey(m_pubkey.GetID(), key);
299 : : }
300 [ # # ][ # # ]: 0 : if (!key.IsValid()) return false;
301 [ # # ]: 0 : ret = EncodeSecret(key);
302 : 0 : return true;
303 : 0 : }
304 : 0 : bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
305 : : {
306 : 0 : ret = ToString(StringType::PUBLIC);
307 : 0 : return true;
308 : : }
309 : 0 : bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
310 : : {
311 : 0 : return arg.GetKey(m_pubkey.GetID(), key);
312 : : }
313 : : };
314 : :
315 : : enum class DeriveType {
316 : : NO,
317 : : UNHARDENED,
318 : : HARDENED,
319 : : };
320 : :
321 : : /** An object representing a parsed extended public key in a descriptor. */
322 : 0 : class BIP32PubkeyProvider final : public PubkeyProvider
323 : : {
324 : : // Root xpub, path, and final derivation step type being used, if any
325 : : CExtPubKey m_root_extkey;
326 : : KeyPath m_path;
327 : : DeriveType m_derive;
328 : : // Whether ' or h is used in harded derivation
329 : : bool m_apostrophe;
330 : :
331 : 0 : bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
332 : : {
333 : 0 : CKey key;
334 [ # # ][ # # ]: 0 : if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
[ # # ]
335 : 0 : ret.nDepth = m_root_extkey.nDepth;
336 [ # # ]: 0 : std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
337 : 0 : ret.nChild = m_root_extkey.nChild;
338 : 0 : ret.chaincode = m_root_extkey.chaincode;
339 [ # # ]: 0 : ret.key = key;
340 : 0 : return true;
341 : 0 : }
342 : :
343 : : // Derives the last xprv
344 : 0 : bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const
345 : : {
346 [ # # ]: 0 : if (!GetExtKey(arg, xprv)) return false;
347 [ # # ]: 0 : for (auto entry : m_path) {
348 [ # # ]: 0 : if (!xprv.Derive(xprv, entry)) return false;
349 [ # # ]: 0 : if (entry >> 31) {
350 : 0 : last_hardened = xprv;
351 : 0 : }
352 : : }
353 : 0 : return true;
354 : 0 : }
355 : :
356 : 0 : bool IsHardened() const
357 : : {
358 [ # # ]: 0 : if (m_derive == DeriveType::HARDENED) return true;
359 [ # # ]: 0 : for (auto entry : m_path) {
360 [ # # ]: 0 : if (entry >> 31) return true;
361 : : }
362 : 0 : return false;
363 : 0 : }
364 : :
365 : : public:
366 : 0 : BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {}
367 : 0 : bool IsRange() const override { return m_derive != DeriveType::NO; }
368 : 0 : size_t GetSize() const override { return 33; }
369 : 0 : bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key_out, KeyOriginInfo& final_info_out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
370 : : {
371 : : // Info of parent of the to be derived pubkey
372 : 0 : KeyOriginInfo parent_info;
373 [ # # ]: 0 : CKeyID keyid = m_root_extkey.pubkey.GetID();
374 [ # # ]: 0 : std::copy(keyid.begin(), keyid.begin() + sizeof(parent_info.fingerprint), parent_info.fingerprint);
375 [ # # ]: 0 : parent_info.path = m_path;
376 : :
377 : : // Info of the derived key itself which is copied out upon successful completion
378 [ # # ]: 0 : KeyOriginInfo final_info_out_tmp = parent_info;
379 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::UNHARDENED) final_info_out_tmp.path.push_back((uint32_t)pos);
380 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::HARDENED) final_info_out_tmp.path.push_back(((uint32_t)pos) | 0x80000000L);
381 : :
382 : : // Derive keys or fetch them from cache
383 : 0 : CExtPubKey final_extkey = m_root_extkey;
384 : 0 : CExtPubKey parent_extkey = m_root_extkey;
385 [ # # ]: 0 : CExtPubKey last_hardened_extkey;
386 : 0 : bool der = true;
387 [ # # ]: 0 : if (read_cache) {
388 [ # # ][ # # ]: 0 : if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
389 [ # # ]: 0 : if (m_derive == DeriveType::HARDENED) return false;
390 : : // Try to get the derivation parent
391 [ # # ][ # # ]: 0 : if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return false;
392 : 0 : final_extkey = parent_extkey;
393 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
394 : 0 : }
395 [ # # ][ # # ]: 0 : } else if (IsHardened()) {
396 [ # # ]: 0 : CExtKey xprv;
397 [ # # ]: 0 : CExtKey lh_xprv;
398 [ # # ][ # # ]: 0 : if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
399 [ # # ]: 0 : parent_extkey = xprv.Neuter();
400 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
401 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
402 [ # # ]: 0 : final_extkey = xprv.Neuter();
403 [ # # ]: 0 : if (lh_xprv.key.IsValid()) {
404 [ # # ]: 0 : last_hardened_extkey = lh_xprv.Neuter();
405 : 0 : }
406 [ # # ]: 0 : } else {
407 [ # # ]: 0 : for (auto entry : m_path) {
408 [ # # ][ # # ]: 0 : if (!parent_extkey.Derive(parent_extkey, entry)) return false;
409 : : }
410 : 0 : final_extkey = parent_extkey;
411 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
412 [ # # ]: 0 : assert(m_derive != DeriveType::HARDENED);
413 : : }
414 [ # # ]: 0 : if (!der) return false;
415 : :
416 [ # # ]: 0 : final_info_out = final_info_out_tmp;
417 : 0 : key_out = final_extkey.pubkey;
418 : :
419 [ # # ]: 0 : if (write_cache) {
420 : : // Only cache parent if there is any unhardened derivation
421 [ # # ]: 0 : if (m_derive != DeriveType::HARDENED) {
422 [ # # ]: 0 : write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
423 : : // Cache last hardened xpub if we have it
424 [ # # ][ # # ]: 0 : if (last_hardened_extkey.pubkey.IsValid()) {
425 [ # # ]: 0 : write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey);
426 : 0 : }
427 [ # # ]: 0 : } else if (final_info_out.path.size() > 0) {
428 [ # # ]: 0 : write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
429 : 0 : }
430 : 0 : }
431 : :
432 : 0 : return true;
433 : 0 : }
434 : 0 : std::string ToString(StringType type, bool normalized) const
435 : : {
436 : : // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
437 [ # # ][ # # ]: 0 : const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
438 [ # # ][ # # ]: 0 : std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe);
439 [ # # ]: 0 : if (IsRange()) {
440 [ # # ]: 0 : ret += "/*";
441 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h';
442 : 0 : }
443 : 0 : return ret;
444 [ # # ]: 0 : }
445 : 0 : std::string ToString(StringType type=StringType::PUBLIC) const override
446 : : {
447 : 0 : return ToString(type, /*normalized=*/false);
448 : : }
449 : 0 : bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
450 : : {
451 : 0 : CExtKey key;
452 [ # # ][ # # ]: 0 : if (!GetExtKey(arg, key)) return false;
453 [ # # ][ # # ]: 0 : out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe);
[ # # ]
454 [ # # ]: 0 : if (IsRange()) {
455 [ # # ]: 0 : out += "/*";
456 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h';
457 : 0 : }
458 : 0 : return true;
459 : 0 : }
460 : 0 : bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override
461 : : {
462 [ # # ]: 0 : if (m_derive == DeriveType::HARDENED) {
463 : 0 : out = ToString(StringType::PUBLIC, /*normalized=*/true);
464 : :
465 : 0 : return true;
466 : : }
467 : : // Step backwards to find the last hardened step in the path
468 : 0 : int i = (int)m_path.size() - 1;
469 [ # # ]: 0 : for (; i >= 0; --i) {
470 [ # # ]: 0 : if (m_path.at(i) >> 31) {
471 : 0 : break;
472 : : }
473 : 0 : }
474 : : // Either no derivation or all unhardened derivation
475 [ # # ]: 0 : if (i == -1) {
476 : 0 : out = ToString();
477 : 0 : return true;
478 : : }
479 : : // Get the path to the last hardened stup
480 : 0 : KeyOriginInfo origin;
481 : 0 : int k = 0;
482 [ # # ]: 0 : for (; k <= i; ++k) {
483 : : // Add to the path
484 [ # # ][ # # ]: 0 : origin.path.push_back(m_path.at(k));
485 : 0 : }
486 : : // Build the remaining path
487 : 0 : KeyPath end_path;
488 [ # # ]: 0 : for (; k < (int)m_path.size(); ++k) {
489 [ # # ][ # # ]: 0 : end_path.push_back(m_path.at(k));
490 : 0 : }
491 : : // Get the fingerprint
492 [ # # ]: 0 : CKeyID id = m_root_extkey.pubkey.GetID();
493 [ # # ]: 0 : std::copy(id.begin(), id.begin() + 4, origin.fingerprint);
494 : :
495 [ # # ]: 0 : CExtPubKey xpub;
496 [ # # ]: 0 : CExtKey lh_xprv;
497 : : // If we have the cache, just get the parent xpub
498 [ # # ]: 0 : if (cache != nullptr) {
499 [ # # ]: 0 : cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub);
500 : 0 : }
501 [ # # ][ # # ]: 0 : if (!xpub.pubkey.IsValid()) {
502 : : // Cache miss, or nor cache, or need privkey
503 [ # # ]: 0 : CExtKey xprv;
504 [ # # ][ # # ]: 0 : if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
505 [ # # ]: 0 : xpub = lh_xprv.Neuter();
506 [ # # ]: 0 : }
507 [ # # ][ # # ]: 0 : assert(xpub.pubkey.IsValid());
508 : :
509 : : // Build the string
510 [ # # ][ # # ]: 0 : std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
[ # # ]
511 [ # # ][ # # ]: 0 : out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path);
[ # # ][ # # ]
[ # # ][ # # ]
512 [ # # ]: 0 : if (IsRange()) {
513 [ # # ]: 0 : out += "/*";
514 [ # # ]: 0 : assert(m_derive == DeriveType::UNHARDENED);
515 : 0 : }
516 : 0 : return true;
517 : 0 : }
518 : 0 : bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
519 : : {
520 : 0 : CExtKey extkey;
521 [ # # ]: 0 : CExtKey dummy;
522 [ # # ][ # # ]: 0 : if (!GetDerivedExtKey(arg, extkey, dummy)) return false;
523 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return false;
[ # # ]
524 [ # # ][ # # ]: 0 : if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return false;
[ # # ]
525 [ # # ]: 0 : key = extkey.key;
526 : 0 : return true;
527 : 0 : }
528 : : };
529 : :
530 : : /** Base class for all Descriptor implementations. */
531 : 0 : class DescriptorImpl : public Descriptor
532 : : {
533 : : protected:
534 : : //! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for WSH and Multisig).
