Coverage Report

Created: 2025-06-10 13:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/bitcoin/src/secp256k1/include/secp256k1.h
Line
Count
Source
1
#ifndef SECP256K1_H
2
#define SECP256K1_H
3
4
#ifdef __cplusplus
5
extern "C" {
6
#endif
7
8
#include <stddef.h>
9
10
/** Unless explicitly stated all pointer arguments must not be NULL.
11
 *
12
 * The following rules specify the order of arguments in API calls:
13
 *
14
 * 1. Context pointers go first, followed by output arguments, combined
15
 *    output/input arguments, and finally input-only arguments.
16
 * 2. Array lengths always immediately follow the argument whose length
17
 *    they describe, even if this violates rule 1.
18
 * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
19
 *    later go first. This means: signatures, public nonces, secret nonces,
20
 *    messages, public keys, secret keys, tweaks.
21
 * 4. Arguments that are not data pointers go last, from more complex to less
22
 *    complex: function pointers, algorithm names, messages, void pointers,
23
 *    counts, flags, booleans.
24
 * 5. Opaque data pointers follow the function pointer they are to be passed to.
25
 */
26
27
/** Opaque data structure that holds context information
28
 *
29
 *  The primary purpose of context objects is to store randomization data for
30
 *  enhanced protection against side-channel leakage. This protection is only
31
 *  effective if the context is randomized after its creation. See
32
 *  secp256k1_context_create for creation of contexts and
33
 *  secp256k1_context_randomize for randomization.
34
 *
35
 *  A secondary purpose of context objects is to store pointers to callback
36
 *  functions that the library will call when certain error states arise. See
37
 *  secp256k1_context_set_error_callback as well as
38
 *  secp256k1_context_set_illegal_callback for details. Future library versions
39
 *  may use context objects for additional purposes.
40
 *
41
 *  A constructed context can safely be used from multiple threads
42
 *  simultaneously, but API calls that take a non-const pointer to a context
43
 *  need exclusive access to it. In particular this is the case for
44
 *  secp256k1_context_destroy, secp256k1_context_preallocated_destroy,
45
 *  and secp256k1_context_randomize.
46
 *
47
 *  Regarding randomization, either do it once at creation time (in which case
48
 *  you do not need any locking for the other calls), or use a read-write lock.
49
 */
50
typedef struct secp256k1_context_struct secp256k1_context;
51
52
/** Opaque data structure that holds a parsed and valid public key.
53
 *
54
 *  The exact representation of data inside is implementation defined and not
55
 *  guaranteed to be portable between different platforms or versions. It is
56
 *  however guaranteed to be 64 bytes in size, and can be safely copied/moved.
57
 *  If you need to convert to a format suitable for storage or transmission,
58
 *  use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. To
59
 *  compare keys, use secp256k1_ec_pubkey_cmp.
60
 */
61
typedef struct secp256k1_pubkey {
62
    unsigned char data[64];
63
} secp256k1_pubkey;
64
65
/** Opaque data structure that holds a parsed ECDSA signature.
66
 *
67
 *  The exact representation of data inside is implementation defined and not
68
 *  guaranteed to be portable between different platforms or versions. It is
69
 *  however guaranteed to be 64 bytes in size, and can be safely copied/moved.
70
 *  If you need to convert to a format suitable for storage, transmission, or
71
 *  comparison, use the secp256k1_ecdsa_signature_serialize_* and
72
 *  secp256k1_ecdsa_signature_parse_* functions.
73
 */
74
typedef struct secp256k1_ecdsa_signature {
75
    unsigned char data[64];
76
} secp256k1_ecdsa_signature;
77
78
/** A pointer to a function to deterministically generate a nonce.
79
 *
80
 * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
81
 * Out:     nonce32:   pointer to a 32-byte array to be filled by the function.
82
 * In:      msg32:     the 32-byte message hash being verified (will not be NULL)
83
 *          key32:     pointer to a 32-byte secret key (will not be NULL)
84
 *          algo16:    pointer to a 16-byte array describing the signature
85
 *                     algorithm (will be NULL for ECDSA for compatibility).
86
 *          data:      Arbitrary data pointer that is passed through.
87
 *          attempt:   how many iterations we have tried to find a nonce.
88
 *                     This will almost always be 0, but different attempt values
89
 *                     are required to result in a different nonce.
90
 *
91
 * Except for test cases, this function should compute some cryptographic hash of
92
 * the message, the algorithm, the key and the attempt.
