/bitcoin/src/support/lockedpool.cpp
Line | Count | Source |
1 | | // Copyright (c) 2016-present The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <support/lockedpool.h> |
6 | | #include <support/cleanse.h> |
7 | | |
8 | | #ifdef WIN32 |
9 | | #include <windows.h> |
10 | | #else |
11 | | #include <sys/mman.h> |
12 | | #include <sys/resource.h> |
13 | | #include <unistd.h> |
14 | | #endif |
15 | | |
16 | | #include <algorithm> |
17 | | #include <limits> |
18 | | #include <stdexcept> |
19 | | #include <utility> |
20 | | #ifdef ARENA_DEBUG |
21 | | #include <iomanip> |
22 | | #include <iostream> |
23 | | #endif |
24 | | |
25 | | LockedPoolManager* LockedPoolManager::_instance = nullptr; |
26 | | |
27 | | /*******************************************************************************/ |
28 | | // Utilities |
29 | | // |
30 | | /** Align up to power of 2 */ |
31 | | static inline size_t align_up(size_t x, size_t align) |
32 | 1.34M | { |
33 | 1.34M | return (x + align - 1) & ~(align - 1); |
34 | 1.34M | } |
35 | | |
36 | | /*******************************************************************************/ |
37 | | // Implementation: Arena |
38 | | |
39 | | Arena::Arena(void *base_in, size_t size_in, size_t alignment_in): |
40 | 11.0k | base(base_in), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in) |
41 | 11.0k | { |
42 | | // Start with one free chunk that covers the entire arena |
43 | 11.0k | auto it = size_to_free_chunk.emplace(size_in, base); |
44 | 11.0k | chunks_free.emplace(base, it); |
45 | 11.0k | chunks_free_end.emplace(static_cast<char*>(base) + size_in, it); |
46 | 11.0k | } |
47 | | |
48 | 11.0k | Arena::~Arena() = default; |
49 | | |
50 | | void* Arena::alloc(size_t size) |
51 | 1.31M | { |
52 | | // Round to next multiple of alignment |
53 | 1.31M | size = align_up(size, alignment); |
54 | | |
55 | | // Don't handle zero-sized chunks |
56 | 1.31M | if (size == 0) Branch (56:9): [True: 0, False: 1.31M]
|
57 | 0 | return nullptr; |
58 | | |
59 | | // Pick a large enough free-chunk. Returns an iterator pointing to the first element that is not less than key. |
60 | | // This allocation strategy is best-fit. According to "Dynamic Storage Allocation: A Survey and Critical Review", |
61 | | // Wilson et. al. 1995, https://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, best-fit and first-fit |
62 | | // policies seem to work well in practice. |
63 | 1.31M | auto size_ptr_it = size_to_free_chunk.lower_bound(size); |
64 | 1.31M | if (size_ptr_it == size_to_free_chunk.end()) Branch (64:9): [True: 0, False: 1.31M]
|
65 | 0 | return nullptr; |
66 | | |
67 | | // Create the used-chunk, taking its space from the end of the free-chunk |
68 | 1.31M | const size_t size_remaining = size_ptr_it->first - size; |
69 | 1.31M | char* const free_chunk = static_cast<char*>(size_ptr_it->second); |
70 | 1.31M | auto allocated = chunks_used.emplace(free_chunk + size_remaining, size).first; |
71 | 1.31M | chunks_free_end.erase(free_chunk + size_ptr_it->first); |
72 | 1.31M | if (size_ptr_it->first == size) { Branch (72:9): [True: 244k, False: 1.07M]
|
73 | | // whole chunk is used up |
74 | 244k | chunks_free.erase(size_ptr_it->second); |
75 | 1.07M | } else { |
76 | | // still some memory left in the chunk |
77 | 1.07M | auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second); |
78 | 1.07M | chunks_free[size_ptr_it->second] = it_remaining; |
