Coverage Report

Created: 2025-06-10 13:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/bitcoin/src/util/feefrac.h
Line
Count
Source
1
// Copyright (c) The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#ifndef BITCOIN_UTIL_FEEFRAC_H
6
#define BITCOIN_UTIL_FEEFRAC_H
7
8
#include <stdint.h>
9
#include <compare>
10
#include <vector>
11
#include <span.h>
12
#include <util/check.h>
13
14
/** Data structure storing a fee and size, ordered by increasing fee/size.
15
 *
16
 * The size of a FeeFrac cannot be zero unless the fee is also zero.
17
 *
18
 * FeeFracs have a total ordering, first by increasing feerate (ratio of fee over size), and then
19
 * by decreasing size. The empty FeeFrac (fee and size both 0) sorts last. So for example, the
20
 * following FeeFracs are in sorted order:
21
 *
22
 * - fee=0 size=1 (feerate 0)
23
 * - fee=1 size=2 (feerate 0.5)
24
 * - fee=2 size=3 (feerate 0.667...)
25
 * - fee=2 size=2 (feerate 1)
26
 * - fee=1 size=1 (feerate 1)
27
 * - fee=3 size=2 (feerate 1.5)
28
 * - fee=2 size=1 (feerate 2)
29
 * - fee=0 size=0 (undefined feerate)
30
 *
31
 * A FeeFrac is considered "better" if it sorts after another, by this ordering. All standard
32
 * comparison operators (<=>, ==, !=, >, <, >=, <=) respect this ordering.
33
 *
34
 * The FeeRateCompare, and >> and << operators only compare feerate and treat equal feerate but
35
 * different size as equivalent. The empty FeeFrac is neither lower or higher in feerate than any
36
 * other.
37
 */
38
struct FeeFrac
39
{
40
    /** Helper function for 32*64 signed multiplication, returning an unspecified but totally
41
     *  ordered type. This is a fallback version, separate so it can be tested on platforms where
42
     *  it isn't actually needed. */
43
    static inline std::pair<int64_t, uint32_t> MulFallback(int64_t a, int32_t b) noexcept
44
0
    {
45
0
        int64_t low = int64_t{static_cast<uint32_t>(a)} * b;
46
0
        int64_t high = (a >> 32) * b;
47
0
        return {high + (low >> 32), static_cast<uint32_t>(low)};
48
0
    }
49
50
    /** Helper function for 96/32 signed division, rounding towards negative infinity (if
51
     *  round_down) or positive infinity (if !round_down). This is a fallback version, separate so
52
     *  that it can be tested on platforms where it isn't actually needed.
53
     *
54
     * The exact behavior with negative n does not really matter, but this implementation chooses
55
     * to be consistent for testability reasons.
56
     *
57
     * The result must fit in an int64_t, and d must be strictly positive. */
58
    static inline int64_t DivFallback(std::pair<int64_t, uint32_t> n, int32_t d, bool round_down) noexcept
59
0
    {
60
0
        Assume(d > 0);
61
0
        // Compute quot_high = n.first / d, so the result becomes
62
0
        // (n.second + (n.first - quot_high * d) * 2**32) / d + (quot_high * 2**32), or
63
0
        // (n.second + (n.first % d) * 2**32) / d + (quot_high * 2**32).
64
0
        int64_t quot_high = n.first / d;
65
0
        // Evaluate the parenthesized expression above, so the result becomes
66
0
        // n_low / d + (quot_high * 2**32)
67
0
        int64_t n_low = ((n.first % d) << 32) + n.second;
68
0
        // Evaluate the division so the result becomes quot_low + quot_high * 2**32. It is possible
69
0
        // that the / operator here rounds in the wrong direction (if n_low is not a multiple of
70
0
        // size, and is (if round_down) negative, or (if !round_down) positive). If so, make a
71
0
        // correction.