93
 */
94
typedef int (*secp256k1_nonce_function)(
95
    unsigned char *nonce32,
96
    const unsigned char *msg32,
97
    const unsigned char *key32,
98
    const unsigned char *algo16,
99
    void *data,
100
    unsigned int attempt
101
);
102
103
# if !defined(SECP256K1_GNUC_PREREQ)
104
#  if defined(__GNUC__)&&defined(__GNUC_MINOR__)
105
#   define SECP256K1_GNUC_PREREQ(_maj,_min) \
106
 ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
107
#  else
108
#   define SECP256K1_GNUC_PREREQ(_maj,_min) 0
109
#  endif
110
# endif
111
112
/*  When this header is used at build-time the SECP256K1_BUILD define needs to be set
113
 *  to correctly setup export attributes and nullness checks.  This is normally done
114
 *  by secp256k1.c but to guard against this header being included before secp256k1.c
115
 *  has had a chance to set the define (e.g. via test harnesses that just includes
116
 *  secp256k1.c) we set SECP256K1_NO_BUILD when this header is processed without the
117
 *  BUILD define so this condition can be caught.
118
 */
119
#ifndef SECP256K1_BUILD
120
# define SECP256K1_NO_BUILD
121
#endif
122
123
/* Symbol visibility. */
124
#if defined(_WIN32)
125
  /* GCC for Windows (e.g., MinGW) accepts the __declspec syntax
126
   * for MSVC compatibility. A __declspec declaration implies (but is not
127
   * exactly equivalent to) __attribute__ ((visibility("default"))), and so we
128
   * actually want __declspec even on GCC, see "Microsoft Windows Function
129
   * Attributes" in the GCC manual and the recommendations in
130
   * https://gcc.gnu.org/wiki/Visibility. */
131
# if defined(SECP256K1_BUILD)
132
#  if defined(DLL_EXPORT) || defined(SECP256K1_DLL_EXPORT)
133
    /* Building libsecp256k1 as a DLL.
134
     * 1. If using Libtool, it defines DLL_EXPORT automatically.
135
     * 2. In other cases, SECP256K1_DLL_EXPORT must be defined. */
136
#   define SECP256K1_API extern __declspec (dllexport)
137
#  else
138
    /* Building libsecp256k1 as a static library on Windows.
139
     * No declspec is needed, and so we would want the non-Windows-specific
140
     * logic below take care of this case. However, this may result in setting
141
     * __attribute__ ((visibility("default"))), which is supposed to be a noop
142
     * on Windows but may trigger warnings when compiling with -flto due to a
143
     * bug in GCC, see
144
     * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116478 . */
145
#   define SECP256K1_API extern
146
#  endif
147
  /* The user must define SECP256K1_STATIC when consuming libsecp256k1 as a static
148
   * library on Windows. */
149
# elif !defined(SECP256K1_STATIC)
150
   /* Consuming libsecp256k1 as a DLL. */
151
#  define SECP256K1_API extern __declspec (dllimport)
152
# endif
153
#endif
154
#ifndef SECP256K1_API
155
/* All cases not captured by the Windows-specific logic. */
156
# if defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD)
157
   /* Building libsecp256k1 using GCC or compatible. */
158
#  define SECP256K1_API extern __attribute__ ((visibility ("default")))
159
# else
160
   /* Fall back to standard C's extern. */
161
#  define SECP256K1_API extern
162
# endif
163
#endif
164
165
/* Warning attributes
166
 * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
167
 * some paranoid null checks. */
168
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
169
#  define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
170
# else
171
#  define SECP256K1_WARN_UNUSED_RESULT
172
# endif
173
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
174
#  define SECP256K1_ARG_NONNULL(_x)  __attribute__ ((__nonnull__(_x)))
175
# else
176
#  define SECP256K1_ARG_NONNULL(_x)
177
# endif
178
179
/* Attribute for marking functions, types, and variables as deprecated */
180
#if !defined(SECP256K1_BUILD) && defined(__has_attribute)
181
# if __has_attribute(__deprecated__)
182
#  define SECP256K1_DEPRECATED(_msg) __attribute__ ((__deprecated__(_msg)))
183
# else
184
#  define SECP256K1_DEPRECATED(_msg)
185
# endif
186
#else
187
# define SECP256K1_DEPRECATED(_msg)
188
#endif
189
190
/* All flags' lower 8 bits indicate what they're for. Do not use directly. */
191
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
192
11.0k
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
193
1.97M
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
194
/* The higher bits contain the actual data. Do not use directly. */
195
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
196
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
197
11.0k
#define SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY (1 << 10)
198
3.94M
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
199
200
/** Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and
201
 *  secp256k1_context_preallocated_create. */
202
11.0k
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
203
204
/** Deprecated context flags. These flags are treated equivalent to SECP256K1_CONTEXT_NONE. */
205
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
206
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
207
208
/* Testing flag. Do not use. */
209
#define SECP256K1_CONTEXT_DECLASSIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY)
210
211
/** Flag to pass to secp256k1_ec_pubkey_serialize. */
212
1.97M
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
213
1.08M
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
214
215
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
216
4.77M
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
217
2.35M
#define SECP256K1_TAG_PUBKEY_ODD 0x03
218
0
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
219
0
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
220
0
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
221
222
/** A built-in constant secp256k1 context object with static storage duration, to be
223
 *  used in conjunction with secp256k1_selftest.