79 | 1.07M | chunks_free_end.emplace(free_chunk + size_remaining, it_remaining); |
80 | 1.07M | } |
81 | 1.31M | size_to_free_chunk.erase(size_ptr_it); |
82 | | |
83 | 1.31M | return allocated->first; |
84 | 1.31M | } |
85 | | |
86 | | void Arena::free(void *ptr) |
87 | 1.31M | { |
88 | | // Freeing the nullptr pointer is OK. |
89 | 1.31M | if (ptr == nullptr) { Branch (89:9): [True: 0, False: 1.31M]
|
90 | 0 | return; |
91 | 0 | } |
92 | | |
93 | | // Remove chunk from used map |
94 | 1.31M | auto i = chunks_used.find(ptr); |
95 | 1.31M | if (i == chunks_used.end()) { Branch (95:9): [True: 0, False: 1.31M]
|
96 | 0 | throw std::runtime_error("Arena: invalid or double free"); |
97 | 0 | } |
98 | 1.31M | auto freed = std::make_pair(static_cast<char*>(i->first), i->second); |
99 | 1.31M | chunks_used.erase(i); |
100 | | |
101 | | // coalesce freed with previous chunk |
102 | 1.31M | auto prev = chunks_free_end.find(freed.first); |
103 | 1.31M | if (prev != chunks_free_end.end()) { Branch (103:9): [True: 900k, False: 419k]
|
104 | 900k | freed.first -= prev->second->first; |
105 | 900k | freed.second += prev->second->first; |
106 | 900k | size_to_free_chunk.erase(prev->second); |
107 | 900k | chunks_free_end.erase(prev); |
108 | 900k | } |
109 | | |
110 | | // coalesce freed with chunk after freed |
111 | 1.31M | auto next = chunks_free.find(freed.first + freed.second); |
112 | 1.31M | if (next != chunks_free.end()) { Branch (112:9): [True: 175k, False: 1.14M]
|
113 | 175k | freed.second += next->second->first; |
114 | 175k | size_to_free_chunk.erase(next->second); |
115 | 175k | chunks_free.erase(next); |
116 | 175k | } |
117 | | |
118 | | // Add/set space with coalesced free chunk |
119 | 1.31M | auto it = size_to_free_chunk.emplace(freed.second, freed.first); |
120 | 1.31M | chunks_free[freed.first] = it; |
121 | 1.31M | chunks_free_end[freed.first + freed.second] = it; |
122 | 1.31M | } |
123 | | |
124 | | Arena::Stats Arena::stats() const |
125 | 0 | { |
126 | 0 | Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() }; |
127 | 0 | for (const auto& chunk: chunks_used) Branch (127:27): [True: 0, False: 0]
|
128 | 0 | r.used += chunk.second; |
129 | 0 | for (const auto& chunk: chunks_free) Branch (129:27): [True: 0, False: 0]
|
130 | 0 | r.free += chunk.second->first; |
131 | 0 | r.total = r.used + r.free; |
132 | 0 | return r; |
133 | 0 | } |
134 | | |
135 | | #ifdef ARENA_DEBUG |
136 | | static void printchunk(void* base, size_t sz, bool used) { |
137 | | std::cout << |
138 | | "0x" << std::hex << std::setw(16) << std::setfill('0') << base << |
139 | | " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz << |
140 | | " 0x" << used << std::endl; |
141 | | } |
142 | | void Arena::walk() const |
143 | | { |
144 | | for (const auto& chunk: chunks_used) |
145 | | printchunk(chunk.first, chunk.second, true); |
146 | | std::cout << std::endl; |
147 | | for (const auto& chunk: chunks_free) |
148 | | printchunk(chunk.first, chunk.second->first, false); |
149 | | std::cout << std::endl; |
150 | | } |
151 | | #endif |
152 | | |
153 | | /*******************************************************************************/ |
154 | | // Implementation: Win32LockedPageAllocator |
155 | | |
156 | | #ifdef WIN32 |
157 | | /** LockedPageAllocator specialized for Windows. |
158 | | */ |