535 : : const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
536 : : //! The string name of the descriptor function.
537 : : const std::string m_name;
538 : :
539 : : //! The sub-descriptor arguments (empty for everything but SH and WSH).
540 : : //! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT)
541 : : //! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions.
542 : : //! Subdescriptors can only ever generate a single script.
543 : : const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args;
544 : :
545 : : //! Return a serialization of anything except pubkey and script arguments, to be prepended to those.
546 [ # # ]: 0 : virtual std::string ToStringExtra() const { return ""; }
547 : :
548 : : /** A helper function to construct the scripts for this descriptor.
549 : : *
550 : : * This function is invoked once by ExpandHelper.
551 : : *
552 : : * @param pubkeys The evaluations of the m_pubkey_args field.
553 : : * @param scripts The evaluations of m_subdescriptor_args (one for each m_subdescriptor_args element).
554 : : * @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver.
555 : : * The origin info of the provided pubkeys is automatically added.
556 : : * @return A vector with scriptPubKeys for this descriptor.
557 : : */
558 : : virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, Span<const CScript> scripts, FlatSigningProvider& out) const = 0;
559 : :
560 : : public:
561 [ # # ]: 0 : DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {}
562 [ # # ][ # # ]: 0 : DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {}
563 [ # # ]: 0 : DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {}
564 : :
565 : : enum class StringType
566 : : {
567 : : PUBLIC,
568 : : PRIVATE,
569 : : NORMALIZED,
570 : : COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions
571 : : };
572 : :
573 : 0 : bool IsSolvable() const override
574 : : {
575 [ # # ]: 0 : for (const auto& arg : m_subdescriptor_args) {
576 [ # # ]: 0 : if (!arg->IsSolvable()) return false;
577 : : }
578 : 0 : return true;
579 : 0 : }
580 : :
581 : 0 : bool IsRange() const final
582 : : {
583 [ # # ]: 0 : for (const auto& pubkey : m_pubkey_args) {
584 [ # # ]: 0 : if (pubkey->IsRange()) return true;
585 : : }
586 [ # # ]: 0 : for (const auto& arg : m_subdescriptor_args) {
587 [ # # ]: 0 : if (arg->IsRange()) return true;
588 : : }
589 : 0 : return false;
590 : 0 : }
591 : :
592 : 0 : virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const
593 : : {
594 : 0 : size_t pos = 0;
595 [ # # ]: 0 : for (const auto& scriptarg : m_subdescriptor_args) {
596 [ # # ]: 0 : if (pos++) ret += ",";
597 : 0 : std::string tmp;
598 [ # # ][ # # ]: 0 : if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false;
599 [ # # ]: 0 : ret += tmp;
600 [ # # # ]: 0 : }
601 : 0 : return true;
602 : 0 : }
603 : :
604 : 0 : virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const
605 : : {
606 : 0 : std::string extra = ToStringExtra();
607 : 0 : size_t pos = extra.size() > 0 ? 1 : 0;
608 [ # # ][ # # ]: 0 : std::string ret = m_name + "(" + extra;
609 [ # # ]: 0 : for (const auto& pubkey : m_pubkey_args) {
610 [ # # ][ # # ]: 0 : if (pos++) ret += ",";
611 : 0 : std::string tmp;
612 [ # # # # : 0 : switch (type) {
# ]
613 : : case StringType::NORMALIZED:
614 [ # # ][ # # ]: 0 : if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false;
615 : 0 : break;
616 : : case StringType::PRIVATE:
617 [ # # ][ # # ]: 0 : if (!pubkey->ToPrivateString(*arg, tmp)) return false;
618 : 0 : break;
619 : : case StringType::PUBLIC:
620 [ # # ]: 0 : tmp = pubkey->ToString();
621 : 0 : break;
622 : : case StringType::COMPAT:
623 [ # # ]: 0 : tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT);
624 : 0 : break;
625 : : }
626 [ # # ]: 0 : ret += tmp;
627 [ # # ]: 0 : }
628 : 0 : std::string subscript;
629 [ # # ][ # # ]: 0 : if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false;
630 [ # # ][ # # ]: 0 : if (pos && subscript.size()) ret += ',';
[ # # ]
631 [ # # ][ # # ]: 0 : out = std::move(ret) + std::move(subscript) + ")";
632 : 0 : return true;
633 : 0 : }
634 : :
635 : 0 : std::string ToString(bool compat_format) const final
636 : : {
637 : 0 : std::string ret;
638 [ # # ]: 0 : ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC);
639 [ # # ]: 0 : return AddChecksum(ret);
640 : 0 : }
641 : :
642 : 0 : bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
643 : : {
644 : 0 : bool ret = ToStringHelper(&arg, out, StringType::PRIVATE);
645 : 0 : out = AddChecksum(out);
646 : 0 : return ret;
647 : : }
648 : :
649 : 0 : bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final
650 : : {
651 : 0 : bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache);
652 : 0 : out = AddChecksum(out);
653 : 0 : return ret;
654 : : }
655 : :
656 : 0 : bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
657 : : {
658 : 0 : std::vector<std::pair<CPubKey, KeyOriginInfo>> entries;
659 [ # # ]: 0 : entries.reserve(m_pubkey_args.size());
660 : :
661 : : // Construct temporary data in `entries`, `subscripts`, and `subprovider` to avoid producing output in case of failure.
662 [ # # ]: 0 : for (const auto& p : m_pubkey_args) {
663 [ # # ]: 0 : entries.emplace_back();
664 [ # # ][ # # ]: 0 : if (!p->GetPubKey(pos, arg, entries.back().first, entries.back().second, read_cache, write_cache)) return false;
665 : : }
666 : 0 : std::vector<CScript> subscripts;
667 : 0 : FlatSigningProvider subprovider;
668 [ # # ]: 0 : for (const auto& subarg : m_subdescriptor_args) {
669 : 0 : std::vector<CScript> outscripts;
670 [ # # ][ # # ]: 0 : if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false;
671 [ # # ]: 0 : assert(outscripts.size() == 1);
672 [ # # ]: 0 : subscripts.emplace_back(std::move(outscripts[0]));
673 [ # # ]: 0 : }
674 [ # # ]: 0 : out.Merge(std::move(subprovider));
675 : :
676 : 0 : std::vector<CPubKey> pubkeys;
677 [ # # ]: 0 : pubkeys.reserve(entries.size());
678 [ # # ]: 0 : for (auto& entry : entries) {
679 [ # # ]: 0 : pubkeys.push_back(entry.first);
680 [ # # ][ # # ]: 0 : out.origins.emplace(entry.first.GetID(), std::make_pair<CPubKey, KeyOriginInfo>(CPubKey(entry.first), std::move(entry.second)));
[ # # ]
681 : : }
682 : :
683 [ # # ][ # # ]: 0 : output_scripts = MakeScripts(pubkeys, Span{subscripts}, out);
684 : 0 : return true;
685 : 0 : }
686 : :
687 : 0 : bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
688 : : {
689 : 0 : return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
690 : : }
691 : :
692 : 0 : bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
693 : : {
694 : 0 : return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
695 : : }
696 : :
697 : 0 : void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
698 : : {
699 [ # # ]: 0 : for (const auto& p : m_pubkey_args) {
700 : 0 : CKey key;
701 [ # # ][ # # ]: 0 : if (!p->GetPrivKey(pos, provider, key)) continue;
702 [ # # ][ # # ]: 0 : out.keys.emplace(key.GetPubKey().GetID(), key);
[ # # ]
703 [ # # # ]: 0 : }
704 [ # # ]: 0 : for (const auto& arg : m_subdescriptor_args) {
705 : 0 : arg->ExpandPrivate(pos, provider, out);
706 : : }
707 : 0 : }
708 : :
709 : 0 : std::optional<OutputType> GetOutputType() const override { return std::nullopt; }
710 : :
711 : 0 : std::optional<int64_t> ScriptSize() const override { return {}; }
712 : :
713 : : /** A helper for MaxSatisfactionWeight.
714 : : *
715 : : * @param use_max_sig Whether to assume ECDSA signatures will have a high-r.
716 : : * @return The maximum size of the satisfaction in raw bytes (with no witness meaning).
