Coverage Report

Created: 2025-06-10 13:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/bitcoin/src/common/bloom.cpp
Line
Count
Source
1
// Copyright (c) 2012-present The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <common/bloom.h>
6
7
#include <hash.h>
8
#include <primitives/transaction.h>
9
#include <random.h>
10
#include <script/script.h>
11
#include <script/solver.h>
12
#include <span.h>
13
#include <streams.h>
14
#include <util/fastrange.h>
15
16
#include <algorithm>
17
#include <cmath>
18
#include <cstdlib>
19
#include <limits>
20
#include <vector>
21
22
static constexpr double LN2SQUARED = 0.4804530139182014246671025263266649717305529515945455;
23
static constexpr double LN2 = 0.6931471805599453094172321214581765680755001343602552;
24
25
CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
26
    /**
27
     * The ideal size for a bloom filter with a given number of elements and false positive rate is:
28
     * - nElements * log(fp rate) / ln(2)^2
29
     * We ignore filter parameters which will create a bloom filter larger than the protocol limits
30
     */
31
0
    vData(std::min((unsigned int)(-1  / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
32
    /**
33
     * The ideal number of hash functions is filter size * ln(2) / number of elements
34
     * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
35
     * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
36
     */
37
0
    nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
38
0
    nTweak(nTweakIn),
39
0
    nFlags(nFlagsIn)
40
0
{
41
0
}
42
43
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, std::span<const unsigned char> vDataToHash) const
44
12.1k
{
45
    // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
46
12.1k
    return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
47
12.1k
}
48
49
void CBloomFilter::insert(std::span<const unsigned char> vKey)
50
256
{
51
256
    if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
  Branch (51:9): [True: 34, False: 222]
52
34
        return;
53
2.38k
    for (unsigned int i = 0; i < nHashFuncs; i++)
  Branch (53:30): [True: 2.16k, False: 222]
54
2.16k
    {
55
2.16k
        unsigned int nIndex = Hash(i, vKey);
56
        // Sets bit nIndex of vData
57
2.16k
        vData[nIndex >> 3] |= (1 << (7 & nIndex));
58
2.16k
    }
59
222
}
60
61
void CBloomFilter::insert(const COutPoint& outpoint)
62
166
{
63
166
    DataStream stream{};
64
166
    stream << outpoint;
65
166
    insert(MakeUCharSpan(stream));
66
166
}
67
68
bool CBloomFilter::contains(std::span<const unsigned char> vKey) const
69
2.11k
{
70
2.11k
    if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
  Branch (70:9): [True: 0, False: 2.11k]
71
0
        return true;
72
11.3k
    for (unsigned int i = 0; i < nHashFuncs; i++)
  Branch (72:30): [True: 10.0k, False: 1.28k]
73
10.0k
    {
74
10.0k
        unsigned int nIndex = Hash(i, vKey);
75
        // Checks bit nIndex of vData
76
10.0k
        if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
  Branch (76:13): [True: 830, False: 9.20k]
77
830
            return false;
78
10.0k
    }
79
1.28k
    return true;
80
2.11k
}
81
82
bool CBloomFilter::contains(const COutPoint& outpoint) const
83
283
{
84
283
    DataStream stream{};
85
283
    stream << outpoint;
86
283
    return contains(MakeUCharSpan(stream));
87
283
}
88
89
bool CBloomFilter::IsWithinSizeConstraints() const
90
303
{
91
303
    return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
  Branch (91:12): [True: 303, False: 0]
  Branch (91:53): [True: 269, False: 34]
92
303
}
93
94
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
95
958
{
96
958
    bool fFound = false;
97
    // Match if the filter contains the hash of tx
98
    //  for finding tx when they appear in a block
99
958
    if (vData.empty()) // zero-size = "match-all" filter
  Branch (99:9): [True: 143, False: 815]
100
143
        return true;
101
815
    const Txid& hash = tx.GetHash();
102
815
    if (contains(hash.ToUint256()))
  Branch (102:9): [True: 547, False: 268]
103
547
        fFound = true;
104
105
1.84k
    for (unsigned int i = 0; i < tx.vout.size(); i++)
  Branch (105:30): [True: 1.03k, False: 815]
106
1.03k
    {
107
1.03k
        const CTxOut& txout = tx.vout[i];
108
        // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
109
        // If this matches, also add the specific output that was matched.