159 | | class Win32LockedPageAllocator: public LockedPageAllocator |
160 | | { |
161 | | public: |
162 | | Win32LockedPageAllocator(); |
163 | | void* AllocateLocked(size_t len, bool *lockingSuccess) override; |
164 | | void FreeLocked(void* addr, size_t len) override; |
165 | | size_t GetLimit() override; |
166 | | private: |
167 | | size_t page_size; |
168 | | }; |
169 | | |
170 | | Win32LockedPageAllocator::Win32LockedPageAllocator() |
171 | | { |
172 | | // Determine system page size in bytes |
173 | | SYSTEM_INFO sSysInfo; |
174 | | GetSystemInfo(&sSysInfo); |
175 | | page_size = sSysInfo.dwPageSize; |
176 | | } |
177 | | void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) |
178 | | { |
179 | | len = align_up(len, page_size); |
180 | | void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
181 | | if (addr) { |
182 | | // VirtualLock is used to attempt to keep keying material out of swap. Note |
183 | | // that it does not provide this as a guarantee, but, in practice, memory |
184 | | // that has been VirtualLock'd almost never gets written to the pagefile |
185 | | // except in rare circumstances where memory is extremely low. |
186 | | *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0; |
187 | | } |
188 | | return addr; |
189 | | } |
190 | | void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len) |
191 | | { |
192 | | len = align_up(len, page_size); |
193 | | memory_cleanse(addr, len); |
194 | | VirtualUnlock(const_cast<void*>(addr), len); |
195 | | } |
196 | | |
197 | | size_t Win32LockedPageAllocator::GetLimit() |
198 | | { |
199 | | size_t min, max; |
200 | | if(GetProcessWorkingSetSize(GetCurrentProcess(), &min, &max) != 0) { |
201 | | return min; |
202 | | } |
203 | | return std::numeric_limits<size_t>::max(); |
204 | | } |
205 | | #endif |
206 | | |
207 | | /*******************************************************************************/ |
208 | | // Implementation: PosixLockedPageAllocator |
209 | | |
210 | | #ifndef WIN32 |
211 | | /** LockedPageAllocator specialized for OSes that don't try to be |
212 | | * special snowflakes. |
213 | | */ |
214 | | class PosixLockedPageAllocator: public LockedPageAllocator |
215 | | { |
216 | | public: |
217 | | PosixLockedPageAllocator(); |
218 | | void* AllocateLocked(size_t len, bool *lockingSuccess) override; |
219 | | void FreeLocked(void* addr, size_t len) override; |
220 | | size_t GetLimit() override; |
221 | | private: |
222 | | size_t page_size; |
223 | | }; |
224 | | |
225 | | PosixLockedPageAllocator::PosixLockedPageAllocator() |
226 | 11.0k | { |
227 | | // Determine system page size in bytes |
228 | | #if defined(PAGESIZE) // defined in limits.h |
229 | | page_size = PAGESIZE; |
230 | | #else // assume some POSIX OS |
231 | 11.0k | page_size = sysconf(_SC_PAGESIZE); |
232 | 11.0k | #endif |
233 | 11.0k | } |
234 | | |
235 | | void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) |
236 | 11.0k | { |
237 | 11.0k | void *addr; |
238 | 11.0k | len = align_up(len, page_size); |
239 | 11.0k | addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
240 | 11.0k | if (addr == MAP_FAILED) { Branch (240:9): [True: 0, False: 11.0k]
|
241 | 0 | return nullptr; |
242 | 0 | } |
243 | 11.0k | if (addr) { Branch (243:9): [True: 11.0k, False: 0]
|
244 | 11.0k | *lockingSuccess = mlock(addr, len) == 0; |
245 | 11.0k | #if defined(MADV_DONTDUMP) // Linux |