717 : : */
718 : 0 : virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; }
719 : :
720 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; }
721 : :
722 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return {}; }
723 : : };
724 : :
725 : : /** A parsed addr(A) descriptor. */
726 : 0 : class AddressDescriptor final : public DescriptorImpl
727 : : {
728 : : const CTxDestination m_destination;
729 : : protected:
730 : 0 : std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
731 [ # # ]: 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
732 : : public:
733 [ # # ][ # # ]: 0 : AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {}
734 : 0 : bool IsSolvable() const final { return false; }
735 : :
736 : 0 : std::optional<OutputType> GetOutputType() const override
737 : : {
738 : 0 : return OutputTypeFromDestination(m_destination);
739 : : }
740 : 0 : bool IsSingleType() const final { return true; }
741 : 0 : bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
742 : :
743 [ # # ]: 0 : std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); }
744 : : };
745 : :
746 : : /** A parsed raw(H) descriptor. */
747 : 0 : class RawDescriptor final : public DescriptorImpl
748 : : {
749 : : const CScript m_script;
750 : : protected:
751 : 0 : std::string ToStringExtra() const override { return HexStr(m_script); }
752 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); }
753 : : public:
754 [ # # ][ # # ]: 0 : RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {}
755 : 0 : bool IsSolvable() const final { return false; }
756 : :
757 : 0 : std::optional<OutputType> GetOutputType() const override
758 : : {
759 : 0 : CTxDestination dest;
760 [ # # ]: 0 : ExtractDestination(m_script, dest);
761 [ # # ]: 0 : return OutputTypeFromDestination(dest);
762 : 0 : }
763 : 0 : bool IsSingleType() const final { return true; }
764 : 0 : bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
765 : :
766 : 0 : std::optional<int64_t> ScriptSize() const override { return m_script.size(); }
767 : : };
768 : :
769 : : /** A parsed pk(P) descriptor. */
770 : 0 : class PKDescriptor final : public DescriptorImpl
771 : : {
772 : : private:
773 : : const bool m_xonly;
774 : : protected:
775 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override
776 : : {
777 [ # # ]: 0 : if (m_xonly) {
778 [ # # ][ # # ]: 0 : CScript script = CScript() << ToByteVector(XOnlyPubKey(keys[0])) << OP_CHECKSIG;
[ # # ][ # # ]
[ # # ]
779 [ # # ]: 0 : return Vector(std::move(script));
780 : 0 : } else {
781 [ # # ]: 0 : return Vector(GetScriptForRawPubKey(keys[0]));
782 : : }
783 : 0 : }
784 : : public:
785 [ # # ][ # # ]: 0 : PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {}
786 : 0 : bool IsSingleType() const final { return true; }
787 : :
788 : 0 : std::optional<int64_t> ScriptSize() const override {
789 [ # # ]: 0 : return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1;
790 : : }
791 : :
792 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
793 : 0 : const auto ecdsa_sig_size = use_max_sig ? 72 : 71;
794 [ # # ]: 0 : return 1 + (m_xonly ? 65 : ecdsa_sig_size);
795 : : }
796 : :
797 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
798 : 0 : return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
799 : : }
800 : :
801 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return 1; }
802 : : };
803 : :
804 : : /** A parsed pkh(P) descriptor. */
805 : 0 : class PKHDescriptor final : public DescriptorImpl
806 : : {
807 : : protected:
808 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
809 : : {
810 : 0 : CKeyID id = keys[0].GetID();
811 : 0 : out.pubkeys.emplace(id, keys[0]);
812 [ # # ][ # # ]: 0 : return Vector(GetScriptForDestination(PKHash(id)));
813 : 0 : }
814 : : public:
815 [ # # ][ # # ]: 0 : PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {}
816 : 0 : std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
817 : 0 : bool IsSingleType() const final { return true; }
818 : :
819 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; }
820 : :
821 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
822 : 0 : const auto sig_size = use_max_sig ? 72 : 71;
823 : 0 : return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize();
824 : : }
825 : :
826 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
827 : 0 : return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
828 : : }
829 : :
830 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
831 : : };
832 : :
833 : : /** A parsed wpkh(P) descriptor. */
834 : 0 : class WPKHDescriptor final : public DescriptorImpl
835 : : {
836 : : protected:
837 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
838 : : {
839 : 0 : CKeyID id = keys[0].GetID();
840 : 0 : out.pubkeys.emplace(id, keys[0]);
841 [ # # ][ # # ]: 0 : return Vector(GetScriptForDestination(WitnessV0KeyHash(id)));
842 : 0 : }
843 : : public:
844 [ # # ][ # # ]: 0 : WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {}
845 : 0 : std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
846 : 0 : bool IsSingleType() const final { return true; }
847 : :
848 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; }
849 : :
850 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
851 : 0 : const auto sig_size = use_max_sig ? 72 : 71;
852 : 0 : return (1 + sig_size + 1 + 33);
853 : : }
854 : :
855 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
856 : 0 : return MaxSatSize(use_max_sig);
857 : : }
858 : :
859 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
860 : : };
861 : :
862 : : /** A parsed combo(P) descriptor. */
863 : 0 : class ComboDescriptor final : public DescriptorImpl
864 : : {
865 : : protected:
866 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
867 : : {
868 : 0 : std::vector<CScript> ret;
869 [ # # ]: 0 : CKeyID id = keys[0].GetID();
870 [ # # ]: 0 : out.pubkeys.emplace(id, keys[0]);
871 [ # # ][ # # ]: 0 : ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
872 [ # # ][ # # ]: 0 : ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
[ # # ]
873 [ # # ]: 0 : if (keys[0].IsCompressed()) {
874 [ # # ][ # # ]: 0 : CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id));
875 [ # # ][ # # ]: 0 : out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
876 [ # # ]: 0 : ret.emplace_back(p2wpkh);
877 [ # # ][ # # ]: 0 : ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
[ # # ]
878 : 0 : }
879 : 0 : return ret;
880 [ # # ]: 0 : }
881 : : public:
882 [ # # ][ # # ]: 0 : ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {}
883 : 0 : bool IsSingleType() const final { return false; }
884 : : };
885 : :
886 : : /** A parsed multi(...) or sortedmulti(...) descriptor */
887 : 0 : class MultisigDescriptor final : public DescriptorImpl
888 : : {
889 : : const int m_threshold;
890 : : const bool m_sorted;
891 : : protected:
892 : 0 : std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
893 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override {
894 [ # # ]: 0 : if (m_sorted) {
895 : 0 : std::vector<CPubKey> sorted_keys(keys);
896 [ # # ]: 0 : std::sort(sorted_keys.begin(), sorted_keys.end());
897 [ # # ][ # # ]: 0 : return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
898 : 0 : }
899 [ # # ]: 0 : return Vector(GetScriptForMultisig(m_threshold, keys));
900 : 0 : }
901 : : public:
902 [ # # ][ # # ]: 0 : MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
903 : 0 : bool IsSingleType() const final { return true; }
904 : :
905 : 0 : std::optional<int64_t> ScriptSize() const override {
906 : 0 : const auto n_keys = m_pubkey_args.size();
907 : 0 : auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();};
908 : 0 : const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)};
909 [ # # ][ # # ]: 0 : return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size;
[ # # ]
910 : 0 : }
911 : :
912 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
913 : 0 : const auto sig_size = use_max_sig ? 72 : 71;
914 : 0 : return (1 + (1 + sig_size) * m_threshold);
915 : : }
916 : :
917 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
918 : 0 : return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
919 : : }
920 : :
921 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; }
922 : : };
923 : :
924 : : /** A parsed (sorted)multi_a(...) descriptor. Always uses x-only pubkeys. */
925 : 0 : class MultiADescriptor final : public DescriptorImpl
926 : : {
927 : : const int m_threshold;
928 : : const bool m_sorted;
929 : : protected:
930 : 0 : std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
931 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override {
932 : 0 : CScript ret;
933 : 0 : std::vector<XOnlyPubKey> xkeys;
934 [ # # ]: 0 : xkeys.reserve(keys.size());
935 [ # # ][ # # ]: 0 : for (const auto& key : keys) xkeys.emplace_back(key);
936 [ # # ][ # # ]: 0 : if (m_sorted) std::sort(xkeys.begin(), xkeys.end());
937 [ # # ][ # # ]: 0 : ret << ToByteVector(xkeys[0]) << OP_CHECKSIG;
[ # # ]
938 [ # # ]: 0 : for (size_t i = 1; i < keys.size(); ++i) {
939 [ # # ][ # # ]: 0 : ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD;
[ # # ]
940 : 0 : }
941 [ # # ][ # # ]: 0 : ret << m_threshold << OP_NUMEQUAL;
942 [ # # ]: 0 : return Vector(std::move(ret));
943 : 0 : }
944 : : public:
945 [ # # ][ # # ]: 0 : MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {}
946 : 0 : bool IsSingleType() const final { return true; }
947 : :
948 : 0 : std::optional<int64_t> ScriptSize() const override {
949 : 0 : const auto n_keys = m_pubkey_args.size();
950 [ # # ]: 0 : return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1;
951 : 0 : }
952 : :
953 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
954 : 0 : return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold);
955 : : }
956 : :
957 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); }
958 : : };
959 : :
960 : : /** A parsed sh(...) descriptor. */
961 : 0 : class SHDescriptor final : public DescriptorImpl
962 : : {
963 : : protected:
964 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript> scripts, FlatSigningProvider& out) const override
965 : : {
966 [ # # ][ # # ]: 0 : auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0])));
967 [ # # ][ # # ]: 0 : if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
[ # # ]
968 : 0 : return ret;
969 [ # # ]: 0 : }
970 : :
971 : 0 : bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; }
972 : :
973 : : public:
974 [ # # ][ # # ]: 0 : SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
975 : :
976 : 0 : std::optional<OutputType> GetOutputType() const override
977 : : {
978 [ # # ]: 0 : assert(m_subdescriptor_args.size() == 1);
979 [ # # ]: 0 : if (IsSegwit()) return OutputType::P2SH_SEGWIT;
980 : 0 : return OutputType::LEGACY;
981 : 0 : }
982 : 0 : bool IsSingleType() const final { return true; }
983 : :
984 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; }
985 : :
986 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
987 [ # # ]: 0 : if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
988 [ # # ]: 0 : if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
989 : : // The subscript is never witness data.
990 : 0 : const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR;
991 : : // The weight depends on whether the inner descriptor is satisfied using the witness stack.
992 [ # # ]: 0 : if (IsSegwit()) return subscript_weight + *sat_size;
993 : 0 : return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR;
994 : : }
995 : 0 : }
996 : 0 : return {};
997 : 0 : }
998 : :
999 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override {
1000 [ # # ]: 0 : if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1001 : 0 : return {};
1002 : 0 : }
1003 : : };
1004 : :
1005 : : /** A parsed wsh(...) descriptor. */
1006 : 0 : class WSHDescriptor final : public DescriptorImpl
1007 : : {
1008 : : protected:
1009 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript> scripts, FlatSigningProvider& out) const override
1010 : : {
1011 [ # # ][ # # ]: 0 : auto ret = Vector(GetScriptForDestination(WitnessV0ScriptHash(scripts[0])));
1012 [ # # ][ # # ]: 0 : if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
[ # # ]
1013 : 0 : return ret;
1014 [ # # ]: 0 : }
1015 : : public:
1016 [ # # ][ # # ]: 0 : WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
1017 : 0 : std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
1018 : 0 : bool IsSingleType() const final { return true; }
1019 : :
1020 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1021 : :
1022 : 0 : std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1023 [ # # ]: 0 : if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1024 [ # # ]: 0 : if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1025 : 0 : return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size;
1026 : : }
1027 : 0 : }
1028 : 0 : return {};
1029 : 0 : }
1030 : :
1031 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1032 : 0 : return MaxSatSize(use_max_sig);
1033 : : }
1034 : :
1035 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override {
1036 [ # # ]: 0 : if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1037 : 0 : return {};
1038 : 0 : }
1039 : : };
1040 : :
1041 : : /** A parsed tr(...) descriptor. */
1042 : 0 : class TRDescriptor final : public DescriptorImpl
1043 : : {
1044 : : std::vector<int> m_depths;
1045 : : protected:
1046 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts, FlatSigningProvider& out) const override
1047 : : {
1048 : 0 : TaprootBuilder builder;
1049 [ # # ]: 0 : assert(m_depths.size() == scripts.size());
1050 [ # # ]: 0 : for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1051 [ # # ][ # # ]: 0 : builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT);
1052 : 0 : }
1053 [ # # ][ # # ]: 0 : if (!builder.IsComplete()) return {};
1054 [ # # ]: 0 : assert(keys.size() == 1);
1055 [ # # ]: 0 : XOnlyPubKey xpk(keys[0]);
1056 [ # # ][ # # ]: 0 : if (!xpk.IsFullyValid()) return {};
1057 [ # # ]: 0 : builder.Finalize(xpk);
1058 [ # # ]: 0 : WitnessV1Taproot output = builder.GetOutput();
1059 [ # # ][ # # ]: 0 : out.tr_trees[output] = builder;
1060 [ # # ][ # # ]: 0 : out.pubkeys.emplace(keys[0].GetID(), keys[0]);
1061 [ # # ][ # # ]: 0 : return Vector(GetScriptForDestination(output));
1062 : 0 : }
1063 : 0 : bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override
1064 : : {
1065 [ # # ]: 0 : if (m_depths.empty()) return true;
1066 : 0 : std::vector<bool> path;
1067 [ # # ]: 0 : for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1068 [ # # ][ # # ]: 0 : if (pos) ret += ',';
1069 [ # # ]: 0 : while ((int)path.size() <= m_depths[pos]) {
1070 [ # # ][ # # ]: 0 : if (path.size()) ret += '{';
1071 [ # # ]: 0 : path.push_back(false);
1072 : : }
1073 : 0 : std::string tmp;
1074 [ # # ][ # # ]: 0 : if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false;
1075 [ # # ]: 0 : ret += tmp;
1076 [ # # ][ # # ]: 0 : while (!path.empty() && path.back()) {
[ # # ]
1077 [ # # ][ # # ]: 0 : if (path.size() > 1) ret += '}';
1078 [ # # ]: 0 : path.pop_back();
1079 : : }
1080 [ # # ][ # # ]: 0 : if (!path.empty()) path.back() = true;
1081 [ # # ]: 0 : }
1082 : 0 : return true;
1083 : 0 : }
1084 : : public:
1085 : 0 : TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) :
1086 [ # # ][ # # ]: 0 : DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths))
1087 : 0 : {
1088 [ # # ]: 0 : assert(m_subdescriptor_args.size() == m_depths.size());
1089 : 0 : }
1090 : 0 : std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1091 : 0 : bool IsSingleType() const final { return true; }
1092 : :
1093 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1094 : :
1095 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1096 : : // FIXME: We assume keypath spend, which can lead to very large underestimations.