224
 *
225
 *  This context object offers *only limited functionality* , i.e., it cannot be used
226
 *  for API functions that perform computations involving secret keys, e.g., signing
227
 *  and public key generation. If this restriction applies to a specific API function,
228
 *  it is mentioned in its documentation. See secp256k1_context_create if you need a
229
 *  full context object that supports all functionality offered by the library.
230
 *
231
 *  It is highly recommended to call secp256k1_selftest before using this context.
232
 */
233
SECP256K1_API const secp256k1_context * const secp256k1_context_static;
234
235
/** Deprecated alias for secp256k1_context_static. */
236
SECP256K1_API const secp256k1_context * const secp256k1_context_no_precomp
237
SECP256K1_DEPRECATED("Use secp256k1_context_static instead");
238
239
/** Perform basic self tests (to be used in conjunction with secp256k1_context_static)
240
 *
241
 *  This function performs self tests that detect some serious usage errors and
242
 *  similar conditions, e.g., when the library is compiled for the wrong endianness.
243
 *  This is a last resort measure to be used in production. The performed tests are
244
 *  very rudimentary and are not intended as a replacement for running the test
245
 *  binaries.
246
 *
247
 *  It is highly recommended to call this before using secp256k1_context_static.
248
 *  It is not necessary to call this function before using a context created with
249
 *  secp256k1_context_create (or secp256k1_context_preallocated_create), which will
250
 *  take care of performing the self tests.
251
 *
252
 *  If the tests fail, this function will call the default error handler to abort the
253
 *  program (see secp256k1_context_set_error_callback).
254
 */
255
SECP256K1_API void secp256k1_selftest(void);
256
257
258
/** Create a secp256k1 context object (in dynamically allocated memory).
259
 *
260
 *  This function uses malloc to allocate memory. It is guaranteed that malloc is
261
 *  called at most once for every call of this function. If you need to avoid dynamic
262
 *  memory allocation entirely, see secp256k1_context_static and the functions in
263
 *  secp256k1_preallocated.h.
264
 *
265
 *  Returns: pointer to a newly created context object.
266
 *  In:      flags: Always set to SECP256K1_CONTEXT_NONE (see below).
267
 *
268
 *  The only valid non-deprecated flag in recent library versions is
269
 *  SECP256K1_CONTEXT_NONE, which will create a context sufficient for all functionality
270
 *  offered by the library. All other (deprecated) flags will be treated as equivalent
271
 *  to the SECP256K1_CONTEXT_NONE flag. Though the flags parameter primarily exists for
272
 *  historical reasons, future versions of the library may introduce new flags.
273
 *
274
 *  If the context is intended to be used for API functions that perform computations
275
 *  involving secret keys, e.g., signing and public key generation, then it is highly
276
 *  recommended to call secp256k1_context_randomize on the context before calling
277
 *  those API functions. This will provide enhanced protection against side-channel
278
 *  leakage, see secp256k1_context_randomize for details.
279
 *
280
 *  Do not create a new context object for each operation, as construction and
281
 *  randomization can take non-negligible time.
282
 */
283
SECP256K1_API secp256k1_context *secp256k1_context_create(
284
    unsigned int flags
285
) SECP256K1_WARN_UNUSED_RESULT;
286
287
/** Copy a secp256k1 context object (into dynamically allocated memory).
288
 *
289
 *  This function uses malloc to allocate memory. It is guaranteed that malloc is
290
 *  called at most once for every call of this function. If you need to avoid dynamic
291
 *  memory allocation entirely, see the functions in secp256k1_preallocated.h.
292
 *
293
 *  Cloning secp256k1_context_static is not possible, and should not be emulated by
294
 *  the caller (e.g., using memcpy). Create a new context instead.
295
 *
296
 *  Returns: pointer to a newly created context object.
297
 *  Args:    ctx: pointer to a context to copy (not secp256k1_context_static).
298
 */
299
SECP256K1_API secp256k1_context *secp256k1_context_clone(
300
    const secp256k1_context *ctx
301
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
302
303
/** Destroy a secp256k1 context object (created in dynamically allocated memory).
304
 *
305
 *  The context pointer may not be used afterwards.
306
 *
307
 *  The context to destroy must have been created using secp256k1_context_create
308
 *  or secp256k1_context_clone. If the context has instead been created using
309
 *  secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the
310
 *  behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must
311
 *  be used instead.
312
 *
313
 *  Args:   ctx: pointer to a context to destroy, constructed using
314
 *               secp256k1_context_create or secp256k1_context_clone
315
 *               (i.e., not secp256k1_context_static).