110
        // This means clients don't have to update the filter themselves when a new relevant tx
111
        // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
112
1.03k
        CScript::const_iterator pc = txout.scriptPubKey.begin();
113
1.03k
        std::vector<unsigned char> data;
114
2.36k
        while (pc < txout.scriptPubKey.end())
  Branch (114:16): [True: 2.06k, False: 302]
115
2.06k
        {
116
2.06k
            opcodetype opcode;
117
2.06k
            if (!txout.scriptPubKey.GetOp(pc, opcode, data))
  Branch (117:17): [True: 0, False: 2.06k]
118
0
                break;
119
2.06k
            if (data.size() != 0 && contains(data))
  Branch (119:17): [True: 1.01k, False: 1.04k]
  Branch (119:37): [True: 730, False: 288]
120
730
            {
121
730
                fFound = true;
122
730
                if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
  Branch (122:21): [True: 166, False: 564]
123
166
                    insert(COutPoint(hash, i));
124
564
                else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
  Branch (124:26): [True: 134, False: 430]
125
134
                {
126
134
                    std::vector<std::vector<unsigned char> > vSolutions;
127
134
                    TxoutType type = Solver(txout.scriptPubKey, vSolutions);
128
134
                    if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
  Branch (128:25): [True: 0, False: 134]
  Branch (128:54): [True: 0, False: 134]
129
0
                        insert(COutPoint(hash, i));
130
0
                    }
131
134
                }
132
730
                break;
133
730
            }
134
2.06k
        }
135
1.03k
    }
136
137
815
    if (fFound)
  Branch (137:9): [True: 549, False: 266]
138
549
        return true;
139
140
266
    for (const CTxIn& txin : tx.vin)
  Branch (140:28): [True: 283, False: 257]
141
283
    {
142
        // Match if the filter contains an outpoint tx spends
143
283
        if (contains(txin.prevout))
  Branch (143:13): [True: 9, False: 274]
144
9
            return true;
145
146
        // Match if the filter contains any arbitrary script data element in any scriptSig in tx
147
274
        CScript::const_iterator pc = txin.scriptSig.begin();
148
274
        std::vector<unsigned char> data;
149
274
        while (pc < txin.scriptSig.end())
  Branch (149:16): [True: 0, False: 274]
150
0
        {
151
0
            opcodetype opcode;
152
0
            if (!txin.scriptSig.GetOp(pc, opcode, data))
  Branch (152:17): [True: 0, False: 0]
153
0
                break;
154
0
            if (data.size() != 0 && contains(data))
  Branch (154:17): [True: 0, False: 0]
  Branch (154:37): [True: 0, False: 0]
155
0
                return true;
156
0
        }
157
274
    }
158
159
257
    return false;
160
266
}
161
162
CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
163
178k
{
164
178k
    double logFpRate = log(fpRate);
165
    /* The optimal number of hash functions is log(fpRate) / log(0.5), but
166
     * restrict it to the range 1-50. */
167
178k
    nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
168
    /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
169
178k
    nEntriesPerGeneration = (nElements + 1) / 2;
170
178k
    uint32_t nMaxElements = nEntriesPerGeneration * 3;
171
    /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
172
     * =>          pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
173
     * =>          1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
174
     * =>          log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
175
     * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
176
     * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
177
     */
178
178k
    uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
179
178k
    data.clear();
180
    /* For each data element we need to store 2 bits. If both bits are 0, the
181
     * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
182
     * treated as set in generation 1, 2, or 3 respectively.
183
     * These bits are stored in separate integers: position P corresponds to bit
184
     * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
185
178k
    data.resize(((nFilterBits + 63) / 64) << 1);
186
178k
    reset();
187
178k
}
188
189
/* Similar to CBloomFilter::Hash */
190
static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, std::span<const unsigned char> vDataToHash)
191
123M
{
192
123M
    return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
193
123M
}
194
195
void CRollingBloomFilter::insert(std::span<const unsigned char> vKey)
196
5.84M
{
197
5.84M
    if (nEntriesThisGeneration == nEntriesPerGeneration) {
  Branch (197:9): [True: 0, False: 5.84M]
198
0
        nEntriesThisGeneration = 0;
199
0
        nGeneration++;
200
0
        if (nGeneration == 4) {
  Branch (200:13): [True: 0, False: 0]
201
0
            nGeneration = 1;
202
0
        }
203
0
        uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
204
0
        uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
205
        /* Wipe old entries that used this generation number. */
206
0
        for (uint32_t p = 0; p < data.size(); p += 2) {
  Branch (206:30): [True: 0, False: 0]
207
0
            uint64_t p1 = data[p], p2 = data[p + 1];
208
0
            uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
209
0
            data[p] = p1 & mask;
210
0
            data[p + 1] = p2 & mask;
211
0
        }
212
0
    }
213
5.84M
    nEntriesThisGeneration++;
214
215
122M
    for (int n = 0; n < nHashFuncs; n++) {
  Branch (215:21): [True: 116M, False: 5.84M]
216
116M
        uint32_t h = RollingBloomHash(n, nTweak, vKey);
217
116M
        int bit = h & 0x3F;
218
        /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
219
116M
        uint32_t pos = FastRange32(h, data.size());
220
        /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
221
116M
        data[pos & ~1U] = (data[pos & ~1U] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration & 1)) << bit;
222
116M
        data[pos | 1] = (data[pos | 1] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration >> 1)) << bit;
223
116M
    }
224
5.84M
}
225
226
bool CRollingBloomFilter::contains(std::span<const unsigned char> vKey) const
227
5.21M
{
228
6.95M
    for (int n = 0; n < nHashFuncs; n++) {
  Branch (228:21): [True: 6.86M, False: 86.8k]
229
6.86M
        uint32_t h = RollingBloomHash(n, nTweak, vKey);
230
6.86M
        int bit = h & 0x3F;
231
6.86M
        uint32_t pos = FastRange32(h, data.size());
232
        /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
233
6.86M
        if (!(((data[pos & ~1U] | data[pos | 1]) >> bit) & 1)) {
  Branch (233:13): [True: 5.12M, False: 1.74M]
234
5.12M
            return false;
235
5.12M
        }
236
6.86M
    }
237
86.8k
    return true;
238
5.21M
}
239
240
void CRollingBloomFilter::reset()
241
4.64M
{
242
4.64M
    nTweak = FastRandomContext().rand<unsigned int>();
243
4.64M
    nEntriesThisGeneration = 0;
244
4.64M
    nGeneration = 1;
245
4.64M
    std::fill(data.begin(), data.end(), 0);
246
4.64M
}