1097 : 0 : return 1 + 65;
1098 : : }
1099 : :
1100 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override {
1101 : : // FIXME: See above, we assume keypath spend.
1102 : 0 : return 1;
1103 : : }
1104 : : };
1105 : :
1106 : : /* We instantiate Miniscript here with a simple integer as key type.
1107 : : * The value of these key integers are an index in the
1108 : : * DescriptorImpl::m_pubkey_args vector.
1109 : : */
1110 : :
1111 : : /**
1112 : : * The context for converting a Miniscript descriptor into a Script.
1113 : : */
1114 : : class ScriptMaker {
1115 : : //! Keys contained in the Miniscript (the evaluation of DescriptorImpl::m_pubkey_args).
1116 : : const std::vector<CPubKey>& m_keys;
1117 : :
1118 : : public:
1119 : 0 : ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND) : m_keys(keys) {}
1120 : :
1121 : 0 : std::vector<unsigned char> ToPKBytes(uint32_t key) const {
1122 [ # # ]: 0 : return {m_keys[key].begin(), m_keys[key].end()};
1123 : 0 : }
1124 : :
1125 : 0 : std::vector<unsigned char> ToPKHBytes(uint32_t key) const {
1126 : 0 : auto id = m_keys[key].GetID();
1127 [ # # ]: 0 : return {id.begin(), id.end()};
1128 : 0 : }
1129 : : };
1130 : :
1131 : : /**
1132 : : * The context for converting a Miniscript descriptor to its textual form.
1133 : : */
1134 : : class StringMaker {
1135 : : //! To convert private keys for private descriptors.
1136 : : const SigningProvider* m_arg;
1137 : : //! Keys contained in the Miniscript (a reference to DescriptorImpl::m_pubkey_args).
1138 : : const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys;
1139 : : //! Whether to serialize keys as private or public.
1140 : : bool m_private;
1141 : :
1142 : : public:
1143 : 0 : StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv)
1144 : 0 : : m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {}
1145 : :
1146 : 0 : std::optional<std::string> ToString(uint32_t key) const
1147 : : {
1148 : 0 : std::string ret;
1149 [ # # ]: 0 : if (m_private) {
1150 [ # # ][ # # ]: 0 : if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {};
1151 : 0 : } else {
1152 [ # # ]: 0 : ret = m_pubkeys[key]->ToString();
1153 : : }
1154 : 0 : return ret;
1155 : 0 : }
1156 : : };
1157 : :
1158 : 0 : class MiniscriptDescriptor final : public DescriptorImpl
1159 : : {
1160 : : private:
1161 : : miniscript::NodeRef<uint32_t> m_node;
1162 : :
1163 : : protected:
1164 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts,
1165 : : FlatSigningProvider& provider) const override
1166 : : {
1167 [ # # ]: 0 : for (const auto& key : keys) provider.pubkeys.emplace(key.GetID(), key);
1168 [ # # ]: 0 : return Vector(m_node->ToScript(ScriptMaker(keys)));
1169 : 0 : }
1170 : :
1171 : : public:
1172 : 0 : MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node)
1173 [ # # ][ # # ]: 0 : : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {}
1174 : :
1175 : 0 : bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type,
1176 : : const DescriptorCache* cache = nullptr) const override
1177 : : {
1178 [ # # ]: 0 : if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) {
[ # # # ]
1179 [ # # ]: 0 : out = *res;
1180 : 0 : return true;
1181 : : }
1182 : 0 : return false;
1183 : 0 : }
1184 : :
1185 : 0 : bool IsSolvable() const override { return true; }
1186 : 0 : bool IsSingleType() const final { return true; }
1187 : :
1188 : 0 : std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); }
1189 : :
1190 : 0 : std::optional<int64_t> MaxSatSize(bool) const override {
1191 : : // For Miniscript we always assume high-R ECDSA signatures.
1192 : 0 : return m_node->GetWitnessSize();
1193 : : }
1194 : :
1195 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override {
1196 : 0 : return m_node->GetStackSize();
1197 : : }
1198 : : };
1199 : :
1200 : : /** A parsed rawtr(...) descriptor. */
1201 : 0 : class RawTRDescriptor final : public DescriptorImpl
1202 : : {
1203 : : protected:
1204 : 0 : std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts, FlatSigningProvider& out) const override
1205 : : {
1206 [ # # ]: 0 : assert(keys.size() == 1);
1207 : 0 : XOnlyPubKey xpk(keys[0]);
1208 [ # # ]: 0 : if (!xpk.IsFullyValid()) return {};
1209 : 0 : WitnessV1Taproot output{xpk};
1210 [ # # ][ # # ]: 0 : return Vector(GetScriptForDestination(output));
1211 : 0 : }
1212 : : public:
1213 [ # # ][ # # ]: 0 : RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {}
1214 : 0 : std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1215 : 0 : bool IsSingleType() const final { return true; }
1216 : :
1217 : 0 : std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1218 : :
1219 : 0 : std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1220 : : // We can't know whether there is a script path, so assume key path spend.
1221 : 0 : return 1 + 65;
1222 : : }
1223 : :
1224 : 0 : std::optional<int64_t> MaxSatisfactionElems() const override {
1225 : : // See above, we assume keypath spend.
1226 : 0 : return 1;
1227 : : }
1228 : : };
1229 : :
1230 : : ////////////////////////////////////////////////////////////////////////////
1231 : : // Parser //
1232 : : ////////////////////////////////////////////////////////////////////////////
1233 : :
1234 : : enum class ParseScriptContext {
1235 : : TOP, //!< Top-level context (script goes directly in scriptPubKey)
1236 : : P2SH, //!< Inside sh() (script becomes P2SH redeemScript)
1237 : : P2WPKH, //!< Inside wpkh() (no script, pubkey only)
1238 : : P2WSH, //!< Inside wsh() (script becomes v0 witness script)
1239 : : P2TR, //!< Inside tr() (either internal key, or BIP342 script leaf)
1240 : : };
1241 : :
1242 : : /**
1243 : : * Parse a key path, being passed a split list of elements (the first element is ignored).