316
 */
317
SECP256K1_API void secp256k1_context_destroy(
318
    secp256k1_context *ctx
319
) SECP256K1_ARG_NONNULL(1);
320
321
/** Set a callback function to be called when an illegal argument is passed to
322
 *  an API call. It will only trigger for violations that are mentioned
323
 *  explicitly in the header.
324
 *
325
 *  The philosophy is that these shouldn't be dealt with through a
326
 *  specific return value, as calling code should not have branches to deal with
327
 *  the case that this code itself is broken.
328
 *
329
 *  On the other hand, during debug stage, one would want to be informed about
330
 *  such mistakes, and the default (crashing) may be inadvisable.
331
 *  When this callback is triggered, the API function called is guaranteed not
332
 *  to cause a crash, though its return value and output arguments are
333
 *  undefined.
334
 *
335
 *  When this function has not been called (or called with fn==NULL), then the
336
 *  default handler will be used. The library provides a default handler which
337
 *  writes the message to stderr and calls abort. This default handler can be
338
 *  replaced at link time if the preprocessor macro
339
 *  USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build
340
 *  has been configured with --enable-external-default-callbacks. Then the
341
 *  following two symbols must be provided to link against:
342
 *   - void secp256k1_default_illegal_callback_fn(const char *message, void *data);
343
 *   - void secp256k1_default_error_callback_fn(const char *message, void *data);
344
 *  The library can call these default handlers even before a proper callback data
345
 *  pointer could have been set using secp256k1_context_set_illegal_callback or
346
 *  secp256k1_context_set_error_callback, e.g., when the creation of a context
347
 *  fails. In this case, the corresponding default handler will be called with
348
 *  the data pointer argument set to NULL.
349
 *
350
 *  Args: ctx:  pointer to a context object.
351
 *  In:   fun:  pointer to a function to call when an illegal argument is
352
 *              passed to the API, taking a message and an opaque pointer.
353
 *              (NULL restores the default handler.)
354
 *        data: the opaque pointer to pass to fun above, must be NULL for the default handler.
355
 *
356
 *  See also secp256k1_context_set_error_callback.
357
 */
358
SECP256K1_API void secp256k1_context_set_illegal_callback(
359
    secp256k1_context *ctx,
360
    void (*fun)(const char *message, void *data),
361
    const void *data
362
) SECP256K1_ARG_NONNULL(1);
363
364
/** Set a callback function to be called when an internal consistency check
365
 *  fails.
366
 *
367
 *  The default callback writes an error message to stderr and calls abort
368
 *  to abort the program.
369
 *
370
 *  This can only trigger in case of a hardware failure, miscompilation,
371
 *  memory corruption, serious bug in the library, or other error would can
372
 *  otherwise result in undefined behaviour. It will not trigger due to mere
373
 *  incorrect usage of the API (see secp256k1_context_set_illegal_callback
374
 *  for that). After this callback returns, anything may happen, including
375
 *  crashing.
376
 *
377
 *  Args: ctx:  pointer to a context object.
378
 *  In:   fun:  pointer to a function to call when an internal error occurs,
379
 *              taking a message and an opaque pointer (NULL restores the
380
 *              default handler, see secp256k1_context_set_illegal_callback
381
 *              for details).
382
 *        data: the opaque pointer to pass to fun above, must be NULL for the default handler.
383
 *
384
 *  See also secp256k1_context_set_illegal_callback.
385
 */
386
SECP256K1_API void secp256k1_context_set_error_callback(
387
    secp256k1_context *ctx,
388
    void (*fun)(const char *message, void *data),
389
    const void *data
390
) SECP256K1_ARG_NONNULL(1);
391
392
/** Parse a variable-length public key into the pubkey object.
393
 *
394
 *  Returns: 1 if the public key was fully valid.
395
 *           0 if the public key could not be parsed or is invalid.
396
 *  Args: ctx:      pointer to a context object.
397
 *  Out:  pubkey:   pointer to a pubkey object. If 1 is returned, it is set to a
398
 *                  parsed version of input. If not, its value is undefined.
399
 *  In:   input:    pointer to a serialized public key
400
 *        inputlen: length of the array pointed to by input
401
 *
402
 *  This function supports parsing compressed (33 bytes, header byte 0x02 or
403
 *  0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
404
 *  byte 0x06 or 0x07) format public keys.
405
 */
406
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
407
    const secp256k1_context *ctx,
408
    secp256k1_pubkey *pubkey,
409
    const unsigned char *input,
410
    size_t inputlen
411
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
412
413
/** Serialize a pubkey object into a serialized byte sequence.
414
 *
415
 *  Returns: 1 always.
416
 *  Args:   ctx:        pointer to a context object.
417
 *  Out:    output:     pointer to a 65-byte (if compressed==0) or 33-byte (if
418
 *                      compressed==1) byte array to place the serialized key
419
 *                      in.