246 | 11.0k | madvise(addr, len, MADV_DONTDUMP); |
247 | | #elif defined(MADV_NOCORE) // FreeBSD |
248 | | madvise(addr, len, MADV_NOCORE); |
249 | | #endif |
250 | 11.0k | } |
251 | 11.0k | return addr; |
252 | 11.0k | } |
253 | | void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len) |
254 | 11.0k | { |
255 | 11.0k | len = align_up(len, page_size); |
256 | 11.0k | memory_cleanse(addr, len); |
257 | 11.0k | munlock(addr, len); |
258 | 11.0k | munmap(addr, len); |
259 | 11.0k | } |
260 | | size_t PosixLockedPageAllocator::GetLimit() |
261 | 11.0k | { |
262 | 11.0k | #ifdef RLIMIT_MEMLOCK |
263 | 11.0k | struct rlimit rlim; |
264 | 11.0k | if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) { Branch (264:9): [True: 11.0k, False: 0]
|
265 | 11.0k | if (rlim.rlim_cur != RLIM_INFINITY) { Branch (265:13): [True: 11.0k, False: 0]
|
266 | 11.0k | return rlim.rlim_cur; |
267 | 11.0k | } |
268 | 11.0k | } |
269 | 0 | #endif |
270 | 0 | return std::numeric_limits<size_t>::max(); |
271 | 11.0k | } |
272 | | #endif |
273 | | |
274 | | /*******************************************************************************/ |
275 | | // Implementation: LockedPool |
276 | | |
277 | | LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in) |
278 | 11.0k | : allocator(std::move(allocator_in)), lf_cb(lf_cb_in) |
279 | 11.0k | { |
280 | 11.0k | } |
281 | | |
282 | 11.0k | LockedPool::~LockedPool() = default; |
283 | | |
284 | | void* LockedPool::alloc(size_t size) |
285 | 1.31M | { |
286 | 1.31M | std::lock_guard<std::mutex> lock(mutex); |
287 | | |
288 | | // Don't handle impossible sizes |
289 | 1.31M | if (size == 0 || size > ARENA_SIZE) Branch (289:9): [True: 0, False: 1.31M]
Branch (289:22): [True: 0, False: 1.31M]
|
290 | 0 | return nullptr; |
291 | | |
292 | | // Try allocating from each current arena |
293 | 1.31M | for (auto &arena: arenas) { Branch (293:21): [True: 1.30M, False: 11.0k]
|
294 | 1.30M | void *addr = arena.alloc(size); |
295 | 1.30M | if (addr) { Branch (295:13): [True: 1.30M, False: 0]
|
296 | 1.30M | return addr; |
297 | 1.30M | } |
298 | 1.30M | } |
299 | | // If that fails, create a new one |
300 | 11.0k | if (new_arena(ARENA_SIZE, ARENA_ALIGN)) { Branch (300:9): [True: 11.0k, False: 0]
|
301 | 11.0k | return arenas.back().alloc(size); |
302 | 11.0k | } |
303 | 0 | return nullptr; |
304 | 11.0k | } |
305 | | |
306 | | void LockedPool::free(void *ptr) |
307 | 1.31M | { |
308 | 1.31M | std::lock_guard<std::mutex> lock(mutex); |
309 | | // TODO we can do better than this linear search by keeping a map of arena |
310 | | // extents to arena, and looking up the address. |
311 | 1.31M | for (auto &arena: arenas) { Branch (311:21): [True: 1.31M, False: 0]
|
312 | 1.31M | if (arena.addressInArena(ptr)) { Branch (312:13): [True: 1.31M, False: 0]
|
313 | 1.31M | arena.free(ptr); |
314 | 1.31M | return; |
315 | 1.31M | } |
316 | 1.31M | } |
317 | 0 | throw std::runtime_error("LockedPool: invalid address not pointing to any arena"); |
318 | 1.31M | } |
319 | | |
320 | | LockedPool::Stats LockedPool::stats() const |
321 | 0 | { |
322 | 0 | std::lock_guard<std::mutex> lock(mutex); |
323 | 0 | LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0}; |
324 | 0 | for (const auto &arena: arenas) { Branch (324:27): [True: 0, False: 0]
|
325 | 0 | Arena::Stats i = arena.stats(); |
326 | 0 | r.used += i.used; |
327 | 0 | r.free += i.free; |