1244 : : *
1245 : : * @param[in] split BIP32 path string, using either ' or h for hardened derivation
1246 : : * @param[out] out the key path
1247 : : * @param[out] apostrophe only updated if hardened derivation is found
1248 : : * @param[out] error parsing error message
1249 : : * @returns false if parsing failed
1250 : : **/
1251 : 0 : [[nodiscard]] bool ParseKeyPath(const std::vector<Span<const char>>& split, KeyPath& out, bool& apostrophe, std::string& error)
1252 : : {
1253 [ # # ]: 0 : for (size_t i = 1; i < split.size(); ++i) {
1254 : 0 : Span<const char> elem = split[i];
1255 : 0 : bool hardened = false;
1256 [ # # ]: 0 : if (elem.size() > 0) {
1257 : 0 : const char last = elem[elem.size() - 1];
1258 [ # # ][ # # ]: 0 : if (last == '\'' || last == 'h') {
1259 : 0 : elem = elem.first(elem.size() - 1);
1260 : 0 : hardened = true;
1261 : 0 : apostrophe = last == '\'';
1262 : 0 : }
1263 : 0 : }
1264 : : uint32_t p;
1265 [ # # ][ # # ]: 0 : if (!ParseUInt32(std::string(elem.begin(), elem.end()), &p)) {
[ # # ]
1266 [ # # ][ # # ]: 0 : error = strprintf("Key path value '%s' is not a valid uint32", std::string(elem.begin(), elem.end()));
1267 : 0 : return false;
1268 [ # # ]: 0 : } else if (p > 0x7FFFFFFFUL) {
1269 : 0 : error = strprintf("Key path value %u is out of range", p);
1270 : 0 : return false;
1271 : : }
1272 : 0 : out.push_back(p | (((uint32_t)hardened) << 31));
1273 : 0 : }
1274 : 0 : return true;
1275 : 0 : }
1276 : :
1277 : : /** Parse a public key that excludes origin information. */
1278 : 0 : std::unique_ptr<PubkeyProvider> ParsePubkeyInner(uint32_t key_exp_index, const Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error)
1279 : : {
1280 : : using namespace spanparsing;
1281 : :
1282 [ # # ]: 0 : bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH;
1283 : 0 : auto split = Split(sp, '/');
1284 [ # # ]: 0 : std::string str(split[0].begin(), split[0].end());
1285 [ # # ]: 0 : if (str.size() == 0) {
1286 [ # # ]: 0 : error = "No key provided";
1287 : 0 : return nullptr;
1288 : : }
1289 [ # # ]: 0 : if (split.size() == 1) {
1290 [ # # ][ # # ]: 0 : if (IsHex(str)) {
1291 [ # # ]: 0 : std::vector<unsigned char> data = ParseHex(str);
1292 [ # # ][ # # ]: 0 : CPubKey pubkey(data);
1293 [ # # ][ # # ]: 0 : if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) {
[ # # ]
1294 [ # # ]: 0 : error = "Hybrid public keys are not allowed";
1295 : 0 : return nullptr;
1296 : : }
1297 [ # # ][ # # ]: 0 : if (pubkey.IsFullyValid()) {
1298 [ # # ][ # # ]: 0 : if (permit_uncompressed || pubkey.IsCompressed()) {
[ # # ]
1299 [ # # ]: 0 : return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false);
1300 : : } else {
1301 [ # # ]: 0 : error = "Uncompressed keys are not allowed";
1302 : 0 : return nullptr;
1303 : : }
1304 [ # # ][ # # ]: 0 : } else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) {
1305 : 0 : unsigned char fullkey[33] = {0x02};
1306 [ # # ]: 0 : std::copy(data.begin(), data.end(), fullkey + 1);
1307 [ # # ]: 0 : pubkey.Set(std::begin(fullkey), std::end(fullkey));
1308 [ # # ][ # # ]: 0 : if (pubkey.IsFullyValid()) {
1309 [ # # ]: 0 : return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true);
1310 : : }
1311 : 0 : }
1312 [ # # ]: 0 : error = strprintf("Pubkey '%s' is invalid", str);
1313 : 0 : return nullptr;
1314 : 0 : }
1315 [ # # ]: 0 : CKey key = DecodeSecret(str);
1316 [ # # ][ # # ]: 0 : if (key.IsValid()) {
1317 [ # # ][ # # ]: 0 : if (permit_uncompressed || key.IsCompressed()) {
[ # # ]
1318 [ # # ]: 0 : CPubKey pubkey = key.GetPubKey();
1319 [ # # ][ # # ]: 0 : out.keys.emplace(pubkey.GetID(), key);
1320 [ # # ]: 0 : return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR);
1321 : : } else {
1322 [ # # ]: 0 : error = "Uncompressed keys are not allowed";
1323 : 0 : return nullptr;
1324 : : }
1325 : : }
1326 [ # # ]: 0 : }
1327 [ # # ]: 0 : CExtKey extkey = DecodeExtKey(str);
1328 [ # # ]: 0 : CExtPubKey extpubkey = DecodeExtPubKey(str);
1329 [ # # ][ # # ]: 0 : if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
[ # # ][ # # ]
1330 [ # # ]: 0 : error = strprintf("key '%s' is not valid", str);
1331 : 0 : return nullptr;
1332 : : }
1333 : 0 : KeyPath path;
1334 : 0 : DeriveType type = DeriveType::NO;
1335 [ # # ]: 0 : if (split.back() == Span{"*"}.first(1)) {
1336 : 0 : split.pop_back();
1337 : 0 : type = DeriveType::UNHARDENED;
1338 [ # # ][ # # ]: 0 : } else if (split.back() == Span{"*'"}.first(2) || split.back() == Span{"*h"}.first(2)) {
1339 : 0 : apostrophe = split.back() == Span{"*'"}.first(2);
1340 : 0 : split.pop_back();
1341 : 0 : type = DeriveType::HARDENED;
1342 : 0 : }
1343 [ # # ][ # # ]: 0 : if (!ParseKeyPath(split, path, apostrophe, error)) return nullptr;
1344 [ # # ][ # # ]: 0 : if (extkey.key.IsValid()) {
1345 [ # # ]: 0 : extpubkey = extkey.Neuter();
1346 [ # # ][ # # ]: 0 : out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
1347 : 0 : }
1348 [ # # ]: 0 : return std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe);
1349 : 0 : }
1350 : :
1351 : : /** Parse a public key including origin information (if enabled). */
1352 : 0 : std::unique_ptr<PubkeyProvider> ParsePubkey(uint32_t key_exp_index, const Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1353 : : {
1354 : : using namespace spanparsing;
1355 : :
1356 : 0 : auto origin_split = Split(sp, ']');
1357 [ # # ]: 0 : if (origin_split.size() > 2) {
1358 [ # # ]: 0 : error = "Multiple ']' characters found for a single pubkey";
1359 : 0 : return nullptr;
1360 : : }
1361 : : // This is set if either the origin or path suffix contains a hardened derivation.
1362 : 0 : bool apostrophe = false;
1363 [ # # ]: 0 : if (origin_split.size() == 1) {
1364 [ # # ]: 0 : return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error);
1365 : : }
1366 [ # # ][ # # ]: 0 : if (origin_split[0].empty() || origin_split[0][0] != '[') {
1367 [ # # ]: 0 : error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
1368 [ # # ]: 0 : origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]);
1369 : 0 : return nullptr;
1370 : : }
1371 [ # # ]: 0 : auto slash_split = Split(origin_split[0].subspan(1), '/');
1372 [ # # ]: 0 : if (slash_split[0].size() != 8) {
1373 [ # # ]: 0 : error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
1374 : 0 : return nullptr;
1375 : : }
1376 [ # # ]: 0 : std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
1377 [ # # ][ # # ]: 0 : if (!IsHex(fpr_hex)) {
1378 [ # # ]: 0 : error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
1379 : 0 : return nullptr;
1380 : : }
1381 [ # # ]: 0 : auto fpr_bytes = ParseHex(fpr_hex);
1382 : 0 : KeyOriginInfo info;
1383 : : static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
1384 [ # # ]: 0 : assert(fpr_bytes.size() == 4);
1385 [ # # ]: 0 : std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
1386 [ # # ][ # # ]: 0 : if (!ParseKeyPath(slash_split, info.path, apostrophe, error)) return nullptr;
1387 [ # # ]: 0 : auto provider = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error);
1388 [ # # ]: 0 : if (!provider) return nullptr;
1389 [ # # ]: 0 : return std::make_unique<OriginPubkeyProvider>(key_exp_index, std::move(info), std::move(provider), apostrophe);
1390 : 0 : }
1391 : :
1392 : 0 : std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext, const SigningProvider& provider)
1393 : : {
1394 : 0 : std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false);
1395 : 0 : KeyOriginInfo info;
1396 [ # # ][ # # ]: 0 : if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
[ # # ]
1397 [ # # ]: 0 : return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1398 : : }
1399 : 0 : return key_provider;
1400 : 0 : }
1401 : :
1402 : 0 : std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider)
1403 : : {
1404 : 0 : unsigned char full_key[CPubKey::COMPRESSED_SIZE] = {0x02};
1405 : 0 : std::copy(xkey.begin(), xkey.end(), full_key + 1);
1406 : 0 : CPubKey pubkey(full_key);
1407 : 0 : std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true);
1408 : 0 : KeyOriginInfo info;
1409 [ # # ][ # # ]: 0 : if (provider.GetKeyOriginByXOnly(xkey, info)) {
1410 [ # # ]: 0 : return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1411 : : }
1412 : 0 : return key_provider;
1413 : 0 : }
1414 : :
1415 : : /**
1416 : : * The context for parsing a Miniscript descriptor (either from Script or from its textual representation).
1417 : : */
1418 : 0 : struct KeyParser {
1419 : : //! The Key type is an index in DescriptorImpl::m_pubkey_args
1420 : : using Key = uint32_t;
1421 : : //! Must not be nullptr if parsing from string.
1422 : : FlatSigningProvider* m_out;
1423 : : //! Must not be nullptr if parsing from Script.
1424 : : const SigningProvider* m_in;
1425 : : //! List of keys contained in the Miniscript.
1426 : : mutable std::vector<std::unique_ptr<PubkeyProvider>> m_keys;
1427 : : //! Used to detect key parsing errors within a Miniscript.