420
 *  In/Out: outputlen:  pointer to an integer which is initially set to the
421
 *                      size of output, and is overwritten with the written
422
 *                      size.
423
 *  In:     pubkey:     pointer to a secp256k1_pubkey containing an
424
 *                      initialized public key.
425
 *          flags:      SECP256K1_EC_COMPRESSED if serialization should be in
426
 *                      compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
427
 */
428
SECP256K1_API int secp256k1_ec_pubkey_serialize(
429
    const secp256k1_context *ctx,
430
    unsigned char *output,
431
    size_t *outputlen,
432
    const secp256k1_pubkey *pubkey,
433
    unsigned int flags
434
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
435
436
/** Compare two public keys using lexicographic (of compressed serialization) order
437
 *
438
 *  Returns: <0 if the first public key is less than the second
439
 *           >0 if the first public key is greater than the second
440
 *           0 if the two public keys are equal
441
 *  Args: ctx:      pointer to a context object
442
 *  In:   pubkey1:  first public key to compare
443
 *        pubkey2:  second public key to compare
444
 */
445
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(
446
    const secp256k1_context *ctx,
447
    const secp256k1_pubkey *pubkey1,
448
    const secp256k1_pubkey *pubkey2
449
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
450
451
/** Sort public keys using lexicographic (of compressed serialization) order
452
 *
453
 *  Returns: 0 if the arguments are invalid. 1 otherwise.
454
 *
455
 *  Args:     ctx: pointer to a context object
456
 *  In:   pubkeys: array of pointers to pubkeys to sort
457
 *      n_pubkeys: number of elements in the pubkeys array
458
 */
459
SECP256K1_API int secp256k1_ec_pubkey_sort(
460
    const secp256k1_context *ctx,
461
    const secp256k1_pubkey **pubkeys,
462
    size_t n_pubkeys
463
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
464
465
/** Parse an ECDSA signature in compact (64 bytes) format.
466
 *
467
 *  Returns: 1 when the signature could be parsed, 0 otherwise.
468
 *  Args: ctx:      pointer to a context object
469
 *  Out:  sig:      pointer to a signature object
470
 *  In:   input64:  pointer to the 64-byte array to parse
471
 *
472
 *  The signature must consist of a 32-byte big endian R value, followed by a
473
 *  32-byte big endian S value. If R or S fall outside of [0..order-1], the
474
 *  encoding is invalid. R and S with value 0 are allowed in the encoding.
475
 *
476
 *  After the call, sig will always be initialized. If parsing failed or R or
477
 *  S are zero, the resulting sig value is guaranteed to fail verification for
478
 *  any message and public key.
479
 */
480
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
481
    const secp256k1_context *ctx,
482
    secp256k1_ecdsa_signature *sig,
483
    const unsigned char *input64
484
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
485
486
/** Parse a DER ECDSA signature.
487
 *
488
 *  Returns: 1 when the signature could be parsed, 0 otherwise.
489
 *  Args: ctx:      pointer to a context object
490
 *  Out:  sig:      pointer to a signature object
491
 *  In:   input:    pointer to the signature to be parsed
492
 *        inputlen: the length of the array pointed to be input
493
 *
494
 *  This function will accept any valid DER encoded signature, even if the
495
 *  encoded numbers are out of range.
496
 *
497
 *  After the call, sig will always be initialized. If parsing failed or the
498
 *  encoded numbers are out of range, signature verification with it is
499
 *  guaranteed to fail for every message and public key.
500
 */
501
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
502
    const secp256k1_context *ctx,
503
    secp256k1_ecdsa_signature *sig,
504
    const unsigned char *input,
505
    size_t inputlen
506
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
507
508
/** Serialize an ECDSA signature in DER format.
509
 *
510
 *  Returns: 1 if enough space was available to serialize, 0 otherwise
511
 *  Args:   ctx:       pointer to a context object
512
 *  Out:    output:    pointer to an array to store the DER serialization
513
 *  In/Out: outputlen: pointer to a length integer. Initially, this integer
514
 *                     should be set to the length of output. After the call
515
 *                     it will be set to the length of the serialization (even
516
 *                     if 0 was returned).
517
 *  In:     sig:       pointer to an initialized signature object
518
 */
519
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
520
    const secp256k1_context *ctx,
521
    unsigned char *output,
522
    size_t *outputlen,
523
    const secp256k1_ecdsa_signature *sig
524
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
525
526
/** Serialize an ECDSA signature in compact (64 byte) format.
527
 *
528
 *  Returns: 1
529
 *  Args:   ctx:       pointer to a context object
530
 *  Out:    output64:  pointer to a 64-byte array to store the compact serialization
531
 *  In:     sig:       pointer to an initialized signature object
532
 *
533
 *  See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
534
 */
535
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
536
    const secp256k1_context *ctx,
537
    unsigned char *output64,
538
    const secp256k1_ecdsa_signature *sig
539
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
540
541
/** Verify an ECDSA signature.