72
0
        int64_t quot_low = n_low / d;
73
0
        int32_t mod_low = n_low % d;
74
0
        quot_low += (mod_low > 0) - (mod_low && round_down);
75
0
        // Combine and return the result
76
0
        return (quot_high << 32) + quot_low;
77
0
    }
78
79
#ifdef __SIZEOF_INT128__
80
    /** Helper function for 32*64 signed multiplication, returning an unspecified but totally
81
     *  ordered type. This is a version relying on __int128. */
82
    static inline __int128 Mul(int64_t a, int32_t b) noexcept
83
4.36k
    {
84
4.36k
        return __int128{a} * b;
85
4.36k
    }
86
87
    /** Helper function for 96/32 signed division, rounding towards negative infinity (if
88
     *  round_down), or towards positive infinity (if !round_down). This is a
89
     *  version relying on __int128.
90
     *
91
     * The result must fit in an int64_t, and d must be strictly positive. */
92
    static inline int64_t Div(__int128 n, int32_t d, bool round_down) noexcept
93
0
    {
94
0
        Assume(d > 0);
95
0
        // Compute the division.
96
0
        int64_t quot = n / d;
97
0
        int32_t mod = n % d;
98
0
        // Correct result if the / operator above rounded in the wrong direction.
99
0
        return quot + ((mod > 0) - (mod && round_down));
100
0
    }
101
#else
102
    static constexpr auto Mul = MulFallback;
103
    static constexpr auto Div = DivFallback;
104
#endif
105
106
    int64_t fee;
107
    int32_t size;
108
109
    /** Construct an IsEmpty() FeeFrac. */
110
462
    constexpr inline FeeFrac() noexcept : fee{0}, size{0} {}
111
112
    /** Construct a FeeFrac with specified fee and size. */
113
11.7k
    constexpr inline FeeFrac(int64_t f, int32_t s) noexcept : fee{f}, size{s} {}
114
115
    constexpr inline FeeFrac(const FeeFrac&) noexcept = default;
116
    constexpr inline FeeFrac& operator=(const FeeFrac&) noexcept = default;
117
118
    /** Check if this is empty (size and fee are 0). */
119
0
    bool inline IsEmpty() const noexcept {
120
0
        return size == 0;
121
0
    }
122
123
    /** Add fee and size of another FeeFrac to this one. */
124
    void inline operator+=(const FeeFrac& other) noexcept
125
1.46k
    {
126
1.46k
        fee += other.fee;
127
1.46k
        size += other.size;
128
1.46k
    }
129
130
    /** Subtract fee and size of another FeeFrac from this one. */
131
    void inline operator-=(const FeeFrac& other) noexcept
132
0
    {
133
0
        fee -= other.fee;
134
0
        size -= other.size;
135
0
    }
136
137
    /** Sum fee and size. */
138
    friend inline FeeFrac operator+(const FeeFrac& a, const FeeFrac& b) noexcept
139
2.91k
    {
140
2.91k
        return {a.fee + b.fee, a.size + b.size};
141
2.91k
    }
142
143
    /** Subtract both fee and size. */
144
    friend inline FeeFrac operator-(const FeeFrac& a, const FeeFrac& b) noexcept
145
1.77k
    {
146
1.77k
        return {a.fee - b.fee, a.size - b.size};
147
1.77k
    }
148
149
    /** Check if two FeeFrac objects are equal (both same fee and same size). */
150
    friend inline bool operator==(const FeeFrac& a, const FeeFrac& b) noexcept
151
0
    {
152
0
        return a.fee == b.fee && a.size == b.size;
  Branch (152:16): [True: 0, False: 0]
  Branch (152:34): [True: 0, False: 0]
153
0
    }
154
155
    /** Compare two FeeFracs just by feerate. */
156
    friend inline std::weak_ordering FeeRateCompare(const FeeFrac& a, const FeeFrac& b) noexcept
157
883
    {
158
883
        auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
159
883
        return cross_a <=> cross_b;
160
883
    }
161
162
    /** Check if a FeeFrac object has strictly lower feerate than another. */
163
    friend inline bool operator<<(const FeeFrac& a, const FeeFrac& b) noexcept
164
0
    {
165
0
        auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
166
0
        return cross_a < cross_b;
167
0
    }
168
169
    /** Check if a FeeFrac object has strictly higher feerate than another. */
170
    friend inline bool operator>>(const FeeFrac& a, const FeeFrac& b) noexcept
171
264
    {
172
264
        auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
173
264
        return cross_a > cross_b;
174
264
    }
175
176
    /** Compare two FeeFracs. <, >, <=, and >= are auto-generated from this. */
177
    friend inline std::strong_ordering operator<=>(const FeeFrac& a, const FeeFrac& b) noexcept
178
1.03k
    {
179
1.03k
        auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
180
1.03k
        if (cross_a == cross_b) return b.size <=> a.size;
  Branch (180:13): [True: 67, False: 967]
181
967
        return cross_a <=> cross_b;
182
1.03k
    }
183
184
    /** Swap two FeeFracs. */
185
    friend inline void swap(FeeFrac& a, FeeFrac& b) noexcept
186
0
    {
187
0
        std::swap(a.fee, b.fee);
188
0
        std::swap(a.size, b.size);
189
0
    }
190
191
    /** Compute the fee for a given size `at_size` using this object's feerate.