1428 : : mutable std::string m_key_parsing_error;
1429 : :
1430 : 0 : KeyParser(FlatSigningProvider* out LIFETIMEBOUND, const SigningProvider* in LIFETIMEBOUND) : m_out(out), m_in(in) {}
1431 : :
1432 : 0 : bool KeyCompare(const Key& a, const Key& b) const {
1433 : 0 : return *m_keys.at(a) < *m_keys.at(b);
1434 : : }
1435 : :
1436 : 0 : template<typename I> std::optional<Key> FromString(I begin, I end) const
1437 : : {
1438 [ # # ]: 0 : assert(m_out);
1439 : 0 : Key key = m_keys.size();
1440 : 0 : auto pk = ParsePubkey(key, {&*begin, &*end}, ParseScriptContext::P2WSH, *m_out, m_key_parsing_error);
1441 [ # # ]: 0 : if (!pk) return {};
1442 [ # # ]: 0 : m_keys.push_back(std::move(pk));
1443 : 0 : return key;
1444 : 0 : }
1445 : :
1446 : 0 : std::optional<std::string> ToString(const Key& key) const
1447 : : {
1448 : 0 : return m_keys.at(key)->ToString();
1449 : : }
1450 : :
1451 : 0 : template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const
1452 : : {
1453 [ # # ]: 0 : assert(m_in);
1454 : 0 : CPubKey pubkey(begin, end);
1455 [ # # ]: 0 : if (pubkey.IsValidNonHybrid()) {
1456 : 0 : Key key = m_keys.size();
1457 [ # # ]: 0 : m_keys.push_back(InferPubkey(pubkey, ParseScriptContext::P2WSH, *m_in));
1458 : 0 : return key;
1459 : : }
1460 : 0 : return {};
1461 : 0 : }
1462 : :
1463 : 0 : template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const
1464 : : {
1465 [ # # ]: 0 : assert(end - begin == 20);
1466 [ # # ]: 0 : assert(m_in);
1467 : 0 : uint160 hash;
1468 : 0 : std::copy(begin, end, hash.begin());
1469 : 0 : CKeyID keyid(hash);
1470 : 0 : CPubKey pubkey;
1471 [ # # ]: 0 : if (m_in->GetPubKey(keyid, pubkey)) {
1472 : 0 : Key key = m_keys.size();
1473 [ # # ]: 0 : m_keys.push_back(InferPubkey(pubkey, ParseScriptContext::P2WSH, *m_in));
1474 : 0 : return key;
1475 : : }
1476 : 0 : return {};
1477 : 0 : }
1478 : : };
1479 : :
1480 : : /** Parse a script in a particular context. */
1481 : 0 : std::unique_ptr<DescriptorImpl> ParseScript(uint32_t& key_exp_index, Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1482 : : {
1483 : : using namespace spanparsing;
1484 : :
1485 : 0 : auto expr = Expr(sp);
1486 [ # # ][ # # ]: 0 : if (Func("pk", expr)) {
[ # # ]
1487 : 0 : auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
1488 [ # # ]: 0 : if (!pubkey) {
1489 [ # # ]: 0 : error = strprintf("pk(): %s", error);
1490 : 0 : return nullptr;
1491 : : }
1492 : 0 : ++key_exp_index;
1493 [ # # ]: 0 : return std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR);
1494 : 0 : }
1495 [ # # ][ # # ]: 0 : if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1496 : 0 : auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
1497 [ # # ]: 0 : if (!pubkey) {
1498 [ # # ]: 0 : error = strprintf("pkh(): %s", error);
1499 : 0 : return nullptr;
1500 : : }
1501 : 0 : ++key_exp_index;
1502 [ # # ]: 0 : return std::make_unique<PKHDescriptor>(std::move(pubkey));
1503 [ # # ][ # # ]: 0 : } else if (Func("pkh", expr)) {
[ # # ]
1504 : 0 : error = "Can only have pkh at top level, in sh(), or in wsh()";
1505 : 0 : return nullptr;
1506 : : }
1507 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1508 : 0 : auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
1509 [ # # ]: 0 : if (!pubkey) {
1510 [ # # ]: 0 : error = strprintf("combo(): %s", error);
1511 : 0 : return nullptr;
1512 : : }
1513 : 0 : ++key_exp_index;
1514 [ # # ]: 0 : return std::make_unique<ComboDescriptor>(std::move(pubkey));
1515 [ # # ][ # # ]: 0 : } else if (Func("combo", expr)) {
[ # # ]
1516 : 0 : error = "Can only have combo() at top level";
1517 : 0 : return nullptr;
1518 : : }
1519 [ # # ][ # # ]: 0 : const bool multi = Func("multi", expr);
1520 [ # # ][ # # ]: 0 : const bool sortedmulti = !multi && Func("sortedmulti", expr);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1521 [ # # ][ # # ]: 0 : const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1522 [ # # ][ # # ]: 0 : const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr);
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1523 [ # # ][ # # ]: 0 : if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) ||
[ # # ][ # # ]
1524 [ # # ][ # # ]: 0 : (ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) {
1525 : 0 : auto threshold = Expr(expr);
1526 : : uint32_t thres;
1527 : 0 : std::vector<std::unique_ptr<PubkeyProvider>> providers;
1528 [ # # ][ # # ]: 0 : if (!ParseUInt32(std::string(threshold.begin(), threshold.end()), &thres)) {
[ # # ]
1529 [ # # ][ # # ]: 0 : error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
1530 : 0 : return nullptr;
1531 : : }
1532 : 0 : size_t script_size = 0;
1533 [ # # ]: 0 : while (expr.size()) {
1534 [ # # ][ # # ]: 0 : if (!Const(",", expr)) {
[ # # ]
1535 [ # # ]: 0 : error = strprintf("Multi: expected ',', got '%c'", expr[0]);
1536 : 0 : return nullptr;
1537 : : }
1538 [ # # ]: 0 : auto arg = Expr(expr);
1539 [ # # ]: 0 : auto pk = ParsePubkey(key_exp_index, arg, ctx, out, error);
1540 [ # # ]: 0 : if (!pk) {
1541 [ # # ]: 0 : error = strprintf("Multi: %s", error);
1542 : 0 : return nullptr;
1543 : : }
1544 [ # # ]: 0 : script_size += pk->GetSize() + 1;
1545 [ # # ]: 0 : providers.emplace_back(std::move(pk));
1546 : 0 : key_exp_index++;
1547 [ # # ]: 0 : }
1548 [ # # ][ # # ]: 0 : if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) {
[ # # ]
1549 [ # # ]: 0 : error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG);
1550 : 0 : return nullptr;
1551 [ # # ][ # # ]: 0 : } else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) {
1552 [ # # ]: 0 : error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A);
1553 : 0 : return nullptr;
1554 [ # # ]: 0 : } else if (thres < 1) {
1555 [ # # ]: 0 : error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
1556 : 0 : return nullptr;
1557 [ # # ]: 0 : } else if (thres > providers.size()) {
1558 [ # # ]: 0 : error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
1559 : 0 : return nullptr;
1560 : : }
1561 [ # # ]: 0 : if (ctx == ParseScriptContext::TOP) {
1562 [ # # ]: 0 : if (providers.size() > 3) {
1563 [ # # ]: 0 : error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
1564 : 0 : return nullptr;
1565 : : }
1566 : 0 : }
1567 [ # # ]: 0 : if (ctx == ParseScriptContext::P2SH) {
1568 : : // This limits the maximum number of compressed pubkeys to 15.
1569 [ # # ]: 0 : if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
1570 [ # # ]: 0 : error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
1571 : 0 : return nullptr;
1572 : : }
1573 : 0 : }
1574 [ # # ][ # # ]: 0 : if (multi || sortedmulti) {
1575 [ # # ]: 0 : return std::make_unique<MultisigDescriptor>(thres, std::move(providers), sortedmulti);
1576 : : } else {
1577 [ # # ]: 0 : return std::make_unique<MultiADescriptor>(thres, std::move(providers), sortedmulti_a);
1578 : : }
1579 [ # # ][ # # ]: 0 : } else if (multi || sortedmulti) {
1580 : 0 : error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()";
1581 : 0 : return nullptr;
1582 [ # # ][ # # ]: 0 : } else if (multi_a || sortedmulti_a) {
1583 : 0 : error = "Can only have multi_a/sortedmulti_a inside tr()";
1584 : 0 : return nullptr;
1585 : : }
1586 [ # # ][ # # ]: 0 : if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1587 : 0 : auto pubkey = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error);
1588 [ # # ]: 0 : if (!pubkey) {
1589 [ # # ]: 0 : error = strprintf("wpkh(): %s", error);
1590 : 0 : return nullptr;
1591 : : }
1592 : 0 : key_exp_index++;
1593 [ # # ]: 0 : return std::make_unique<WPKHDescriptor>(std::move(pubkey));
1594 [ # # ][ # # ]: 0 : } else if (Func("wpkh", expr)) {
[ # # ]
1595 : 0 : error = "Can only have wpkh() at top level or inside sh()";
1596 : 0 : return nullptr;
1597 : : }
1598 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1599 : 0 : auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
1600 [ # # ][ # # ]: 0 : if (!desc || expr.size()) return nullptr;
1601 [ # # ]: 0 : return std::make_unique<SHDescriptor>(std::move(desc));
1602 [ # # ][ # # ]: 0 : } else if (Func("sh", expr)) {
[ # # ]
1603 : 0 : error = "Can only have sh() at top level";
1604 : 0 : return nullptr;
1605 : : }
1606 [ # # ][ # # ]: 0 : if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ]
1607 : 0 : auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
1608 [ # # ][ # # ]: 0 : if (!desc || expr.size()) return nullptr;
1609 [ # # ]: 0 : return std::make_unique<WSHDescriptor>(std::move(desc));
1610 [ # # ][ # # ]: 0 : } else if (Func("wsh", expr)) {
[ # # ]
1611 : 0 : error = "Can only have wsh() at top level or inside sh()";
1612 : 0 : return nullptr;
1613 : : }
1614 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1615 [ # # ][ # # ]: 0 : CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
1616 [ # # ][ # # ]: 0 : if (!IsValidDestination(dest)) {
1617 [ # # ]: 0 : error = "Address is not valid";
1618 : 0 : return nullptr;
1619 : : }
1620 [ # # ]: 0 : return std::make_unique<AddressDescriptor>(std::move(dest));
1621 [ # # ][ # # ]: 0 : } else if (Func("addr", expr)) {
[ # # ]
1622 : 0 : error = "Can only have addr() at top level";
1623 : 0 : return nullptr;
1624 : : }
1625 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("tr", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1626 : 0 : auto arg = Expr(expr);
1627 : 0 : auto internal_key = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
1628 [ # # ]: 0 : if (!internal_key) {
1629 [ # # ]: 0 : error = strprintf("tr(): %s", error);
1630 : 0 : return nullptr;
1631 : : }
1632 : 0 : ++key_exp_index;
1633 : 0 : std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
1634 : 0 : std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
1635 [ # # ]: 0 : if (expr.size()) {
1636 [ # # ][ # # ]: 0 : if (!Const(",", expr)) {
[ # # ]
1637 [ # # ]: 0 : error = strprintf("tr: expected ',', got '%c'", expr[0]);
1638 : 0 : return nullptr;
1639 : : }
1640 : : /** The path from the top of the tree to what we're currently processing.
1641 : : * branches[i] == false: left branch in the i'th step from the top; true: right branch.
1642 : : */
1643 : 0 : std::vector<bool> branches;
1644 : : // Loop over all provided scripts. In every iteration exactly one script will be processed.
1645 : : // Use a do-loop because inside this if-branch we expect at least one script.
1646 : 0 : do {
1647 : : // First process all open braces.
1648 [ # # ][ # # ]: 0 : while (Const("{", expr)) {
[ # # ]
1649 [ # # ]: 0 : branches.push_back(false); // new left branch
1650 [ # # ]: 0 : if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) {
1651 [ # # ]: 0 : error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT);
1652 : 0 : return nullptr;
1653 : : }
1654 : : }
1655 : : // Process the actual script expression.
1656 [ # # ]: 0 : auto sarg = Expr(expr);
1657 [ # # ][ # # ]: 0 : subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error));
1658 [ # # ]: 0 : if (!subscripts.back()) return nullptr;
1659 [ # # ]: 0 : depths.push_back(branches.size());
1660 : : // Process closing braces; one is expected for every right branch we were in.
1661 [ # # ][ # # ]: 0 : while (branches.size() && branches.back()) {
[ # # ]
1662 [ # # ][ # # ]: 0 : if (!Const("}", expr)) {
[ # # ]
1663 [ # # ]: 0 : error = strprintf("tr(): expected '}' after script expression");
1664 : 0 : return nullptr;
1665 : : }
1666 [ # # ]: 0 : branches.pop_back(); // move up one level after encountering '}'
1667 : : }
1668 : : // If after that, we're at the end of a left branch, expect a comma.
1669 [ # # ][ # # ]: 0 : if (branches.size() && !branches.back()) {
[ # # ]
1670 [ # # ][ # # ]: 0 : if (!Const(",", expr)) {
[ # # ]
1671 [ # # ]: 0 : error = strprintf("tr(): expected ',' after script expression");
1672 : 0 : return nullptr;
1673 : : }
1674 [ # # ]: 0 : branches.back() = true; // And now we're in a right branch.
1675 : 0 : }
1676 [ # # ]: 0 : } while (branches.size());
1677 : : // After we've explored a whole tree, we must be at the end of the expression.