542
 *
543
 *  Returns: 1: correct signature
544
 *           0: incorrect or unparseable signature
545
 *  Args:    ctx:       pointer to a context object
546
 *  In:      sig:       the signature being verified.
547
 *           msghash32: the 32-byte message hash being verified.
548
 *                      The verifier must make sure to apply a cryptographic
549
 *                      hash function to the message by itself and not accept an
550
 *                      msghash32 value directly. Otherwise, it would be easy to
551
 *                      create a "valid" signature without knowledge of the
552
 *                      secret key. See also
553
 *                      https://bitcoin.stackexchange.com/a/81116/35586 for more
554
 *                      background on this topic.
555
 *           pubkey:    pointer to an initialized public key to verify with.
556
 *
557
 * To avoid accepting malleable signatures, only ECDSA signatures in lower-S
558
 * form are accepted.
559
 *
560
 * If you need to accept ECDSA signatures from sources that do not obey this
561
 * rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
562
 * verification, but be aware that doing so results in malleable signatures.
563
 *
564
 * For details, see the comments for that function.
565
 */
566
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
567
    const secp256k1_context *ctx,
568
    const secp256k1_ecdsa_signature *sig,
569
    const unsigned char *msghash32,
570
    const secp256k1_pubkey *pubkey
571
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
572
573
/** Convert a signature to a normalized lower-S form.
574
 *
575
 *  Returns: 1 if sigin was not normalized, 0 if it already was.
576
 *  Args: ctx:    pointer to a context object
577
 *  Out:  sigout: pointer to a signature to fill with the normalized form,
578
 *                or copy if the input was already normalized. (can be NULL if
579
 *                you're only interested in whether the input was already
580
 *                normalized).
581
 *  In:   sigin:  pointer to a signature to check/normalize (can be identical to sigout)
582
 *
583
 *  With ECDSA a third-party can forge a second distinct signature of the same
584
 *  message, given a single initial signature, but without knowing the key. This
585
 *  is done by negating the S value modulo the order of the curve, 'flipping'
586
 *  the sign of the random point R which is not included in the signature.
587
 *
588
 *  Forgery of the same message isn't universally problematic, but in systems
589
 *  where message malleability or uniqueness of signatures is important this can
590
 *  cause issues. This forgery can be blocked by all verifiers forcing signers
591
 *  to use a normalized form.
592
 *
593
 *  The lower-S form reduces the size of signatures slightly on average when
594
 *  variable length encodings (such as DER) are used and is cheap to verify,
595
 *  making it a good choice. Security of always using lower-S is assured because
596
 *  anyone can trivially modify a signature after the fact to enforce this
597
 *  property anyway.
598
 *
599
 *  The lower S value is always between 0x1 and
600
 *  0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
601
 *  inclusive.
602
 *
603
 *  No other forms of ECDSA malleability are known and none seem likely, but
604
 *  there is no formal proof that ECDSA, even with this additional restriction,
605
 *  is free of other malleability. Commonly used serialization schemes will also
606
 *  accept various non-unique encodings, so care should be taken when this
607
 *  property is required for an application.
608
 *
609
 *  The secp256k1_ecdsa_sign function will by default create signatures in the
610
 *  lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
611
 *  signatures come from a system that cannot enforce this property,
612
 *  secp256k1_ecdsa_signature_normalize must be called before verification.
613
 */
614
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
615
    const secp256k1_context *ctx,
616
    secp256k1_ecdsa_signature *sigout,
617
    const secp256k1_ecdsa_signature *sigin
618
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
619
620
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
621
 * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
622
 * extra entropy.
623
 */
624
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
625
626
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
627
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_default;
628
629
/** Create an ECDSA signature.
630
 *
631
 *  Returns: 1: signature created
632
 *           0: the nonce generation function failed, or the secret key was invalid.
633
 *  Args:    ctx:       pointer to a context object (not secp256k1_context_static).
634
 *  Out:     sig:       pointer to an array where the signature will be placed.
635
 *  In:      msghash32: the 32-byte message hash being signed.
636
 *           seckey:    pointer to a 32-byte secret key.
637
 *           noncefp:   pointer to a nonce generation function. If NULL,
638
 *                      secp256k1_nonce_function_default is used.
639
 *           ndata:     pointer to arbitrary data used by the nonce generation function
640
 *                      (can be NULL). If it is non-NULL and
641
 *                      secp256k1_nonce_function_default is used, then ndata must be a
642
 *                      pointer to 32-bytes of additional data.
643
 *
644
 * The created signature is always in lower-S form. See
645
 * secp256k1_ecdsa_signature_normalize for more details.