328 | 0 | r.total += i.total; |
329 | 0 | r.chunks_used += i.chunks_used; |
330 | 0 | r.chunks_free += i.chunks_free; |
331 | 0 | } |
332 | 0 | return r; |
333 | 0 | } |
334 | | |
335 | | bool LockedPool::new_arena(size_t size, size_t align) |
336 | 11.0k | { |
337 | 11.0k | bool locked; |
338 | | // If this is the first arena, handle this specially: Cap the upper size |
339 | | // by the process limit. This makes sure that the first arena will at least |
340 | | // be locked. An exception to this is if the process limit is 0: |
341 | | // in this case no memory can be locked at all so we'll skip past this logic. |
342 | 11.0k | if (arenas.empty()) { Branch (342:9): [True: 11.0k, False: 0]
|
343 | 11.0k | size_t limit = allocator->GetLimit(); |
344 | 11.0k | if (limit > 0) { Branch (344:13): [True: 11.0k, False: 0]
|
345 | 11.0k | size = std::min(size, limit); |
346 | 11.0k | } |
347 | 11.0k | } |
348 | 11.0k | void *addr = allocator->AllocateLocked(size, &locked); |
349 | 11.0k | if (!addr) { Branch (349:9): [True: 0, False: 11.0k]
|
350 | 0 | return false; |
351 | 0 | } |
352 | 11.0k | if (locked) { Branch (352:9): [True: 11.0k, False: 0]
|
353 | 11.0k | cumulative_bytes_locked += size; |
354 | 11.0k | } else if (lf_cb) { // Call the locking-failed callback if locking failed Branch (354:16): [True: 0, False: 0]
|
355 | 0 | if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed. Branch (355:13): [True: 0, False: 0]
|
356 | 0 | allocator->FreeLocked(addr, size); |
357 | 0 | return false; |
358 | 0 | } |
359 | 0 | } |
360 | 11.0k | arenas.emplace_back(allocator.get(), addr, size, align); |
361 | 11.0k | return true; |
362 | 11.0k | } |
363 | | |
364 | | LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in): |
365 | 11.0k | Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in) |
366 | 11.0k | { |
367 | 11.0k | } |
368 | | LockedPool::LockedPageArena::~LockedPageArena() |
369 | 11.0k | { |
370 | 11.0k | allocator->FreeLocked(base, size); |
371 | 11.0k | } |
372 | | |
373 | | /*******************************************************************************/ |
374 | | // Implementation: LockedPoolManager |
375 | | // |
376 | | LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in): |
377 | 11.0k | LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed) |
378 | 11.0k | { |
379 | 11.0k | } |
380 | | |
381 | | bool LockedPoolManager::LockingFailed() |
382 | 0 | { |
383 | | // TODO: log something but how? without including util.h |
384 | 0 | return true; |
385 | 0 | } |
386 | | |
387 | | void LockedPoolManager::CreateInstance() |
388 | 11.0k | { |
389 | | // Using a local static instance guarantees that the object is initialized |
390 | | // when it's first needed and also deinitialized after all objects that use |
391 | | // it are done with it. I can think of one unlikely scenario where we may |
392 | | // have a static deinitialization order/problem, but the check in |
393 | | // LockedPoolManagerBase's destructor helps us detect if that ever happens. |
394 | | #ifdef WIN32 |
395 | | std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator()); |
396 | | #else |
397 | 11.0k | std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator()); |
398 | 11.0k | #endif |
399 | 11.0k | static LockedPoolManager instance(std::move(allocator)); |
400 | 11.0k | LockedPoolManager::_instance = &instance; |
401 | 11.0k | } |