1678 [ # # ]: 0 : if (expr.size()) {
1679 [ # # ]: 0 : error = strprintf("tr(): expected ')' after script expression");
1680 : 0 : return nullptr;
1681 : : }
1682 [ # # ]: 0 : }
1683 [ # # ][ # # ]: 0 : assert(TaprootBuilder::ValidDepths(depths));
1684 [ # # ]: 0 : return std::make_unique<TRDescriptor>(std::move(internal_key), std::move(subscripts), std::move(depths));
1685 [ # # ][ # # ]: 0 : } else if (Func("tr", expr)) {
[ # # ]
1686 : 0 : error = "Can only have tr at top level";
1687 : 0 : return nullptr;
1688 : : }
1689 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1690 : 0 : auto arg = Expr(expr);
1691 [ # # ]: 0 : if (expr.size()) {
1692 : 0 : error = strprintf("rawtr(): only one key expected.");
1693 : 0 : return nullptr;
1694 : : }
1695 : 0 : auto output_key = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
1696 [ # # ]: 0 : if (!output_key) return nullptr;
1697 : 0 : ++key_exp_index;
1698 [ # # ]: 0 : return std::make_unique<RawTRDescriptor>(std::move(output_key));
1699 [ # # ][ # # ]: 0 : } else if (Func("rawtr", expr)) {
[ # # ]
1700 : 0 : error = "Can only have rawtr at top level";
1701 : 0 : return nullptr;
1702 : : }
1703 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
[ # # ][ # # ]
[ # # ][ # # ]
[ # # ][ # # ]
1704 [ # # ]: 0 : std::string str(expr.begin(), expr.end());
1705 [ # # ][ # # ]: 0 : if (!IsHex(str)) {
1706 [ # # ]: 0 : error = "Raw script is not hex";
1707 : 0 : return nullptr;
1708 : : }
1709 [ # # ]: 0 : auto bytes = ParseHex(str);
1710 [ # # ][ # # ]: 0 : return std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end()));
1711 [ # # ][ # # ]: 0 : } else if (Func("raw", expr)) {
[ # # ]
1712 : 0 : error = "Can only have raw() at top level";
1713 : 0 : return nullptr;
1714 : : }
1715 : : // Process miniscript expressions.
1716 : : {
1717 : 0 : KeyParser parser(&out, nullptr);
1718 [ # # ][ # # ]: 0 : auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser);
1719 [ # # ]: 0 : if (node) {
1720 [ # # ]: 0 : if (ctx != ParseScriptContext::P2WSH) {
1721 [ # # ]: 0 : error = "Miniscript expressions can only be used in wsh";
1722 : 0 : return nullptr;
1723 : : }
1724 [ # # ][ # # ]: 0 : if (parser.m_key_parsing_error != "") {
1725 : 0 : error = std::move(parser.m_key_parsing_error);
1726 : 0 : return nullptr;
1727 : : }
1728 [ # # ][ # # ]: 0 : if (!node->IsSane() || node->IsNotSatisfiable()) {
[ # # ][ # # ]
1729 : : // Try to find the first insane sub for better error reporting.
1730 : 0 : auto insane_node = node.get();
1731 [ # # ][ # # ]: 0 : if (const auto sub = node->FindInsaneSub()) insane_node = sub;
1732 [ # # ][ # # ]: 0 : if (const auto str = insane_node->ToString(parser)) error = *str;
[ # # ]
1733 [ # # ][ # # ]: 0 : if (!insane_node->IsValid()) {
1734 [ # # ]: 0 : error += " is invalid";
1735 [ # # ][ # # ]: 0 : } else if (!node->IsSane()) {
1736 [ # # ]: 0 : error += " is not sane";
1737 [ # # ][ # # ]: 0 : if (!insane_node->IsNonMalleable()) {
1738 [ # # ]: 0 : error += ": malleable witnesses exist";
1739 [ # # ][ # # ]: 0 : } else if (insane_node == node.get() && !insane_node->NeedsSignature()) {
[ # # ]
1740 [ # # ]: 0 : error += ": witnesses without signature exist";
1741 [ # # ][ # # ]: 0 : } else if (!insane_node->CheckTimeLocksMix()) {
1742 [ # # ]: 0 : error += ": contains mixes of timelocks expressed in blocks and seconds";
1743 [ # # ][ # # ]: 0 : } else if (!insane_node->CheckDuplicateKey()) {
1744 [ # # ]: 0 : error += ": contains duplicate public keys";
1745 [ # # ][ # # ]: 0 : } else if (!insane_node->ValidSatisfactions()) {
1746 [ # # ]: 0 : error += ": needs witnesses that may exceed resource limits";
1747 : 0 : }
1748 : 0 : } else {
1749 [ # # ]: 0 : error += " is not satisfiable";
1750 : : }
1751 : 0 : return nullptr;
1752 : : }
1753 : : // A signature check is required for a miniscript to be sane. Therefore no sane miniscript
1754 : : // may have an empty list of public keys.
1755 [ # # ]: 0 : CHECK_NONFATAL(!parser.m_keys.empty());
1756 [ # # ]: 0 : return std::make_unique<MiniscriptDescriptor>(std::move(parser.m_keys), std::move(node));
1757 : : }
1758 [ # # # ]: 0 : }
1759 [ # # ]: 0 : if (ctx == ParseScriptContext::P2SH) {
1760 : 0 : error = "A function is needed within P2SH";
1761 : 0 : return nullptr;
1762 [ # # ]: 0 : } else if (ctx == ParseScriptContext::P2WSH) {
1763 : 0 : error = "A function is needed within P2WSH";
1764 : 0 : return nullptr;
1765 : : }
1766 [ # # ][ # # ]: 0 : error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end()));
1767 : 0 : return nullptr;
1768 : 0 : }
1769 : :
1770 : 0 : std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
1771 : : {
1772 : 0 : auto match = MatchMultiA(script);
1773 [ # # ]: 0 : if (!match) return {};
1774 : 0 : std::vector<std::unique_ptr<PubkeyProvider>> keys;
1775 [ # # ]: 0 : keys.reserve(match->second.size());
1776 [ # # ]: 0 : for (const auto keyspan : match->second) {
1777 [ # # ]: 0 : if (keyspan.size() != 32) return {};
1778 [ # # ][ # # ]: 0 : auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider);
1779 [ # # ]: 0 : if (!key) return {};
1780 [ # # ]: 0 : keys.push_back(std::move(key));
1781 [ # # ]: 0 : }
1782 [ # # ]: 0 : return std::make_unique<MultiADescriptor>(match->first, std::move(keys));
1783 : 0 : }
1784 : :
1785 : 0 : std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
1786 : : {
1787 [ # # ][ # # ]: 0 : if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) {
[ # # ][ # # ]
1788 : 0 : XOnlyPubKey key{Span{script}.subspan(1, 32)};
1789 [ # # ]: 0 : return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true);
1790 : : }
1791 : :
1792 [ # # ]: 0 : if (ctx == ParseScriptContext::P2TR) {
1793 : 0 : auto ret = InferMultiA(script, ctx, provider);
1794 [ # # ]: 0 : if (ret) return ret;
1795 [ # # ]: 0 : }
1796 : :
1797 : 0 : std::vector<std::vector<unsigned char>> data;
1798 [ # # ]: 0 : TxoutType txntype = Solver(script, data);
1799 : :
1800 [ # # ][ # # ]: 0 : if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
[ # # ]
1801 [ # # ][ # # ]: 0 : CPubKey pubkey(data[0]);
1802 [ # # ]: 0 : if (pubkey.IsValidNonHybrid()) {
1803 [ # # ][ # # ]: 0 : return std::make_unique<PKDescriptor>(InferPubkey(pubkey, ctx, provider));
1804 : : }
1805 : 0 : }
1806 [ # # ][ # # ]: 0 : if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
[ # # ]
1807 [ # # ][ # # ]: 0 : uint160 hash(data[0]);
1808 [ # # ]: 0 : CKeyID keyid(hash);
1809 [ # # ]: 0 : CPubKey pubkey;
1810 [ # # ][ # # ]: 0 : if (provider.GetPubKey(keyid, pubkey)) {
1811 [ # # ][ # # ]: 0 : return std::make_unique<PKHDescriptor>(InferPubkey(pubkey, ctx, provider));
1812 : : }
1813 : 0 : }
1814 [ # # ][ # # ]: 0 : if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
[ # # ]
1815 [ # # ][ # # ]: 0 : uint160 hash(data[0]);
1816 [ # # ]: 0 : CKeyID keyid(hash);
1817 [ # # ]: 0 : CPubKey pubkey;
1818 [ # # ][ # # ]: 0 : if (provider.GetPubKey(keyid, pubkey)) {
1819 [ # # ][ # # ]: 0 : return std::make_unique<WPKHDescriptor>(InferPubkey(pubkey, ctx, provider));
1820 : : }
1821 : 0 : }
1822 [ # # ][ # # ]: 0 : if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
[ # # ][ # # ]
1823 : 0 : std::vector<std::unique_ptr<PubkeyProvider>> providers;
1824 [ # # ]: 0 : for (size_t i = 1; i + 1 < data.size(); ++i) {
1825 [ # # ][ # # ]: 0 : CPubKey pubkey(data[i]);
1826 [ # # ][ # # ]: 0 : providers.push_back(InferPubkey(pubkey, ctx, provider));
1827 : 0 : }
1828 [ # # ]: 0 : return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
1829 : 0 : }
1830 [ # # ][ # # ]: 0 : if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
1831 [ # # ][ # # ]: 0 : uint160 hash(data[0]);
1832 [ # # ]: 0 : CScriptID scriptid(hash);
1833 [ # # ]: 0 : CScript subscript;
1834 [ # # ][ # # ]: 0 : if (provider.GetCScript(scriptid, subscript)) {
1835 [ # # ]: 0 : auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
1836 [ # # ][ # # ]: 0 : if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
1837 [ # # ]: 0 : }
1838 [ # # ]: 0 : }
1839 [ # # ][ # # ]: 0 : if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
1840 [ # # ][ # # ]: 0 : CScriptID scriptid{RIPEMD160(data[0])};
[ # # ]
1841 [ # # ]: 0 : CScript subscript;
1842 [ # # ][ # # ]: 0 : if (provider.GetCScript(scriptid, subscript)) {
1843 [ # # ]: 0 : auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
1844 [ # # ][ # # ]: 0 : if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
1845 [ # # ]: 0 : }
1846 [ # # ]: 0 : }
1847 [ # # ][ # # ]: 0 : if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) {
1848 : : // Extract x-only pubkey from output.