646
 */
647
SECP256K1_API int secp256k1_ecdsa_sign(
648
    const secp256k1_context *ctx,
649
    secp256k1_ecdsa_signature *sig,
650
    const unsigned char *msghash32,
651
    const unsigned char *seckey,
652
    secp256k1_nonce_function noncefp,
653
    const void *ndata
654
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
655
656
/** Verify an elliptic curve secret key.
657
 *
658
 *  A secret key is valid if it is not 0 and less than the secp256k1 curve order
659
 *  when interpreted as an integer (most significant byte first). The
660
 *  probability of choosing a 32-byte string uniformly at random which is an
661
 *  invalid secret key is negligible. However, if it does happen it should
662
 *  be assumed that the randomness source is severely broken and there should
663
 *  be no retry.
664
 *
665
 *  Returns: 1: secret key is valid
666
 *           0: secret key is invalid
667
 *  Args:    ctx: pointer to a context object.
668
 *  In:      seckey: pointer to a 32-byte secret key.
669
 */
670
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
671
    const secp256k1_context *ctx,
672
    const unsigned char *seckey
673
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
674
675
/** Compute the public key for a secret key.
676
 *
677
 *  Returns: 1: secret was valid, public key stores.
678
 *           0: secret was invalid, try again.
679
 *  Args:    ctx:    pointer to a context object (not secp256k1_context_static).
680
 *  Out:     pubkey: pointer to the created public key.
681
 *  In:      seckey: pointer to a 32-byte secret key.
682
 */
683
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
684
    const secp256k1_context *ctx,
685
    secp256k1_pubkey *pubkey,
686
    const unsigned char *seckey
687
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
688
689
/** Negates a secret key in place.
690
 *
691
 *  Returns: 0 if the given secret key is invalid according to
692
 *           secp256k1_ec_seckey_verify. 1 otherwise
693
 *  Args:   ctx:    pointer to a context object
694
 *  In/Out: seckey: pointer to the 32-byte secret key to be negated. If the
695
 *                  secret key is invalid according to
696
 *                  secp256k1_ec_seckey_verify, this function returns 0 and
697
 *                  seckey will be set to some unspecified value.
698
 */
699
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_negate(
700
    const secp256k1_context *ctx,
701
    unsigned char *seckey
702
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
703
704
/** Negates a public key in place.
705
 *
706
 *  Returns: 1 always
707
 *  Args:   ctx:        pointer to a context object
708
 *  In/Out: pubkey:     pointer to the public key to be negated.
709
 */
710
SECP256K1_API int secp256k1_ec_pubkey_negate(
711
    const secp256k1_context *ctx,
712
    secp256k1_pubkey *pubkey
713
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
714
715
/** Tweak a secret key by adding tweak to it.
716
 *
717
 *  Returns: 0 if the arguments are invalid or the resulting secret key would be
718
 *           invalid (only when the tweak is the negation of the secret key). 1
719
 *           otherwise.
720
 *  Args:    ctx:   pointer to a context object.
721
 *  In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
722
 *                  invalid according to secp256k1_ec_seckey_verify, this
723
 *                  function returns 0. seckey will be set to some unspecified
724
 *                  value if this function returns 0.
725
 *  In:    tweak32: pointer to a 32-byte tweak, which must be valid according to
726
 *                  secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
727
 *                  random 32-byte tweaks, the chance of being invalid is
728
 *                  negligible (around 1 in 2^128).
729
 */
730
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(
731
    const secp256k1_context *ctx,
732
    unsigned char *seckey,
733
    const unsigned char *tweak32
734
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
735
736
/** Tweak a public key by adding tweak times the generator to it.
737
 *
738
 *  Returns: 0 if the arguments are invalid or the resulting public key would be
739
 *           invalid (only when the tweak is the negation of the corresponding
740
 *           secret key). 1 otherwise.
741
 *  Args:    ctx:   pointer to a context object.
742
 *  In/Out: pubkey: pointer to a public key object. pubkey will be set to an
743
 *                  invalid value if this function returns 0.
744
 *  In:    tweak32: pointer to a 32-byte tweak, which must be valid according to
745
 *                  secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
746
 *                  random 32-byte tweaks, the chance of being invalid is
747
 *                  negligible (around 1 in 2^128).
748
 */
749
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
750
    const secp256k1_context *ctx,
751
    secp256k1_pubkey *pubkey,
752
    const unsigned char *tweak32
753
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
754
755
/** Tweak a secret key by multiplying it by a tweak.
756
 *
757
 *  Returns: 0 if the arguments are invalid. 1 otherwise.
758
 *  Args:   ctx:    pointer to a context object.
759
 *  In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
760
 *                  invalid according to secp256k1_ec_seckey_verify, this
761
 *                  function returns 0. seckey will be set to some unspecified
762
 *                  value if this function returns 0.