192
     *
193
     * This effectively corresponds to evaluating (this->fee * at_size) / this->size, with the
194
     * result rounded towards negative infinity (if RoundDown) or towards positive infinity
195
     * (if !RoundDown).
196
     *
197
     * Requires this->size > 0, at_size >= 0, and that the correct result fits in a int64_t. This
198
     * is guaranteed to be the case when 0 <= at_size <= this->size.
199
     */
200
    template<bool RoundDown>
201
    int64_t EvaluateFee(int32_t at_size) const noexcept
202
0
    {
203
0
        Assume(size > 0);
204
0
        Assume(at_size >= 0);
205
0
        if (fee >= 0 && fee < 0x200000000) [[likely]] {
206
0
            // Common case where (this->fee * at_size) is guaranteed to fit in a uint64_t.
207
0
            if constexpr (RoundDown) {
208
0
                return (uint64_t(fee) * at_size) / uint32_t(size);
209
0
            } else {
210
0
                return (uint64_t(fee) * at_size + size - 1U) / uint32_t(size);
211
0
            }
212
0
        } else {
213
0
            // Otherwise, use Mul and Div.
214
0
            return Div(Mul(fee, at_size), size, RoundDown);
215
0
        }
216
0
    }
Unexecuted instantiation: long FeeFrac::EvaluateFee<true>(int) const
Unexecuted instantiation: long FeeFrac::EvaluateFee<false>(int) const
217
218
public:
219
    /** Compute the fee for a given size `at_size` using this object's feerate, rounding down. */
220
0
    int64_t EvaluateFeeDown(int32_t at_size) const noexcept { return EvaluateFee<true>(at_size); }
221
    /** Compute the fee for a given size `at_size` using this object's feerate, rounding up. */
222
0
    int64_t EvaluateFeeUp(int32_t at_size) const noexcept { return EvaluateFee<false>(at_size); }
223
};
224
225
/** Compare the feerate diagrams implied by the provided sorted chunks data.
226
 *
227
 * The implied diagram for each starts at (0, 0), then contains for each chunk the cumulative fee
228
 * and size up to that chunk, and then extends infinitely to the right with a horizontal line.
229
 *
230
 * The caller must guarantee that the sum of the FeeFracs in either of the chunks' data set do not
231
 * overflow (so sum fees < 2^63, and sum sizes < 2^31).
232
 */
233
std::partial_ordering CompareChunks(std::span<const FeeFrac> chunks0, std::span<const FeeFrac> chunks1);
234
235
/** Tagged wrapper around FeeFrac to avoid unit confusion. */
236
template<typename Tag>
237
struct FeePerUnit : public FeeFrac
238
{
239
    // Inherit FeeFrac constructors.
240
    using FeeFrac::FeeFrac;
241
242
    /** Convert a FeeFrac to a FeePerUnit. */
243
    static FeePerUnit FromFeeFrac(const FeeFrac& feefrac) noexcept
244
    {
245
        return {feefrac.fee, feefrac.size};
246
    }
247
};
248
249
// FeePerUnit instance for satoshi / vbyte.
250
struct VSizeTag {};
251
using FeePerVSize = FeePerUnit<VSizeTag>;
252
253
// FeePerUnit instance for satoshi / WU.
254
struct WeightTag {};
255
using FeePerWeight = FeePerUnit<WeightTag>;
256
257
#endif // BITCOIN_UTIL_FEEFRAC_H