1849 [ # # ]: 0 : XOnlyPubKey pubkey;
1850 [ # # ][ # # ]: 0 : std::copy(data[0].begin(), data[0].end(), pubkey.begin());
1851 : : // Request spending data.
1852 [ # # ]: 0 : TaprootSpendData tap;
1853 [ # # ][ # # ]: 0 : if (provider.GetTaprootSpendData(pubkey, tap)) {
1854 : : // If found, convert it back to tree form.
1855 [ # # ]: 0 : auto tree = InferTaprootTree(tap, pubkey);
1856 [ # # ]: 0 : if (tree) {
1857 : : // If that works, try to infer subdescriptors for all leaves.
1858 : 0 : bool ok = true;
1859 : 0 : std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
1860 : 0 : std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
1861 [ # # ]: 0 : for (const auto& [depth, script, leaf_ver] : *tree) {
1862 : 0 : std::unique_ptr<DescriptorImpl> subdesc;
1863 [ # # ]: 0 : if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) {
1864 [ # # ][ # # ]: 0 : subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider);
[ # # ]
1865 : 0 : }
1866 [ # # ]: 0 : if (!subdesc) {
1867 : 0 : ok = false;
1868 : 0 : break;
1869 : : } else {
1870 [ # # ]: 0 : subscripts.push_back(std::move(subdesc));
1871 [ # # ]: 0 : depths.push_back(depth);
1872 : : }
1873 [ # # ]: 0 : }
1874 [ # # ]: 0 : if (ok) {
1875 [ # # ]: 0 : auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider);
1876 [ # # ]: 0 : return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths));
1877 : 0 : }
1878 [ # # ]: 0 : }
1879 [ # # ]: 0 : }
1880 : : // If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey.
1881 [ # # ][ # # ]: 0 : if (pubkey.IsFullyValid()) {
1882 [ # # ]: 0 : auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider);
1883 [ # # ]: 0 : if (key) {
1884 [ # # ]: 0 : return std::make_unique<RawTRDescriptor>(std::move(key));
1885 : : }
1886 [ # # ]: 0 : }
1887 [ # # ]: 0 : }
1888 : :
1889 [ # # ]: 0 : if (ctx == ParseScriptContext::P2WSH) {
1890 [ # # ]: 0 : KeyParser parser(nullptr, &provider);
1891 [ # # ]: 0 : auto node = miniscript::FromScript(script, parser);
1892 [ # # ][ # # ]: 0 : if (node && node->IsSane()) {
[ # # ]
1893 [ # # ]: 0 : return std::make_unique<MiniscriptDescriptor>(std::move(parser.m_keys), std::move(node));
1894 : : }
1895 [ # # ]: 0 : }
1896 : :
1897 : : // The following descriptors are all top-level only descriptors.
1898 : : // So if we are not at the top level, return early.
1899 [ # # ]: 0 : if (ctx != ParseScriptContext::TOP) return nullptr;
1900 : :
1901 [ # # ]: 0 : CTxDestination dest;
1902 [ # # ][ # # ]: 0 : if (ExtractDestination(script, dest)) {
1903 [ # # ][ # # ]: 0 : if (GetScriptForDestination(dest) == script) {
[ # # ]
1904 [ # # ]: 0 : return std::make_unique<AddressDescriptor>(std::move(dest));
1905 : : }
1906 : 0 : }
1907 : :
1908 [ # # ]: 0 : return std::make_unique<RawDescriptor>(script);
1909 : 0 : }
1910 : :
1911 : :
1912 : : } // namespace
1913 : :
1914 : : /** Check a descriptor checksum, and update desc to be the checksum-less part. */
1915 : 0 : bool CheckChecksum(Span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
1916 : : {
1917 : : using namespace spanparsing;
1918 : :
1919 : 0 : auto check_split = Split(sp, '#');
1920 [ # # ]: 0 : if (check_split.size() > 2) {
1921 [ # # ]: 0 : error = "Multiple '#' symbols";
1922 : 0 : return false;
1923 : : }
1924 [ # # ][ # # ]: 0 : if (check_split.size() == 1 && require_checksum){
1925 [ # # ]: 0 : error = "Missing checksum";
1926 : 0 : return false;
1927 : : }
1928 [ # # ]: 0 : if (check_split.size() == 2) {
1929 [ # # ]: 0 : if (check_split[1].size() != 8) {
1930 [ # # ]: 0 : error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
1931 : 0 : return false;
1932 : : }
1933 : 0 : }
1934 [ # # ]: 0 : auto checksum = DescriptorChecksum(check_split[0]);
1935 [ # # ]: 0 : if (checksum.empty()) {
1936 [ # # ]: 0 : error = "Invalid characters in payload";
1937 : 0 : return false;
1938 : : }
1939 [ # # ]: 0 : if (check_split.size() == 2) {
1940 [ # # ][ # # ]: 0 : if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
1941 [ # # ][ # # ]: 0 : error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
1942 : 0 : return false;
1943 : : }
1944 : 0 : }
1945 [ # # ]: 0 : if (out_checksum) *out_checksum = std::move(checksum);
1946 : 0 : sp = check_split[0];
1947 : 0 : return true;
1948 : 0 : }
1949 : :
1950 : 0 : std::unique_ptr<Descriptor> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
1951 : : {
1952 : 0 : Span<const char> sp{descriptor};
1953 [ # # ]: 0 : if (!CheckChecksum(sp, require_checksum, error)) return nullptr;
1954 : 0 : uint32_t key_exp_index = 0;
1955 : 0 : auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error);
1956 [ # # ][ # # ]: 0 : if (sp.size() == 0 && ret) return std::unique_ptr<Descriptor>(std::move(ret));
1957 : 0 : return nullptr;
1958 : 0 : }
1959 : :
1960 : 0 : std::string GetDescriptorChecksum(const std::string& descriptor)
1961 : : {
1962 : 0 : std::string ret;
1963 : 0 : std::string error;
1964 [ # # ]: 0 : Span<const char> sp{descriptor};
1965 [ # # ][ # # ]: 0 : if (!CheckChecksum(sp, false, error, &ret)) return "";
[ # # ]
1966 : 0 : return ret;
1967 : 0 : }
1968 : :
1969 : 0 : std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
1970 : : {
1971 : 0 : return InferScript(script, ParseScriptContext::TOP, provider);
1972 : : }
1973 : :
1974 : 0 : uint256 DescriptorID(const Descriptor& desc)
1975 : : {
1976 : 0 : std::string desc_str = desc.ToString(/*compat_format=*/true);
1977 [ # # ]: 0 : uint256 id;
1978 [ # # ][ # # ]: 0 : CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
[ # # ][ # # ]
1979 : : return id;
1980 : 0 : }
1981 : :
1982 : 0 : void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
1983 : : {
1984 : 0 : m_parent_xpubs[key_exp_pos] = xpub;
1985 : 0 : }
1986 : :
1987 : 0 : void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
1988 : : {
1989 : 0 : auto& xpubs = m_derived_xpubs[key_exp_pos];
1990 : 0 : xpubs[der_index] = xpub;
1991 : 0 : }
1992 : :
1993 : 0 : void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
1994 : : {
1995 : 0 : m_last_hardened_xpubs[key_exp_pos] = xpub;
1996 : 0 : }
1997 : :
1998 : 0 : bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
1999 : : {
2000 : 0 : const auto& it = m_parent_xpubs.find(key_exp_pos);
2001 [ # # ]: 0 : if (it == m_parent_xpubs.end()) return false;
2002 : 0 : xpub = it->second;
2003 : 0 : return true;
2004 : 0 : }
2005 : :
2006 : 0 : bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
2007 : : {
2008 : 0 : const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
2009 [ # # ]: 0 : if (key_exp_it == m_derived_xpubs.end()) return false;
2010 : 0 : const auto& der_it = key_exp_it->second.find(der_index);
2011 [ # # ]: 0 : if (der_it == key_exp_it->second.end()) return false;
2012 : 0 : xpub = der_it->second;
2013 : 0 : return true;
2014 : 0 : }
2015 : :
2016 : 0 : bool DescriptorCache::GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2017 : : {
2018 : 0 : const auto& it = m_last_hardened_xpubs.find(key_exp_pos);
2019 [ # # ]: 0 : if (it == m_last_hardened_xpubs.end()) return false;
2020 : 0 : xpub = it->second;
2021 : 0 : return true;
2022 : 0 : }
2023 : :
2024 : 0 : DescriptorCache DescriptorCache::MergeAndDiff(const DescriptorCache& other)
2025 : : {
2026 : 0 : DescriptorCache diff;
2027 [ # # ][ # # ]: 0 : for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) {
2028 [ # # ]: 0 : CExtPubKey xpub;
2029 [ # # ][ # # ]: 0 : if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
2030 [ # # ][ # # ]: 0 : if (xpub != parent_xpub_pair.second) {
2031 [ # # ][ # # ]: 0 : throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
[ # # ][ # # ]
2032 : : }
2033 : 0 : continue;
2034 : : }
2035 [ # # ]: 0 : CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2036 [ # # ]: 0 : diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2037 : : }
2038 [ # # ][ # # ]: 0 : for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) {
2039 [ # # ]: 0 : for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
2040 [ # # ]: 0 : CExtPubKey xpub;
2041 [ # # ][ # # ]: 0 : if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
2042 [ # # ][ # # ]: 0 : if (xpub != derived_xpub_pair.second) {
2043 [ # # ][ # # ]: 0 : throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
[ # # ][ # # ]
2044 : : }
2045 : 0 : continue;
2046 : : }
2047 [ # # ]: 0 : CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2048 [ # # ]: 0 : diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2049 : : }
2050 : : }
2051 [ # # ][ # # ]: 0 : for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) {
2052 [ # # ]: 0 : CExtPubKey xpub;
2053 [ # # ][ # # ]: 0 : if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) {
2054 [ # # ][ # # ]: 0 : if (xpub != lh_xpub_pair.second) {
2055 [ # # ][ # # ]: 0 : throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub");
[ # # ][ # # ]
2056 : : }
2057 : 0 : continue;
2058 : : }
2059 [ # # ]: 0 : CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2060 [ # # ]: 0 : diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2061 : : }
2062 : 0 : return diff;
2063 [ # # ]: 0 : }
2064 : :
2065 : 0 : ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const
2066 : : {
2067 : 0 : return m_parent_xpubs;
2068 : : }
2069 : :
2070 : 0 : std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
2071 : : {
2072 : 0 : return m_derived_xpubs;
2073 : : }
2074 : :
2075 : 0 : ExtPubKeyMap DescriptorCache::GetCachedLastHardenedExtPubKeys() const
2076 : : {
2077 : 0 : return m_last_hardened_xpubs;
2078 : : }
|