763
 *  In:    tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
764
 *                  secp256k1_ec_seckey_verify, this function returns 0. For
765
 *                  uniformly random 32-byte arrays the chance of being invalid
766
 *                  is negligible (around 1 in 2^128).
767
 */
768
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_mul(
769
    const secp256k1_context *ctx,
770
    unsigned char *seckey,
771
    const unsigned char *tweak32
772
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
773
774
/** Tweak a public key by multiplying it by a tweak value.
775
 *
776
 *  Returns: 0 if the arguments are invalid. 1 otherwise.
777
 *  Args:    ctx:   pointer to a context object.
778
 *  In/Out: pubkey: pointer to a public key object. pubkey will be set to an
779
 *                  invalid value if this function returns 0.
780
 *  In:    tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
781
 *                  secp256k1_ec_seckey_verify, this function returns 0. For
782
 *                  uniformly random 32-byte arrays the chance of being invalid
783
 *                  is negligible (around 1 in 2^128).
784
 */
785
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
786
    const secp256k1_context *ctx,
787
    secp256k1_pubkey *pubkey,
788
    const unsigned char *tweak32
789
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
790
791
/** Randomizes the context to provide enhanced protection against side-channel leakage.
792
 *
793
 *  Returns: 1: randomization successful
794
 *           0: error
795
 *  Args:    ctx:       pointer to a context object (not secp256k1_context_static).
796
 *  In:      seed32:    pointer to a 32-byte random seed (NULL resets to initial state).
797
 *
798
 * While secp256k1 code is written and tested to be constant-time no matter what
799
 * secret values are, it is possible that a compiler may output code which is not,
800
 * and also that the CPU may not emit the same radio frequencies or draw the same
801
 * amount of power for all values. Randomization of the context shields against
802
 * side-channel observations which aim to exploit secret-dependent behaviour in
803
 * certain computations which involve secret keys.
804
 *
805
 * It is highly recommended to call this function on contexts returned from
806
 * secp256k1_context_create or secp256k1_context_clone (or from the corresponding
807
 * functions in secp256k1_preallocated.h) before using these contexts to call API
808
 * functions that perform computations involving secret keys, e.g., signing and
809
 * public key generation. It is possible to call this function more than once on
810
 * the same context, and doing so before every few computations involving secret
811
 * keys is recommended as a defense-in-depth measure. Randomization of the static
812
 * context secp256k1_context_static is not supported.
813
 *
814
 * Currently, the random seed is mainly used for blinding multiplications of a
815
 * secret scalar with the elliptic curve base point. Multiplications of this
816
 * kind are performed by exactly those API functions which are documented to
817
 * require a context that is not secp256k1_context_static. As a rule of thumb,
818
 * these are all functions which take a secret key (or a keypair) as an input.
819
 * A notable exception to that rule is the ECDH module, which relies on a different
820
 * kind of elliptic curve point multiplication and thus does not benefit from
821
 * enhanced protection against side-channel leakage currently.
822
 */
823
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
824
    secp256k1_context *ctx,
825
    const unsigned char *seed32
826
) SECP256K1_ARG_NONNULL(1);
827
828
/** Add a number of public keys together.
829
 *
830
 *  Returns: 1: the sum of the public keys is valid.
831
 *           0: the sum of the public keys is not valid.
832
 *  Args:   ctx:        pointer to a context object.
833
 *  Out:    out:        pointer to a public key object for placing the resulting public key.
834
 *  In:     ins:        pointer to array of pointers to public keys.
835
 *          n:          the number of public keys to add together (must be at least 1).
836
 */
837
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
838
    const secp256k1_context *ctx,
839
    secp256k1_pubkey *out,
840
    const secp256k1_pubkey * const *ins,
841
    size_t n
842
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
843
844
/** Compute a tagged hash as defined in BIP-340.
845
 *
846
 *  This is useful for creating a message hash and achieving domain separation
847
 *  through an application-specific tag. This function returns
848
 *  SHA256(SHA256(tag)||SHA256(tag)||msg). Therefore, tagged hash
849
 *  implementations optimized for a specific tag can precompute the SHA256 state
850
 *  after hashing the tag hashes.
851
 *
852
 *  Returns: 1 always.
853
 *  Args:    ctx: pointer to a context object
854
 *  Out:  hash32: pointer to a 32-byte array to store the resulting hash
855
 *  In:      tag: pointer to an array containing the tag
856
 *        taglen: length of the tag array
857
 *           msg: pointer to an array containing the message
858
 *        msglen: length of the message array
859
 */
860
SECP256K1_API int secp256k1_tagged_sha256(
861
    const secp256k1_context *ctx,
862
    unsigned char *hash32,
863
    const unsigned char *tag,
864
    size_t taglen,
865
    const unsigned char *msg,
866
    size_t msglen
867
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
868
869
#ifdef __cplusplus
870
}
871
#endif
872
873
#endif /* SECP256K1_H */